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Abstract
We evaluate the effects of several discretisation schemes on al-
ternative estimators of the drift parameters of stochastic differential
equations, namely the continuous time MLE, a so-called naive esti-
mator and an indirect estimator obtained through calibration. Two
main results are evidenced: first, the importance of correctly generat-
ing data in a simulation based estimation procedure and second, the
role of an indirect estimation procedure through calibratior as a gen-
eral strategy to be used every time the conditions of the estimation
experiment are hot the optimal ones.
Key words: stochastic differential equation models, simulation of
trajectories, estimation of drift parameters, mazimum-likelihood esti-
mation, indirect estimation, calibration

1 Introduction

In this paper a siﬂm]ation based approach is used to evaluate the effects
of several discretisation schemes on alternative estimators of the drift pa-
rameters of stochastic differential equations (SDEs), namely the discretised
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continuous time maximum likelihood estimator, a so called naive estimator
and an indirect estimator recently proposed by Gourieroux, Monfort and
Renanit (1993) (GMR (1993) for short).

We consider, in particular, several first-order SDE models taken from the
recent financial literature (namely the well known Vasicek model, the Cox,
Ingersoll, Ross (CIR} model and the Brennan - Schwarz model') and the
so-called heuristically derived logistic equation which is a stochastic variant
of the classical logistic equation of population dynamics. These models were
deliberately chosen in view of their common structure; they exhibit, in fact,
analogous problems concerning the numerical approximation of their time
paths, and they provide a common form for the maximum likelihood esti-
mator. In addition, they all possess an “exact” solution in the trajectory
domain or in the density domain or in both. This means that they may be
generated “exactly” in some sense.

In fact, a commonly encountered problem in simulation-based approaches
to estimation is the need for well generated data. This requirement is fun-
damental (in some sense it constitutes a condition of well-posedness of our
estimation experiments) in that, otherwise the interpretation of our results
could be masked by badly generated data. A dangerous consequence of this
could be that the failure of an estimate is attributed incorrectly to a lack of
nice statistical properties rather than to data generated incorrectly. These
considerations emphasise the fact that a simulation based estimation exper-
iment is well posed if and only if data from the underlying model to be
estimated are correctly generated

We investigate the effects of several discretisation schemes on alternative
estimators of the drift parameters of stochastic differential equations (SDEs),
because SDE having exact solutions constitute a very small family. When
no exact solution is available we have to resort to approximate numerical
techniques. For this reason, the estimators obtained from the exact solutions
are used as a benchmark in the evaluation of the performances of the estima-
tars obtained from data generated from the most commeon low order discrete
time approximations such as the Euler, the Milstein and the Taylor 1.5 order
schemes. We show that when the discretisation time step is not sufficiently
small, the use of a low order approximation to generate the process may lead
to an asymptotic bias in the maximum likelihood estimator. This bias de-
pends on the degree of non-linearity of the underlying process which in turn
depends on the value of the tuning parameter k (see equation (1) below).

1These are the names commonly employed in the financial literature. As it is known
from the literature on stochastic processes, the Vasicek model is an Ornstein and Uhlenbeck
process with positive long term equilibrium, the CIR model is a Feller process and the
Brennan and Schwarz is a geometric brownian motion with positive long term equilibrinm.
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We hope to obtain, in this way, at least some insight as to how to approach
more complex problems, such as higher order and/or nonlinear SDEs, in
which the lack of analytical results that may serve as benchmarks oblige
us to completely trust in the results obtained by resorting to approximate
numerical schemes. An obvious suggestion would be to use higher order
schemes in order to increase the accuracy of the approximations.

We show that when the “experimental conditions” are correct, i.e. when
the underlying continuous processes are generated correctly, the discretised
continuous time maximum likelihood estimator (DMLE) seems to work quite
well. A serious bias appears as expected (see Kloeden et al. (1995, 2.13)) only
under quite stressed situations such as when the length of the observation
peried [0,T] is quite small, or when the amplitude of the discretisation step is
large. For these situations other types of ML “allied” estimators have been
proposed, based on notions such as the “martingale compensator” (Bibby
and Soerensen 1995). For such “seriously stressed” situations we consider the
performances of an indirect estimator proposed by GMR, (1993) in removing
the bias in the DMLE.

The indirect estimator is obtained by calibrating on the MLEs of the un-
derlying process and on the parameters of an auxiliary model as, for example,
im GMR (1993).

The results obtained by calibrating both on the MLE and the naive esti-
mator seem to suggest that, independently of the nature of a particular indi-
rect estimator used in a specific problem, the calibration procedure, which is
basic to the indirect approach, rather than constituting an alternative esti-
mation technique, seems to constitute a fundamental strategy which should
be employed in order to improve the quality of our estimates every time the
conditions of the experiment are not the optimal ones.

Finally we show that a so-called “naive” estimator, which has often been
used due mostly to its simplicity, can give very misleading results and should
therefore be resorted to only when other more reliable estimators are not

available

2 Estimation of drift parameters

Let us consider the problem of the estimation, from a continuous signal over
a prescribed interval [0,T], of the drift parameter © (© can be a vector; it
is assumed that it does not appear among the diffusion parameters?) of the
SDE:

*We will not be concerned in this paper with the problem of estimation of the diffusion
coefficients.




