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Abstract

The procéss of transition into adulthood, as an irreversible process which, during the lifetime
of individuals, usually begins with the end of formal education, is reconsidered within a
multistate generalisations of stable population theory. The chosen theoretical framework is
inspired by a recent -mathematical development by Inaba (1996). Two mathematical
frameworks are developed, a simpler one based on constant rates, and a more general one
embedding ages structure as well. The analysis of the simpler model gives a clear-cut
threshold result: The general model permits to clarify several some general questions related
with the impact of changes in patterns of transition to adulthood on reproductivity. Some
preliminary results on the effects of the delayed role of transition into adulthood on -
reproductivity are finally given, using data from the recent italian national survey “Indagine
Multiscopo sulle Famiglie™.



Transition into adulthood, marriage and timing of life
in a stable population framework

1. Introduction: tramsition into adulthood and marriageability: consequences for
reproductivity

In some Western European countries of the Mediterranean Area, Italy for instance, the

process of family formation, which takes course generally within a legal marriage

(Castiglioni and Dalla Zuanna, 1994), has significantly slowed during the last decades. In the -
meanwhile, the same countrics are experiencing below-replacement fertility at bottom levels.

In the case of Italy, the connection between the slowering of the process of family formation

on the one side and that of lowering fertility on the other one, has been linked by some
scholars to the diffusion of psychological refuse for long-term choices which may affect both
the family formation and the reproduction phases (Micheli, 1996; De Sandre, 1997). Other
scholars underline changes in gender relationships (Blossfeld and De Rose, 1992). Another
stylised fact that may be put forth is that, in the same geographic areas and historical contexts,
the length of full-time education for the young adults has been steadily increasing, especially
with regard to women. For both sexes, the entrance into the labour market has been
postponed. In general, one may say that, over time, the whole process of transmon into
adulthood has been increasingly delayed.

Studies focusing on the process of transition into adulthood show that the typlcal
- sequence of involved events is the following: the end of (formal) education comes first, then
followed by the first job, then the first cohabitation/marriage (in some cases preceded by
leaving the parental home), and finally, at last, the birth of the first child (Kiernan, 1991;
Corijn, 1996). Having a steady, married or unmarried, cohabitation seems to be an almost
necessary condition in order to become a parent - or, at least, “pregnancy remains strongly
linked with union formation” (Santow and Bracher, 1996). Entering the labour market seems
to be an almost necessary condition to be able to leave the parental home in order to live with
a partner, and, finally, having completed formal education seems to be an almost necessary
condition to enter the labour market. The distance between the end of formal education of an
individual and the formation of her/his own family may be shorter or longer, but the sequence
seems to be well established.

The general hypothesis adopted in the present work will be that the fact of beginning
the transition into adulthood, thanks to the end of the process of formal education, gives also
rise to a transition from the state of being “not marriageable” to the state of being
“marriageable”. This last distinction was introduced in a fundamental paper by Coale and
McNeil (1972), who show that the frequency of first marriage in a female cohort can be
computed by assuming that people enters in a “marriageable” state at a certain age, according
to a'normal distribution, and then marries after some exponentially distributed delays. While
Coale and McNeil explicitly argue that “in contemporary populations of Western European
origin (...) we may conjecture that the age of becoming marriageable is the age at which



serious dating, or going steady begins”, in this paper it is assumed that the beginning of the
transition into adulthood is the marker of becoming marriageable. '

Tt thus seems of interest to investigate the effects of changes in the timing of transition
into adulthood on the patterns of family formation and reproduction of a population. Among
the possible approaches, one which seems particularly fruitful is based on multistate stable
population theory. This area has been the object of a renewed theoretical interest in recent -
time, especially by Inaba, who developed, and provided a detailed mathematical
characterisation of, several models aimed to study the different facets of the complex
interaction between marriage and reproduction. Inaba (1996) has considered a one sex
irreversible three state (single — married — widowed or divorced) model for human
reproduction via first marriage, whereas Inaba (1993) adds to the basic scheme the possibility
of iterative marriage. Finally Inaba (1993) attacks, in a more theoretical vein, the more
difficult case of a true multistate two-sex interaction. Inaba’s models are very general in that
not only chronological age but also duration-dependent transitions state are systematically
considered. They therefore represent an appropriate background for the modelling of
transition into adulthood and the investigation of its relations with reproduction.

This report represents a preliminary effort in this direction. We generalise Inaba’s
(1996) irreversible three state model, by explicitly recognising a fourth state to take into
account the problem of transition into adulthood, and of marriageability. We also consider a
simplified version of our four state model with age-independent transition rates which is
reducible to ordinary differential equations (ODE’s). The theoretical framework employed
appears to be fruitful from several points of view such as: i)to provide clearcut analytical
results capable to enlight the relationships between transition into adulthcod and
reproductivity; ii)to derive explicit formulas relating the reproductivity indices of the
population with the indices characterising the process of transition into aduithood, as
suggested by Inaba; iii) to perform model assisted macro-simulation aimed to evaluate the
long: term impact of changes in the patterns of transition into adulthood on reproduction,
which is the main aim of our future research.

For instance, with reference to i), by resorting to the simpler constant rates model we
- can prove a typical threshold condition which clearly shows how a strongly delayed transition
- into adulthood can prevent the restoration of replacement level fertility even in case it could
be possible to raise fertility of marriages well over the level of two children per couple. With
reference to ii) the availability of explicit formulas for the reproductivity indices also in the
more complex age structured case has the merit of clearly putting in evidence those
demographic functions which are to be of crucial interest for the problem at point and seem to
deserve to be carefully studied in field investigations. These are: i)the proportions ever
married stratified with respect to the age of transition into adulthood, ii)the average age at
marriage stratified with respect to the age of transition into adulthood, and finally iii)the
conditional (on the age of transition into adulthood) birth rates. These formulas for the
reproductivity indices are finally used to provide a preliminary application of our framework
to recently collected italian data, in order to evaluate what we call here the “delayer” role of

i . - . . .
The delay between becoming mairiageable and marrying may also vary according to specific
conditions. In such a context, marriage and unmarried cohabitation may be treated under the same approach, if it
is needed to refer to countries where legal marriage is not largely predominant.



transition into adulthood on reproduction. This work is intended to be preliminary to a more
deep simulation work.

The present paper is organised as follows. In the second section some aspects of the
role of the completion of the formal education as a marker of transition into adulthood, and its
interrelationships with the process of family formation, are considered, even for what
concerns empirical evidence. In the third section we introduce the aggregate framework with
age-independent transition rate.s In the fourth section the general four-states age-structured
stable population framework is developed. In the fifth section the implications due to the
existence of the state of adult on reproductivity indices are developed. Finally the preliminary
application of our framework to italian FFS data is presented in section six.

2. The end of formal education as a marker of transition into adulthood

In this paper, the end of formal education is selected as a primary marker of the beginning of
the transition into adulthood, being also an irreversible transition from the state of being “not
marriageable” to the state of being “marriageable”. This appears to be a sensible choice, and
not only for Mediterranean Europe, because:

a)sooner or later education will be completed (with the exception of death during the
educational period). The end of formal education may thus be studied only for its tempo,
because we may assume a unitary quantum. However, this is not a necessary condition for the
models we present here;

b)not every woman enters the labour market, but it is empirically sensible to assume
that every woman enters the marriage market only after having completed her formal
education. As Blossfeld and De Rose (1992) state: “finishing education is expected to count
as one of the important prerequisites for entering into adulthood status, and thereby entering
into marriage and parenthood”. While the nature of the influence of women’s education on
the process of family formation is still a matter of debate, the importance of women’s
education itself is not questioned. In Becker’s (1991) work, the increasing educational level
of women implies an increased human capital level, thus partially diminishing women’s
advantages from getting married (the main effect must be thus seen via an increased
proportion never marrying). In Blossfeld and Huinink’s (1991), the fact of prolonging the
education process has the effect of postponing marriage, thus lowering the risk of getting
married. A recent study on West Germany (Huinink and Mayer, 1995) found support for the
hypothesis that “for women, it was educational participation and educational plus vocational
attainment that increasingly influences their pattern of family formation”. Santow and
Bracher (1994) find the same results for Australian women, stating that “education depresses
marriage rates by extending the period over which women are not viewed, and do not view
themselves, as fully eligible for marriage”. Broadly speaking, a large amount of empirical
evidence shows the delaying role played by being involved in the educational system on the
process of family formation (see also Klijzing, 1995), while the evidence on the effect of

- educational attainment after the end of formal education is not unidirectional (Santow and

Bracher, 1996);

c)while other events might have been chosen as a marker (e.g. the entry into the
labour force or the moment where leaving the parental home), the end of formal education



has a spcc1ﬁc characteristic: it marks the end of a period which is rarely compatible with adult
roles

Moreover, a framework where the end of formal education is a necessary condition for
entering the “marriageable” subpopulation may well apply also to developing countries,
where the focus may be on estimation of the effect of rising female educational level on
fertility.