Cin = CL(X;, )dt -+ b(Xt, O')de (].)

Equation (1), under suitable regularity conditions, possesses a well be-
haved solution and, moreover, admits the so called Continuous Time Max-
imum Likelihood Estimator (CTMLE, see Liptser and Shiryayev 1981, and
Kloeden et al. 1995), which is obtained by maximising the likelihood func-

tion:
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When (1) is linear in the drift parameters, the likelihood (2) assumes a
simple structure in which the various “integral statistics” of the underlying
process appear only as coefficients of the relevant variables (i.e. the para-
meters to be estimated), thereby making the optimisation problem simple?
and hence permitting us to derive explicit expressions for the CTMLE. In
this case not only can the CTMLE be explicitly computed, but it also has
nice asymptotic properties (Kloeden et al. 1995 and references therein), due
to the fact that the corresponding stochastic process belongs to the expo-
nential family?. The performances of such estimators for “short signals™, on
the other hand, are more complex to study analytically. These difficulties
are further amplified when, as often happens, data from diffusion processes
are not available under the form of a continuous realization of the underly- -
ing stochastic process, but rather under the form of a sample taken from it
(i.e. a discrete time series). In such cases, it is in general quite difficult to
determine explicit likelihood functions on the “discretization grid”. A com-
mon estimation strategy would then be to construct approximate estimators
through a suitable discretization of the various integral statistics. We call
such estimators “discretized” CTMLE (DMLE for short).

The investigation of the formal properties of DMLE is difficult so that
a simulation based inference, based on the construction of (discrete) path-
wise or strong numerical approximations (Kloeden and Platen 1992) of the
trajectories of the underlying SDE, becomes particularly appealing. Once
the discrete approximated path is obtained, we could substitute it into the
corresponding formula for the DMLE and thereby check the performance of
the estimator in a straightforward way (see Kloeden et al. 1995).

We argue that if the true underlying process could be generated “exactly”
or approximated to a desired level of accuracy, the problem of evaluating the

3These considerations on MLE are no longer true if the drift is non-linear in parameters.
*Note that the CTMLE is equivalent to the Minimum Distance estimator (weighted
least square) for exponential families.



performance of the “discretized” estimator could then be considered as being
correctly posed and this should make it possible for us to analyse correctly the
effects of factors such as the method of numerical evaluation of the integral
statistics, the maximum amplitude, of the time step used in the discretisation
and the length T of the solution interval.

3 The “test models” and the common struc-
ture of their CTMLE

The four models considered in this paper are quite similar. They can be en-
compassed by the following compact equation, by varying the two parameters

a, 3

dX, = k(9 — X)) Xdt + o XL dW, (3)

where k, ¥ and ¢ are strictly positive. We identify them in the following
table:

Table 1. Values of o and 3 for specific models of the family (3)

MODEL al 8

Vasicek 0y 0
CIR. 0]05

Brennan and Schwarz 0] 1
Heuristically Derived Logistic | 1 | 1

The formal properties of these models are well known. A broad literature
is at present available for what concerns their utilisation as mathematical
models in finance (Chan et al. (1992)) and in population dynamics (Gard
1987, 1992).

With regards to the problem of estimation of (3), the common dependency
of the drift on its structural parameters gives rise to a comumnon form of the
likelihood functions of the four models and hence also to common forms
for the CTMLE, providing they exist, of the drift parameters. The only
differences present are in the “integral statistics” involved (see Appendix A
for details). The CTMLE of the parameters k and 6 have the form:
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where the I; are the corresponding “integral statistics” reported in Table 2.
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Table 2. Initegral statistics involved in the CTMLE for the four models

MODEL I] ]:2 13 L]. I.')
T T T T T
Vasicek JaX, | [ X dX,| [ds fX_?ds [ Xqds:
0 il a 0 0
T T T T T
CIR. f ax, fdX, I gi [ X.ds | [ds;
R e T e
3 3 L] L]
Brennan and Schwarz g' X7 6[' X, g‘ X7 st ] z
TdX, T T T T
HD Logastic I JdX, fds | [ X2%ds | [ Xds;
o X, 0 ) ) 0

For the CIR model, for example, thanks to Ito’s formula and a trapezoidal
evaluation of the various (nonstochastic) integrals we obtain the following
discrete estimates of the various integral statistics:

I) =log i}%: + 2;1'3

.[2 = XT - X()

L= 5yt (X2 + X;)
I =5 500 (Xno1 + Xn)
=T

where A is the discretisation step. By introducing these expressions in
(4) we obtain a® discrete maximum likelthood estimator (DMLE). In Tables
Al and A2 (see the Appendix) we report the corresponding expressions for
all the models considered in this paper.