It seems thus very 1nterest1ng to study the effects of modifications of the timing of
transition into adulthood on family formation and reproduction of a population, within a
generalised one-sex stable population framework.

The approach followed in the present work is fundamentally aimed at the macro level,
as it is the case for all studies based on stable population theory frameworks. In this sense,
little attention is paid to the determinants of individual behaviour, which should rather have to
be investigated with the use of event history analysis techniques. We are here mainly
interested in one of the four directions for future research suggested by Marini (1984), who
was interested to the analysis of the whole spectra of consequences of changes in the process
of transition into adulthood for the societies a a whole. Our attention particularly focuses on
the consequences of modifications in the timing of the process on population dynamics and
reproduction. This is obviously a first step in a broader task. ‘

3. Transition into adulthood, marriage, reproductivity: an elementary preliminary
without age '

As previously pointed out, the theoretical framework developed in the present work to .
investigate the relations between transition to adulthood and marriageability, first marriage
and reproductivity is represented by a one-sex (the female one for simplicity) four states
stable population formulation with “irreversible” transitions (fig. 1), which extends Inaba’s
1996 model of a stable population with reproduction via first marrlage As represented in the
flow diagram below, young individuals can not marry, since they do not become
marriageable until they become adult. Morcovcr only mamed individuals do reproduce.

2 o

Adolescent v adult A Married |  Divorced

=P (marriageable)

(non marriageable)

oo ooy

Fig. 1 Flow diagram of the basic four states model

2 In fact, being involved in the military service normally has the same conszquences (Marini, 1985).
3 The word “married” can of course substituted by “in stable union”.



Let us consider, as a pedagogic preliminary, an “aggregate” case, based on constant transition
rates. Though oversimpified this case provides clearcut results, so enlightening the role of
“sequential” stages within classical stable population frameworks.

Let us denote with pi(t) (i=0,...,3) the four state variables, i.e. the total number (or
density) of female individuals in the four states considered: po(t) is the number of “never
adult” individuals at time t, pi(t) is the number of adult individuals, p)(t) the number of
married individuals and finally ps(t) the number in the residual state (divorced or remarried).
Furthermore let 1;’s be the state specific.death rates per unit time, v the rate of transition to
adulthood per unit time of young individuals, A the rate at which adult individuals get marry
per unit time, and § the separation rate. Finally let m denote the fertility rate of the married
population.

By assuming that all the involved rates are constant, a straightforward translation into
continuous equations of the ﬂow dlagram of fig. 1, leads to the following system of linear
ordinary differential equatlons

Po(t) = mp, (t) — (Lo +V)Po(t)
Py(t) = vpy ()~ (W, +A)p, (1)
Po () =Ap ()= (U, +8)p, (1)
P3(t) = 8p, (t)—Lap5(t)

(3.1

The total population n(t) = p,(t)+p, (t)+p, (1) +p;(t) satisfies the ODE:
a(t) = mp, (t) - unt) 3.2)
ODE systems as (3.1), though not frequently used in demography, are quite common in

mathematical biology and population dynamics of infectious diseases (for instance Anderson
and May 1991). In compact form the system (3.1) may be represented as:

P(t) = M, P(1) 3.3)
where M, is the matrix:
— (Mo +V) 0 m -0
M, = 0 A —(u, +0) 0 G4
0 0 R —U3

The matrix M, has (-u3) as an eigenvalue. The remaining eigenvalues are solutions of the
cubic equation:

* The system (3.1) may also be derived from the general system of the next section.



P(K) = (1 + ¥+ K)(, +0) + )1, +8)+K)—mvi=0
ie: _

P(K)=K*+aK?* +bK+c=0 (3.5)
where:

Ca=(Ug )+ A (R, +8) =A+B+C>0
b= (o + V(U )+ (g + VI, +8) + (1 +A)W, +8) =AB+AC+BC>0
c= (Lo + V) +A)(H, +8)—mvA =ABC~-D