4 Computational experiments: Discrete Max-
imum Likelihood Estimates

We first estimate the four models using the DMLE. The given models were
considered under parameter constellations gnaranteeing the existence of a
stationary distribution; this is a useful, but not always necessary assumption
(see Kloeden et al. 1995). In all cases we only estimate the two drift para-
meters k and 9 by assuming always known the diffusion coefficient ¢. This is
a simplifying assumption quite common in the specialised literature on the
estimation of SDE (see Kloeden et al. 1995, Bibby and Sorensen 1994). It
is justified by the theorem of quadratic variation of semi-martingales which

$Clearly it is not unique since alternative expressions may be obtained by using different
integration rules, such as Simpson’s rule, ete.
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ensures that, in the presence of highly frequent data, the diffusion coefficient
becomes known with probability one. However, in many empirical situations,
such as in empirical finance, o is unknown and must be estimated. This
problem has been investigated in the existing literature (see, for instance,
Overbeck and Ryden 1997) and by the authors in a forthcoming paper. In
our numerical experiments, the estimate of 9 does not appear to suffer from
any bias whatever the conditions of the experiment might be. This is in
agreement with the fact that, as expected, the estimation of an “equilibri-
um” parameter is usually not a problem, at least as long as a sufficiently long
series of data is available. For this reason, in what follows, we only report
the results related to the estimation of k.

We consider only “equilibrium dynamics”, that is, we always set the initial
conditions of the processes considered equal to their long term mean ¢. We do
not consider the effects on estimation of transient phases which are “long”
as compared to the “equilibrium phase” in which the process has already
reached its equilibrium regime.®

4.0.1 The CIR model: alternative generators and estimation

We compare the performances of the estimates obtained from data gener-
ated by the approximate Euler, Milstein and Taylor 1.5 schemes with the
estimates obtained from data generated by the exact conditional chi-squared
distribution (CCSD) of the CIR. model in order to show to what extent badly
generated data can lead to inconsistent results.

The CTMLE has nice asymptotic properties and hence we expect that for
sufficiently long (T large) series of well generated data the estimate should
be consistent. This result should remain true even for the corresponding
discrete-time estimator at least as long as the discretisation step is not large
and the numerical evaluation of the given integral statistics is sufficiently
accurate. These expected results are fully confirmed by our numerical exper-
iments.

On the other hand, the CTMLE does not necessarily possess good small
sample properties. Hence, even if the process is correctly generated but the
estimation time span [0,T] is small, the CTMLE could be biased. We must
also note that even when T is large the CTMLE will be biased if the process
is badly generated. We expect that these results could worsen when we
consider their discretized counterparts DMLE. Our experiments fully confirm

5The study of the sole transient phase is necessary for instance in processes of physio-
logical growth, where the only relevant parameters are those connected with the dynamics
of transition to maturity. Results on some of these effects were presented in (Cleur and
Manfredi 1996). '



this conjecture as well.

Tables 3-8 report numerical results of a hierarchy of simulation runs for
an mcreasing sequence of values of the tuning parameter k. Our simulations
were performed for fixed values of ¥ (9=0.1) and o(c=0.06), which are rea-
sonable values for the CIR model, as used in other similar studies (Bianchi
et al. 1993, Bianchi and Cleur (1995)). The standard deviations reported in
parentheses were calculated from the Monte Carlo estimates obtained from
1000 replications.

Table 3. CIR model: DMLE of k for four generators;
T=2000, A =0.01 (standard deviations in brackets)

True vaiues of k

Chisquare

Euler

Milstein

Tayior 1.5

0.3

0.3020 (0.0171})

0.3015 (0.0170)

0.3016 (0.0171)

0.3020 (0.0171)

0.8

.8021 (0.0277)

0.7987 (0.0276)

0.7990 (0.0257)

0.8021 (0.0277)

1.5

1.5018 (0.0378)

1.4903 (0.0373)

1.4508 (0.0373)

1.5019 (0.0878)

Resnlts obtained from 1000 replications

Table 4. CIR model: DMLE of k for four generators;
T=100, A =0.01 (standard deviations in brackets)

True values of k

Chisquare

Euler

Milstein

Taylor 1.5

0.3

0.3426 (0.0865)

0.3419 (0.0862)

0.3420 (0.0863)

0.3426 (0.0865)

0.8

08403 (0.1282)

0.8366 (0.1274)

0.8369 (0.1274)

0,8403 (0.1282)

1.5

1.5387 (0.1719)

1.5264 (0.1659)

1.5269 (0.1699}

1.5387 (0,1720)

Results obtained from 1000 replications

Table 5. CIR model: DMLE of k for four generators;
T=5000, A =0.1 (standard deviations in brackets)

True values of k

Chisquara

Euler

Milatein

Taylor 1.5

0.3

0.3007 (0.0170)

0.2956 (0.0104)

0.2966 (0.0105)

0.3008 (0.0107)

0.8

0.8009 (0.0175)

0.7673 (0.0164)

0.7700 (0.0164)

0.8019 (0.0175)

1.5

1.5012 (0.0242)

1.3855 (0.0215)

1.3904 {0.0216)

1.5073 (0.0243)

Results obtained from 1000 replications




Table 6. CIR model: DMLE of k for four generators;
T=100, A =0.1 (standard deviations in brackets)

True values of k

Chisquare

Euler

Milstein

Tavlor 1.5

0.3

0.3395 (0.0856)

0.3330 (0.0835)

(0.3341 (0.0838)

03396 (0.0857)

0.8

0.8385 (0.1208)

0.8013 (0.1214)

0.8041 (01215}

0.8394 (0,1299)

1.5

1.5383 (0.1737)

1.4162 (0.1541)

1.4912 (0.1542)

1.5441 (0.1751)

Results obtained from 1000 replications

When T is large {T==2000) (see Table 3) and the discretisation step is suf-
ficiently small (of the order of magnitude of A=0.01), the estimates obtained
from the data generated by all four generators are close to the true values and
there appears to be no significant bias. When T is small, (T=100) (see Table
4), although we have a reasonably small discretisation step, (A=0.01), the
estimates from all four generators are heavily biased. These results confirm
the previous observation that the DMLE preserves nice asymptotic proper-
ties, like all maximum likelihood estimators, but suffers from a significant
bias for short serles.

However {see Table 5), when the discretisation step is relatively large
(A=0.1), notable differences set in even though T is maintained large (T=5000).
In particular, when k is set to 0.8 and then to 1.5, thereby increasing the
convexity in the trajectories of the process, the estimates obtained from the
data generated by the CCSD of the process and by the Taylor 1.5 scheme
continue to be close to the true values, but those obtained from data gen-
erated by the Euler and Milstein schemes exhibit an increasingly significant
bias.

The reason for this is simply that as the convexity increases, the ap-
proximation of the trajectory by a “linear” method such as the Euler and
Milstein schemes provide very “low quality” data to the DMLE. Hence the
bad performance of the DMLE for these cases is, basically, a consequence
of a badly posed experiment. A heuristic explanation is the following: in
our experiments we estimate k by using “regime” data, i. e. the stochastic
fluctuation around the long term equilibrium of the process. The approxi-
mation of the “trne” fluctuation which is provided by a linear scheme, such
as Euler and Milstein, is systematically “biased” as compared to both the
exact fluctuation and the fAluctuation generated by higher order schemes. In
particular, when keeping fixed, i. e. keeping under control, the stochastic
effects, this bias becomes a monotonically increasing function of both the
discretisation step and the degree of convexity of the mean solution curve.
Thus, when the mean solution is a convex curve, as in the CIR model, by
increasing k and keeping all other factors fixed, we increase the degree of
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convexity of the mean solution, so making the “linear” approximation more
and more inadequate. Clearly, il the approximation is “bad”, then to resort
to a very large T does not help ai all; we would just repeat the same error
over a larger scale.

It should also be noted that the inaccuracy in the Euler and Milstein
schemes is relatively small when k is small thereby giving the impression to
an unaware reader of not being present. ‘

The bias reported above, which is actually a “discretization bias” due to
bad data generation, should be distinguished from the notion of “discretiza-
tion bias” employed for instance in GMR (1993), to define the bias which
appears when we employ a “wrong” discrete auxiliary model to naively esti-
mate the underlying continuous stochastic process. By progressively reducing
A this bias can be reduced, as is to be expected, since a smaller discretisa-
tion step obviously leads to a better approximation of the continuous process,
thereby improving the quality of the data employed in the estimation.

In recent published literature on simulation based estimation there has
been a common practice which consists in the generation of the CIR model,
or other models of the family (3), by means of a linear scheme such as the
Euler and Milstein schemes, with, at times, a too large discretisation step
(such as A=(.1) combined with a small T and a small value of the tuning
parameter k (see Broze et al. 1995a and 1995b, Bianchi et al. 1994 and
1996). Our results show that such a practice can very easily be misleading if
it is used to evaluate numerically the performances of an estimator such as
a DMLE. We should point out that the paper by Broze et al. {1995b) and
ours could be considered as being complementary to each other. Whereas
we have investigated the very concrete problem of a correct generation of the
underlying process and to what extent convexity effects may lead to biased
estimates, they investigate, in a very formal way, the effects on the estimation
of an Ornstein-Uhlenbeck process and a geometric brownian motion due to
badly generated data using a linear scheme.

Finally, we note that (see Tab. 4) for a small T (T=100), even if dis-
cretisation step is small (such as A=0.01), all the generators provide data
leading to strongly biased estimates. This result was expected (see for in-
stance Kloeden et al. 1995).

Figure 1 shows a graph of the DMLE of k, corresponding to the true value
k=0.8, against T (100<T<5000) obtained from the data generated by means
on the Euler scheme (results from Milstein are very similar) using an inad-
equate discretisation step A. The curve practically always underestimates
the true value of k. In particular the bias monotonically increases with T.
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Figure 1: Cir Model: estimates of k (true value=0.8) from data generated by
the Euler scheme (A =0.1, 1000 replications) for 100<T<5000. Estimates
with continuous line, 2¢ confidence band with dashed line.
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it is not possible to establish, a priori, rules which will always guarantee that
our experitnent is well posed. Even in very simple problems, such as those
considered here, in order to be sure of generating good data by resorting to
linear methods (i.e. Euler and Milstein), we should continuously “tune” the
value of the discretization step A as k increases. This is clearly very difficult
in practice and obviously silly!