The demographically relevant features of the system (3.3) are studied by noting that M, is a
Metzler matrix. Metzler matrices are positivity preserving operators in continuous time: they
play the same role played by positive matrices for discrete dynamical systems and possess
their specific version of the Pérron-Frobenius theorems apparatus (Luenberger 1979, ch. 6).
Hence, in particular, the matrix (3.4) has a unique dominant eigenvalue Ko, to which it
belongs a demographically meaningful (i.e.: non negative) eigenvector, and furthermore all
remaining eigenvalues of M, have real part which is less than Ko. _
It is easy to show that the sign of the dominant eigenvalue Ko, which plays the role of
~ the Lotka’s intrinsic rate of growth of our population and hence determines its long-term
behaviour, only depends on the sign of the coefficient of the constant term c in (3.5). Hence,

depending on whether c —i—O ,i.e. depending on whether:

. 2:
mvA - (o +VI(; + AR, +8) 20 (3.6)

we will have in turn i)stable exponential growth, ii)perfect stationarity, iii)stable exponential
decay. The threshold condition (3.6), which separates the case of Lotka’s stable growth from
stable decay can be represented in the following form: '

m v A .
Hy+8 Ho+v By+A

1 3.7

The left side of (3.7) defines the net reproductive rate of the population (the basic
reproduction rate in the epidemiological jargon):

3 m v A
TR+ po v Ryt

Ry (3.8)

In fact the first term of the factorization (3.8) is given by the product between the average
number of children produced by a married women per unit time (m) times the expected
duration of her sejour-time in the married state (1/(u»+8)). Hence the quantity m/(uy+8)
represents the average number of children produced by a married woman during her sejour in



the married state. This latter quantity has in turn to be multiplied by the conditional
probability to reach the adult state (v/(lo+v)), and by the conditional probability to marry
being adult (A/j1;+A), in order to take into account the existence of mortality and other states.

The last result shows that in a population in which fertility is below replacement, no
policy aimed to take fertility back to the “zero growth level” which is based on a reduction of
the age at marriage and/or of the age of transition into adulthood can be successful. Vice-
versa by suitably acting on such parameters can reveal to be an effective policy for taking
down to stationarity a population experiencing stable exponential growth. An important
example could be for instance a policy of systematically raising alphabetisation and education
in developing countries. The last result permits to give simple answers to question such as:
given the present value of the average age of entering the adult state, and given the state of
mortality, what are the combinations of values of the marriage rate A and the birth rate m
which ensure stationarity? :
Although the chronological age is only implicit in the model (3.1) with constant rates, the
long stable term age-stage-structure of model (3.1) can be determined analytically. This can
be done by considering an “enlarged” model recognising age as well (see the details in the
appendix). In the standard case in which mortality is state-independent (i.e.: y=q for all i), the
population weights wi(a)=pi(a,t)/n(a,t) which emerge in the long term stable regime satisfy
the system (see the appendix):

d
4 wi(a)=—vwy(a)

d
& (a) = vwy(a) - Aw, (a) 3.9)

d
awz(a) =Aw,(a) - dw, (a)
w,y{a)=1- (wo(a) +w (a)+ wz(a))'

Hence the long-term weights are given by

wo(ay=e™™

w,(a) = vj?u (e-'M —e—‘"‘)

" (a) _ V?\. e_sa 1....6"0'_6)" _ lmc-(v—ﬁ)a (3-10)
2 v-2A A-0 v—-98

wi(a)=1-25w,(a)

It finally is to be noticed that the above model (this is true also for the fully age
structured problem considered in the next section), can easily be enlarged to explicitly
introduce the parity structure existing in the population, as done still in Inaba (1996).



4. The fully age-structured model: stable distribution with respect to age‘and stages of
life

Here we introduce our age structured model for the transition into adulthood. The
formulation, which adds a fourth 'state (that of adult) to Inaba’s (1996)
“irreversible”formulation, rests on four basic population densities, ie: i)py(a,t), the density of
“never adult” individuals aged a at time t, ii)pl(c,t;’r]), the density at time t of individuals who
entered into adulthood since ¢ years, at the age of m, iii)p,(t,t;n,E), denoting the density of

individuals married since T years, who became adult at the age of 1} and married at the age of
E, pa(a.t), the residual class, constituted by individuals who are not in the first three states, i.e.
who are widowed or divorced (in this last case they could also be remarried, but it is assumed

they do not contribute anymore to fertility).
The backbone of the model is given by the following system of Ross-McKendrick-

Von Foerster (RMKF) balance equations:

(a o |
(a_*"‘)Po(a,t)=—[u(a)+v(a)]Po(a*t’

(&

p.e, M) = —Juic+ )+ A+, mp; . t,0)