On the other hand, our experiments show that, even for a relatively large
discretization step, the Taylor 1.5 scheme contimies to provide sufficiently
good approximations to the trajectories of the underlying SDEs, i.e. close
to the values provided by the exact criterion CCSD, even for values of k
which are well beyond the restricted range (0, 1.5) considered here. As a
consequence, the DMLE estimates calculated from data generated by these
two methods continue to be very close to each other and close to the true
value of the parameter. For instance, up to a value of k==5.0 {detailed results
for this particular case are not presented in this paper) the relative difference
in the estimates from the two data was less that 0.003. This is certainly
strong evidence in favour of a systematic use of a higher order scheme In
smmulation based estimation of SDE parameters.

The results obtained for the CIR model carry over, mutatis mutandis,
to the remaining models. We report some selected results for the Vasicek
model.
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4.0.2 The Vasicek model

The Vasicek model, obtained from equation (3) by setting a=3=0, possesses
the formal solution:

L
X, =0+ (Xo—0)e ™ + o f AW, (4.1) (5)
0 .

which may be considered an “exact” generator of the process. As alternative
generators of the model we use only the Euler and Taylor 1.5 schemes, since
the Fuler and Milstein scheres are equivalent for all models with constant
diffusion coefficients. The formal solution (5), may be written in the following
recurrent form particularly convenient from the simulation point of view:

Xﬂ+1 = G_ka)(n + '19(1 - G_kA) + Un_|.1 (6)

where the U, are 11d normally distributed random variables, with zero mean
and variance given by:

0.2
Var(U) = o (1 —e724) (7)
Tables 7-10 report results for a series of simulations on the Vasicek model
which, as can be observed, are very similar to those reported above for the
CIR model. In particular, we may note that, provided the data are gener-
ated correctly (see Tables 7 and 8), the DMLE preserves nice asymptotic
properties, but suffers from a significant bias for short series.

Table 7. Vasicek model: DMLE of k for three generators; T=2000, A=0.01
(standard deviations in brackets)

True values of k

Exact solution

Euler /Milstein

Taylor 1.5

0.3

0.3020 (0.0i71)

0.3016 (0.0176)

0.3020 (0.0171)

0.8

0,8021 (0.0278)

0.7989 (0,0276)

0.8021 (0.0278)

1.5

1.5040 (0.0363)

1.4926 (0.0858)

1.5031 (0.0363)

Results obtained from n=1000 replications
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(standard deviations in brackets)

Table 8. Vasicek model: DMLE of k for three generators; T=100, A=0.01

True values of k

Exact solution

BEuler /Milstein

Taylor 1.5

03 0.3424 {0.0821) | 0.3418 {0.0860) | 0.3424 (0.0862)
08 0.8408 (0.1279) | 0.8389 {0.1271} | 0.8405 (0.1279)
1.5 1.5388 (0.1716) | 1.5269 (0.1696) | 1.5388 (0.1716)

Results obtained from n=1000 replications

(standard deviations in brackets)

Table 9. Vasicek model: DMLE of k for three generators; T=20000, A=0.1

True vaiues of k | Exact solution | Euler /Milstein Taylor 1.5
0.3 0.3001 (0.0053) | 0.2956 (0.0052) | 0.3001 (0.0083)
0.8 0.8002 (0.0089) | 0.7682 (0.0084) | 0.8010 (0.0090)
L5 1.5012 (0.0129) { 1.3885 (0.0115) | 1.5070 (¢.0130)

Results obtamed from n=1000 replications

Table 10. Vasicek model: DMLE of k for three generators;

(standard deviations in brackets)

T=100, A=0.1

True values of k

Exact solution

Euler /Milstein

Taylor 1.5

0.3 0.3401 (0.0861) | 0.3342 (0.0840) | 0.3402 (0.0815)
0.8 0.8389 (0.1301) | 0.8034 (0.1221} | 0.8389 (0.1305)
1.5 1.5386 {0.1740) | 1.4196 (0.1544) | 1.5441 (0.1754)

Results obtained from n=1000 replications

5 Computational experiments: Naive Esti-

mates

The so-called naive estimator used in GMR (1993) and examined in some
detail in Bianchi et al. (1994 and 1996) for the CIR model, has been very
common in statistical practice (see Seber (1989)). This estimator is defined
ag an OLS estimator of the discrete “awxliary model” (see GMR 1993) which
is nothing other than a reparameterisation of the equation obtained from the
Euler scheme approximation of a given SDE. For the CIR model, for example,
the “auxiliary model” is given by

e k4 ot )

where €y, is a sequence of iid normal random variables with zero mean and
variance equal to the amplitude of the discretization step. Model (8) can of
course be estimated using OLS.
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Clearly, the naive estimator will exhibit good statistical properties only if
the data are generated by the Euler scheme, which would be the underlying
“rue model”, and with the same time step. On the other hand, if the
process is generated by the corresponding “exact” solution or by a sufficiently
accurate higher order scheme (in our experiments a Taylor scheme of order
1.5 satisfies this request), it becomes quite obvious that an “auxiliary model”
defined by the Euler scheme cannot be expected to give good estimates unless,
as was evidenced above, T is sufficiently large and the discretisation time
step is sufficiently small. In studies similar to the one carried out in this
paper (see Broze et al (1995b) and Bianchi et al. (1996)) the data were
generated assuming that the true underlying process to be generated was
not the underlying SDE, but its Euler discretization. Consequently, it shonld
come as 1o surprise that the naive estimator did not exhibit significant bias
even for a relatively large discretisation step.

The Monte Carlo experiments carried out with the DMLE were repeated
for the naive estimate of the four models considered here. For brevity, we
report only a few of these, for the CIR model, in Tables 11 and 12. In
particular, we report the results relative to data generated “exactly” using
the non-central chi-square distribution and to data generated from the Euler
scheme and suggest that their interpretation be made keeping in mind the
results in Tables 3-6..

Table 11. Naive estimates of the CIR model.

Data are generated from the exact chisquare conditional distribution
and from the appreximate Euler scheme (standard deviations in brackets)
T = 100 A= 01 T = 1000 A= 0.01

Euler Euler

True values of k Chisquare Chisquare

0.3 0.3420 (0.0863) | 0.3424 (0.0864) | 0.3042 (0.0249) 0.3046 (0.0250)
0.8 0,8368 (0.1275) | 0.8400 (0.1277} | 0.8008 (0.0392) 0.8040 (0.0393)
1.5 1.5269 {0.1702) | 1.5380 (0.1709) | 1.4518 (0.0532) | 1.5030 (0.0534)

Results obtained from 1000 replications

Table 12. Naive estimates of the CIR model.
Data are generated from the exact chisquare conditional distribution

and from the approximate Euler scheme (standard deviations in brackets)

True values of k

T=100

A=0.1

T=1000

A=0.1

Chisquare

Euler

Chisquare

Euler

0.3 0.3340 (0.0847) | 0.3383 (0.08508) | 0.2990 (0.02379) | 0.3035 (0.02392)
.8 0.8046 (0.1253) | 08355 (0.1272) 0.7724 (0.03824) 3 0.8036 (0.03890)
1.5 1.4266 (0.1621) | 1.5326 {0.1672) 1.3968 (0.05084) ! 1.503§ (0.05246)

Results obtained from 1000 replications
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The naive estimates in Table 11 are very close to their DMLE counter-
paris in Tables 3 and 4. This is evidently due to the fact that for a small
discretisation step, A=0.01, the Euler scheme. which is also the model used
for obtaining the naive estimate, gives a reasonably good approximation to
the underlying process. Hence we would expect the estimates obtained using
the DMLE and the naive estimator to be very similar; this is exactly what
we find in comparing Tables 3, 4 with Table 11.

We note from Tables 11 and 12 that, as expected, for large T the naive
estimator does not suffer from a significant bias only when the data are
generated by the Euler scheme, i.e. when there is perfect agreement between
the data generator and the estimated model. On the other hand, for small
T or when the data are generated by the “exact” solution of the underlying
process, the naive estimator exhibits a large bias. The value of 0.8046 in Table
12 obtained from data generated from the “exact” solution could be very
misleading and underlies the need for a consideration of a variety of parameter
values and data lengths in establishing, via simulation, the properties of
statistical estimators. Under such circumstances, it is our belief that the
naive estimator should never be used for estimating SDE.

6 Calibration as a general strategy?

As seen before (see Table 4), even if the data are well generated, but T is
small, the DMLE is seriously biased. This bias is totally unavoidable but can,
in many situations, be corrected by resorting to indirect estimation methods
(see GMR. (1993)). In Table 13 we present the results relating to the DMLE
and Indirect estimate of the CIR model when T and the discretisation step
are small (T=100, A=0.01). H defines the number of simulated series used
in the calibration (for details see GMR. (93)). The series in this experiment
were generated by using the Taylor 1.5 scheme” (results from the CCSD are
almost identical and hence not reported here for brevity).

"We have done so deliberately in order to further evaluate the performance of the Taylor
1.5 scheme which so far appears to have provided very good results.
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Table 13. CIR model: Indirect estimation of k:

a)by calibrating the DMLE (second and third columns};
b) by calibrating the naive OLS estimator (fourth and fifth columns).
T=100, A=0.01, H=4 (standard deviations in brackets)

True values of k

DMLE

DMLE Indirect est.

Naiva OLS

Naive QLS Indirect

0.3

0.3468 (0.08%4)

0.3013 (D.05%0)

0.3414 (0.0904)

0.3011 (0.1003)

0.8

0.8488 (0.1546)

0.8048 (0.1670)

0.8373 (0.1383)

0.8021 (0.1514)

L.5

1.5453 (0.1865)

1.5012 (0.1996)

1.5301 (0.1851)

1.5040 (0.2021)

Results obtained from n=>50( replications

As we may see, both the DMLE and the naive estimator give very simi-
lar results before calibration and both successfully correct for the bias after
calibration. This suggests that calibration (iL.e. indirect estimation) can be
used to correct for bias and hence is a good strategy which may be applied in
practice whenever the experimental conditions are “stressed”. In addition,
Table 13 suggests that for short, but highly frequent data, a calibration on
the simplest available estimate could be sufficient to correct for the bias. This
conclusion is supported by our comments above on the results in Table 3, 4,
and 11.