I(a 8) @.1)
(g'l‘ t)PZ(‘C t; n?é)“"[U(§+T)+8(t &)]PZ(T t: n,g)

0
(aa * Bt) @y= ng('c, Ep, (T, t;1, E)dtdn —u(a)p,(a,t)

where:

8 3 9°9d o8 9

9a ot e o ot At

are the involved RMKF aging operators. In partlcular i)u(a) is the age dependent (but time
independent) mortality rate (or force of mortality)’, ii)v(a) is the age-dependent rate of
transition to adulthood, iii)A(a,n)=A(c+n,n) is the age specific force of first marriage, which
is assumed to be influenced by the age of entrance into adulthood, and, iv)d(,£) is the force

of dissolution of couples married T years before when the female was aged £.
The system (4.1) has to be completed with the following boundary conditions:

% We disregarded the further complication due to explicit consideration of age-state dependent forces of
mortality, which imply shifts in the frailty regime of the individuals every time they change state.



060,00 =B = [ 15 p, (7, 6:&, mm(r; §, n)dndéan
1P, ;1) = v(1)po (M, 1) “4.2)
P, (0,t:n,&) = A&, mpE~-n, ™)

p3(0,)=0

The interpretation of the conditions (4.2) is the following. The first one says that the number
of individuals aged zero in the first state is simply the total number of births, which by
assumption are all due to women in the married state (state 2). Moreover, f is the upper
bound of the fertile age span and m(7;En) defines the marital fertility rate at marriage
duration T for a married women entered into the adult state at the age of 1 and subsequently
married at the age of § (E>1). _

The boundary condition in the second of equations (4.2) tells us that the number of adult
women with duration zero of permanence in the adult state and age at adulthood 7 at time t, is
given by the number of transitions to adulthood of individuals aged 1 at time t. Moreover, the
number, always at time t, of individuals with marriage duration zero, who entered the adult
state at age T and married at £ is given by the corresponding number of weddings of
p,(c,t;n) individuals at the age & =n+c. The boundary condition in the fourth density is
identically zero. , -

In addition, to close the model, a set of initial conditions, under the form of a set of prescribed
initial distribution, has to be assigned: '

po(a0) =Hy(a) pcOm=Hc.n) p (008 =Hy(tng) ps(a0)=Hy@) ©.3)

The following relations, which relate the population densities pi(.,t) with the chroriological
age distributions in the four states hold:

pi{a.)=[yp,(a—m,t;1)dn
p,(a,t) = [2f5p, (a — &, t;m,E)dEdn (4.4)

2
ps(a,t) =n(a,t) - Eopi (a,t)

We notice again that, for purpose of generality, it has been assumed that the fertility rates
depend not only on the duration of marriage, but also on the age at marriage (as in Inaba
1996) and on the age of transition into the adult state. This last assumption seems to be
completely reasonable in that individuals who are adult, and possibly economically
independent since a much shorter time, would have probably experienced very different job
experiences, incomes and so on compared to individuals who became adult since a longer
time. '

The mathematical properties of the general model defined by the equations (4.1) plus
the conditions (4.2), (4.3} can be studied by applying Inaba’s approach based on the reduction
of 4.1) - (4.2) - (4.3) to a traditional renewal equation (see Inaba 1996 for the detailed
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treatment of the three states model), i.e to a traditional Lotka’s birth equation, whose
behaviour is well known. Inaba’s approach seems to be completely general and potentially
applicable, as long as we are concerned with “irreversible” multistate processes, to problems
characterised by an arbitrary number of states. Since we are not interested in mathematical
details the approach followed here is heuristic. The most relevant steps of the reduction to a
renewal equation are the following. :
It is possible to show first that the overall age distribution:

"3 .
n(a,t) = Epi (a,t) (4.5)

satisfies a traditional Ross-McKendrick-VonFoerster PDE:

3 9 ' | :
(-a—a + a)n(a,t) =—(a)py(a,t) (4-$ )

The last result crucially depends on the assumption of state-independent mortality: otherwise
(4.5") would depend on the average mortality rate over states.