Completely analogous results for the mmdirect estimate were obtained for
all the four models considered. We report, in Table 14, the results obtained
for the Vasicek model in the special case where T=100 and A=0.01, i.e. when
the DMLE suffers from a serious bias and hence is comparable with Table
13.

Table 14 Vasicek model: indirect estimation of k:
a}by calibrating the DMLE (second and third columns};
b)by calibrating the naive OLS estimator (fourth and fifth columns).
T=100, A==0.01, H=4 (standard deviations in brackets)

True valuea of k

DMLE

DMLE Indirect eat.

Naive OLS

Nafve OLS Iadirect

0.3

0.3436 (0.0889)

0.3025 (0.0994)

0.3434 (0.0889)

0.3033 (0.0997)

0.8

0.8401 (0.1382)

.8004 (0.1501)

0.8374 (0.1378)

0.8019 (0.1515)

1.5

1.5400 (0.1856)

1.6012 {0.1990)

1.5303 (0.1846)

1.5039 (0.2021)

Results obtained from n=>500 replications

7 Conclusions

This paper has shown the importance of correctly generating data in a
simulation-based estimation procedure. In the absence of “exact” solutions,
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for the generation of the sample paths of SDEs we should always resort to
higher order approximate schemes. The importance ol using higher order
schemes is fully evidenced in our experiments, based on the comparison he-
tween a Taylor scheme of strong order 1.5 , which in many reasonable cases
appears to work quite well (its results are comparable to those obtained from
data generated “exactly”) and the lower order Euler and Milstein schemes
which do not, in many cases, provide adequate approximations to the under-
lying processes.

Qur results suggest that, whenever we have a fairly long approximation
of the time path of a given SDE observed on a sufficiently fine grid of time
points, the Discretised Maximum Likelihood Estimator appears to provide
nice estimates of the drift parameters. The results also indicate that the
naive estimator, which has been very often used in the literature (see for
example Seber (1989, chapter 7) and references therein), should not be used
in any circumstances.

The DMLE, which has good large sample properties, is seriously biased
for small samples. In this case, i.e. when we have short sertes of even well

generated data, we suggest that an indirect simulation-based estimation pro-
cedure should be used.
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8 Appendix A

8.1 MLE of drift parameters in continuous time.

In the main text we considered the Continuous Time Maximum Likelihood
Estimation of the one-dimensional SDE d.X, = a(X;, ©)dt + b(X;, 0)dW, for
the restricted but important family

dX, = k(d — X ) X2dt + o XPdW, (9)

where the parameters o and 3 are defined as in Table 1 of the main text.
We now briefly sketch the calculations involved in deriving the CTMLE.

The likelihood function for model (9) is given by (for a more detailed
discussion of the existence problem see Liptser and Shiryayev (1981) and
Kloeden et al. (1995)):

T o T o
Lk, 9) = exp k(¥ — X,) Xs X, — 1 (k- X)X )
8 2
b (aX 0 (TXS

or:
T - X,) X2 1 720 — X,)?
o 2 g et s
log L(k,d) = o (0/ = dX, — 20/ D) ds) (10)

The general form (10) may appear somewhat complicated, but it has the
advantage of being highly general and encompasses all the cases considered
in this paper. The likelthoods corresponding to the four models considered
are easily found by just setting the parameters o and 3 to the values in Table
1. Simple calculations show that the log-likelihood reduces to

o log L(k, 9) = Tk ~ Lk — - [It? + I, - 205] k° (11)

where the I; are the "integral statistics”® resulting from the explicit devel-
opment of (10) and are given by

T

L = Li{a,3) = fX”‘ BdX, ; I = L{a, B) = f XHe2PdX,;
0
T

L = Li{e,B) = fX;?W—a)ds; I = I, B) = [ X2~ HB-gg .
1] 0

T
Is = Is(a, 8) = bfxg—w-ﬂ)ds.
(12)

*This terminology is uncommon but its meaning should be perfectly clear,
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We note that the first two integral statistics, [;and [, , are stochastic while
the remaining are not.

We may obtain the integral statistics for all the models considered in
this paper through a straightforward substitution of the values reported in
Tablel; for instance, by putting o = 3 = 1°, we get the following integral
statistics for the logistic equation

T T
h(L1) = [X7'dX,;  L(1,1) = [dX,;

T T ° T (13)
L(1,1) = fds; I{1,1) = [X2ds; I5(1,1) = [ X}ds.

0 0 0

Noting that the drift of the family of SDEs considered here is linear in
the parameters k& and = = k9, we may reparameterize (11) to obtain

1
Lk(k, Z) = 0'2 log L(k,;:) = 112 - ng - '5 {1322 + .[4-’{72 - 2.[5]62] . (14)
The first order conditions

% =—Ih—Lk+Iz=0 (15)
Brek) — [ — Loz 4+ Isk =0

lead to the following unique solution

9= Ly — Dy

—_—— — N 16
Ily~ 12 Ll — 127 Lis = I (16)

It is straightforward to prove that the second order conditions for a maximum

are satisfied and hence the expressions in (16) define the unique form of the
CTMLE for all the models of the family (9).