As a second step we derive the formal solutions of the basic PDE’s (4.1). Wc recall
that the standard form of the Lotka’s birth equation is the following (Keyfitz 1968, 1985): '

B(t) = G(t) + [, B(t — a)¢(a)da 4.5")

~ where B(t) is the birth function at t, ¢(a) the net maternity function (given by the product
between the age specific fertility rate m(a) and the survival function up to age a, p(a)), and
G(t) a function which depends on the (arbitrarily) chosen initial distribution of age. The
previous form splits the births at time t into two components, i.e. a “core” one depending on
births since time zero, plus a component depending only on the “initial” conditions of the
problem. Here we only report, for brevity, the components of the formal solutions of the (4.1)
depending on the births since time zero. We get (by integration along characteristics,
amounting to a suitable application of the involved survival function):

Po(a,t) =B(t—a)l(a)V(a) t>a

P M =Bt—c-MIM+VMV(MAL()  t>N+c
(4.6)

P> (T, ;M. E) =Bt — 1 -ENMV(N)v (n)l(g)A EME W §(§))

=B(t—-T-OIE+)VMIVIMALOMEMA (1)  t>E+T

g(T)'-"

11



The relationships (4.6) express the populations densities in the first three states in terms of the
‘relevant density of past births (since time zero) and of the following generalised survival

functions:

I(a) = exp(~ [ p(u)du)

V(a) = exp(— i v(u)du)

Ay (€)= exp(~ [T M mdu) = exp(~ [; M + 5, mhds)
Ag(T) = exp(- [ 8(u; f;)du)

@7

The quantities (4.7) denote respectively: ithe “survival to natural mortality” function,
expressing the probability for a woman to survive from birth from birth up to age a; ii)the
“survival to adulthood” function, expressing the probability for a living woman to survive
from birth up to age a without having entered the adult state, iii) the conditional survival
function to marriage until age a=n-+c for a woman entered into the adult state at the age n; the
conditional survival function to divorce until age a=T+§ for a woman married at the age £,
The latter quantity of (4.6):

P2 (T t:M,8)=B(t — - OIE+ DVMVMA, OAE. WA (1)  t>E+7

is the one necessary to compute the “core” part of the births renewal equation in model (4.1)-
(4.3). The structure of the involved renewal equation will be:

B(t) =G, (1) + [;B(t—a)p,{a)da (8

where G, is a function of time only, which plays the same role of the function G(t) in the
basic renewal equation (4.5°’), i.e. it embeds the initial age distributions, whereas the function
¢, is the new net maternity function. In particular: ¢,(a)=I(a)m*(a) where m*(a) is the age-
related fertility rate, which for the present problem is defined as follows

m* () = [R5V A, (OME. WA, (2 - Em(a— & &, mdndE =

4.7)
= VOV A, (AE WA, (a - E)m(a - £:E,mdEkin
The fact the overall births satisfy a Lotka-type equation implies that in the long term the total
population n(a,t) will achieve a Lotka’s stable state characterised by exponential evolution at
a constant rate r, plus an unchanging age distribution (which in turn are independent on the
initial age distribution). In particular we will have stable growth (r>0) or decay (r<0)
depending on whether the net reproduction rate, defined as

12



Ry = Igl(a)m* (a)da=

(4.8)
— Fl(@)dalg Vv [ [ A OAE WA (a ~ Em(a - & M Jin

is greater or smaller than one.
As a final step, in order to characterise the long term behaviour of the population in

the states 0,1,2,3, let us observe that, by performing the integrations (4.4) on the quantities
(4.6) we get:

po(a.t)=n(a,t)V(a) |
p,(a,1)=n(a,)¥(a); ¥(a)=[jVM)V(MA,(a-n)dn 4.9)

p2@ ) =n@ O@; @ = VvmA,E,E WA, (a-E)findg

The latter relations, which hold only for sufficiently large t, recall that (this essentially is a
consequence of positions of the problem) when the total population n(a,t) will achieve its
stable age distribution, this will automatically force the densities pi(a,t) (i=0,1,2,3) in
achieving a stable pattern as well. This leads to a stable distribution by age and state.

5. Consequences for reproductivity indices

Now we consider how the classical stable population reproduction indices, constructed in the -
“only age-dependent” case, such as the classical Net Reproduction Rate (NRR) and the Total -
Fertility Rate (TFR), modify when we explicitly consider the present, more complex,

multistate case. In what follows we provide explicit formulas for the relevant reproduction
indices by relying on Inaba’s work (1996) and extending it to the present four state analysis.
For what concerns the classical net reproduction rate Ry, defined in (4.8) the following

equivalent definitions holds (they differ only for the different definitions chosen for the same
region of integration):

Ro = [0 (£ m(t: 8, IE + DVVA,, (OME WA, (1)dndédn

= B8 Em(nE IE + TYVIDVMA , (OME, WA (P)indEds (5.1)

= [olo " m(HE MIE + DVIVMA L IME, DA (v)dkdndt

By making the change of variable from the “old” set (1,,1) to the “new” one (n,£,a=&+1), we
obtain the following alternative definition:

R, = B[ VOOum (s A, A DA (Om(sE, mat)infla  (52)

which is the form (4.8) and shows that the age-specific fertility rates are of the form:
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m*(a) = f; VADu(J: A, @ME WA (DIm(wE mdE)in  (5.3)

specifying the actual relation between the traditional age specific fertility rate m*(a) and the

duration specific fertility rates.
The latter formulas embody, via the factorization through the several involved

survival functions, the delay due to transition to adulthood and/or marriage on reproduction:
in order to be able to make child with the fertility law m(t;&,1m)=m(a-&;&,n) typical of
her population at a given age, a female individual not only has to survive until that age, as in

- traditional stable populations, but she has also to:
a)enter the adult state, otherwise she would not be marriageable, at a previous age 1,

with probability (density) V(m)v(n)
a)get marry at a subsequent age §, with probability A(F,)?L(E,)
b)survive to the risk of divorce until the given age a, with probability A ()= A £ (a-8)

If we explicitly neglect mortahty, the following dcﬁnltlon for the TFR (in absence of
mortality but in presence of marriage and divorce) anses

TFR = £ S m(5: 8, DV A (BIAE WA ()dudidn (5.4)

The meaning of TFR is that of (expected) total number of offsprings produced by a single
woman during her effective fertile age span, where the “effective” fertile age span is given by
that portion of the fertile age span actually spent within the married state. _

We now decompose the TFR by stressing the sequentiality of the several stages of
life. We can write: '

TER = S35 m(n: 5, MV V(DA (EME, A (T)dTdEdn
= VUV AL MG (- m(E,mA, (dc)dlin =
=RV RALOAENTE n)da]dn =

= BT V(m)v(nyn

(5.5)

where: _
TE M) = [ m(T; &, M)A (D)de

5 (5.6a,b)
T* (M) = [ A OMEMTE, MdS -

The guantity T(E,n) is the conditional TFR of women who became adult at the age of 1) and

married at the age of &, in presence of the risk of separation. T*(n) has to be interpreted as
the average (averaged on the non normalised conditional density of the age at marriage

St has been chosen the first definition used in (5.1) for the region of integration.
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A, OME W) TFR of all the women who entered the adult state at the age of m,
independently on the age of their marriage. _
By a suitable algebra we can write the general TFR in a more interpretable way. Let
us first of all write:
TFR=(1- VENRT*)Wmdn  (5.7)
where: -
vmv(n) (5.8)

W)= - V)

is the normalised probability density of transition.into adulthood (truncated at the end of the
fertile age span), and: _
FW(n)n =1~ V(B) = PEA(B) (5.9)

is the “proportion ever adult” (PEA) at the end of the fertile period. Let us then define:

A OMEW)

0sm<P; n<E<P (5.10)
A, EME ML

®,(8)=

The quantity (5.10) represents the conditional (normalized) density function of marriage at
age £ for the women who entered the adult state at age 1) and married before the end of the -
fertile age span. In particular the quantity:

BA,EMEWE=1-A,B)=PEMM)  (5.11)

is the (conditional) proportion of ever married (PEM) women (to be precise: who married
before age 3) among those women who entered the adult state at the age of iy: let us call it the
“conditional” PEM. We can write therefore: :

T*(m)=PEM(M)- FTE,m®, €)d  (5.12)
By introducing (5.12) into (5.7), and assuming that, quite reasonably, PEA(B)=1, we obtain:
TFR = SPEM(mW[ AT m®, E)XEpn  (5.13)

The inner integral in (5.13) defines the average TFR with respect to the age at marriage of

women entered into the adult state at the age of 1 and married before the end of the fertile age
span. It is clearly a conditional average TFR (conditional on being entered the adult state at
7). Further elaborations are possible but it seems useful to distinguish two main cases:

a)A simpler one in which the fertility rates do not actually depend on the age of
entrance into the adult state, ie: m=m(t;&). We can call the present case the “pure delayer”
case, in the sense that the role of the intermediate state of adult, or marriageable or whatever,
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does not influences the specific fertility behaviours existing in the (married) population: its
possible effects are essentially those of delaying such fertility behaviours by delaying
marriage. _

b)A more general case in which m=m(t;£,m). In this case in addition to the “pure

delayer” effect we would have true fertility effects due to the process of transition into
adulthood. This for instance allows for differential fertility behaviours by educational

attainment.
In the present paper we will limit our analysis to the “pure delayer” case. We

obviously have:
TEW = [P m(uE)A, (Ddt=TE (5.14)