8.2 MLE of drift parameters in discrete time

The empirical use of the CTMILEs i1s made possible by a conversion to their
discrete counterparts namely the Discrete (time) Maximum Likelihood Esti-
mates. This is obtained via suitable discretisations of the integral statistics,
1;, some of which, as we have already observed, are stochastic and some are
not.

9Notice that this approach enables us to derive the CTMLE for a much greater family
of models than the one defined in Table 2.
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The non-stochastic integrals, /5, I; and Iy may be evaluated by using an
appropriate discretisation rule; we have always applied the trapezoidal rule.
The expressions thus obtained are summarised in the following Table:

Table Al. Trapezoidal evaluation of the non-stochastic integral statistics.

I3 I 4 15
Vasicek T AT, - Xa- L XA ST ‘(M+xn
CIR  AYsG L;X—i AT, X“—“ﬁ T
BS AT ;,an T ATT J_lt{n_
Logistic T ATTIT __n_,l+_¥_ A anr Xn- 1+ X

The stochastic integrals, on the other hand, can be reduced to a non-
stochastic form by systematically applying Tto’s formula (see Kloeden et al.
1995). Remember that the stochastic integrals appearing in (12) are

T T
I = h{e, B) = j Xo-%dX, and I,=I(a,f3)= f XiHe-Wax,. (17)
1] 4]

Straightforward calculations lead to the following Table:

Table A2. Tto’s formula evaluation of the stochastic integral statistics
I I

Vasicek XT — XO Xz-Xg-o "');2 o
CIR log 4+ % I3 Xr— Xo
2

BS oI5 — (?;m%_;) log L + 5T
Logistic log % —I + "ZT Xr— Xo

9 Appendix B: Numerical schemes

We briefly report the time-discrete schemes used in this paper for the nu-
merical solution of SDEs. We employed the approximate Euler, Milstein and
Taylor 1.5 schemes (see Kloeden and Platen (1992), chapter 10, and Kloeden
et al. (1994), chapter 4). In addition, in order to check on the accuracy
of the methods considered, we employed a number of alternative generation
techniques; these ranged from the exact formal solution, when available (as
in the case of the Omstein - Uhlenbeck, Brennan - Schwartz and logistic
models), to the exact conditional probability density function of the process
(as in the case of the CIR model).
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Let us consider the SDEs

dX, = a{Xy)dt + b(X;)dW, (18)

where the functions a(.) and b(.) are assumed to be differentiable as many
times as we need. Of course (18) must define a ”Stochastic Cauchy’s prob-
lem”, 1.e.it has to be completed by prescribed initial conditions. The Euler,
Milstein and Taylor 1.5 numerical approximation schemes all belong to the
class of “Taylor type” numerical schemes, or “strong Taylor approximation-
§”. They provide “strong”, ie pathwise, approximations (let us denote them
by ¥,,) to the trajectories of the underlying SDE (Kloeden and Platen 1992)
over a prescribed discretization grid with time step A,,.

9.0.1 The Euler scheme

This is the simplest strong Taylor approximation and it usually has an order
of strong convergence of 0.5. For equations such as (18) above, it is given by

Vo1 = Yo+ a(Ya) A, + bV ) AW, (19)

In (19) Yn41 is the approximated value of the underlying true trajectory
at the (n + 1)-th point of the discretization grid (ie: Y,y is the estimate
provided by the metbod for X,41), A, is the discretisation time step, AW,
is a sequence of LL.D normal random variables with zero mean and variance

given by the amplitude of the corresponding time step. For instance, in the
case of the CIR model, where: a(X) = k(¥ — X), b(X) = 0v/X we have

Yors = Yo+ k(8 — Xo)An + 0/ Xn AW,

9.0.2 Milstein scheme
The Milstein scheme is defined by

Yaus = Yo + a(Y) A + b(Ya)AW, + %b(Yn)b’(Yn) (AW,)? - A,

This scheme has, under suitable regularity conditions, the order 1.0 of strong
convergence.

9.0.3 Taylor 1.5 scheme

Following Kloeden et al. (1994, page 146) the Taylor 1.5 scheme, i.e. the
approximation which converges strongly with order 1.5, is given by
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Yo = M, + RT, (20)

where M, is the corresponding Milstein scheme and RT, is given by the
following expression:
RT, = a/bAZy + 3 [ad + 382" ] A2 + [abf + 1% | [AW, A, — AZ,] +
WY + ()] [HAW,)? - A, - AW,
where the various functions are evaluated at the point Y,. The Taylor 1.5

scheme needs the generation of a pair of dependent random variables AW,
and AZ, (for details see Kloeden et al. 1994, 146)

9.0.4 CIR model: exact conditional distribution

The CIR model does not have a closed form formal solution in the trajectory
domain but has a closed form solution for its conditional distribution. This
conditional distribution p(X (s)/X(t)) is a stationary non-central chi-square
distribution (for its generation on the computer see, for ex., Johnson and
Kotz (1992)) with 2g degrees of freedom and noncentrality parameter u,
where

2k 2k

1—ecre9) 1552

uft) = (XY, o(t) =
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