If now, following again Inaba (1996), we assume a Henry type (Henry 1976) approximated
linear relationship between the conditional TFR of women married at age &, T(E), and the age
at marriage:

T()=U—VE+RE) U>0,V>0 (5.15)

where R is a reminder, we get the approximated relationship:

TFR = (SPEM() W) (U~ V&)@, E)t fin= |
= USPEM(n)W(n)in - VSPEMW(m) 60, (Bt = (5.16)
= U PEM(mW(n)in — VEPEM() W(E (X}
where Eq(X) is the average age at marriage of those women who entered the adult state at the

age of N and married before the end of the fertile age span. The last expression in (5.16) can
be furtherly transformed by writing: ' :

B = [BPEM(MW(ndn 5.17)
and:
__PEM(MW@) __ PEM()W(n) |
W () = = 0<nsp 5.18
[EPEM(m)W(n)dn B 18

The B quantity defines the “average PEM”, i.e. the average value of the conditional (at the
age of entrance into adulthood) proportion ever married over the density of entering into

adulthood, and W* is the probability density function of transition into adulthood at age 1} for
those individuals who married before the end of the fertile age span. Thanks to (5.17) and
(5.18) we obtain for (5.16):

TFR = B{U - VJE,(OW*(dn}  (5.19)
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Expression (5.19) shows, it is useful to compare it with Inaba 1996, that the TFR of the whole
population factors as the product of the average PEM times the value of the Henry
relationship evaluated in correspondence of the average age at marriage of those women who
married before the end of the fertile age span. The last relationship is remarkable in that
explicitly puts in evidence the need to investigate, especially at the empirical level, two
relationships which until today do not seem to have yet found so many applications - in
population studies, i.e. the: i)the relationship between the age of entrance into adulthood and
the corresponding proportions ever married and; ii)the relationship between the age of
entrance into adulthood and the corresponding average age at marriage.
By further noting that (by using the CoV: E=n+1):

E,(X)=e®, (e =" (n+ P, (n+1)dt=

(5.20)
=1+ 7@, (n+ Ddr=n+E,(4)

where g(n)=Eq(A) is the average difference (ie the average delay) between the average age at
marriage and the average age at adulthood, (5.19) becomes:

TFR = B{U- V{[n+E, (&)]w* (mdn}=

(5.21)
= B{U - V[B() + B, (AW * ('“)d“]} |

where E(n) is the average age at entrance into adulthood for the subset of women married
before the end of the fertile age span.
It is to be noticed that some information is available about the shape of the average

delay function g(m) and the conditional age at marriage. In particular since Eq(X) is computed
over women who married before the end of the fertile age span, it is clear that:

B.x] =B (22
which in turn implies g(B)=0. In the é:vcnt that E, (X) be linear, ie of the form®:
E (X)=E, (X)+q(M-M,) N\ <n<P - (5.23)
where M4 is the lower bound in the possible ages of transition into adulthood (in many cases it

will be fixed by law) and E, (X) the corresponding average age at marriage, this would
imply, if E, (X) were known, the obvious restriction on q:

7 By definition it holds: £2n, which implies: E,(X)zn. At the same time, since we are considering only
individual who married before the end of their fertile age span, it is clear that: E, (X)<p.

B This appears at best a rough approximation. Anyway we do not yet dispose of an adequate body of data to
study the problem.
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_ B-E,, X
. N-Na
The (5.24) is consisten with the obvious fact that q is expected to be less than one. By using
(5.23) and (5.24):

(5.24)

TFR = B{U VI[E,, (0 +am-n,)[W * (ndn} =

(5.25)
=B{[U-V(E,, 0 -aqna )| -avEM}

The relationship (5.25) could be used, for instance, to estimate the “pure delayer” effects of
increase of the legal minimal age to work (ie: the lower bound among the possible ages of
end of formal education) on TFR.

We do not intend to discuss in this work the more general case, in which true fertility
effects due to the transition into adulthood do superimpose to the “pure delay” effects. We
want anyway to point out that, given the possibly important roles played by the process of
transition into adulthood on reproductivity of a population, serious investigation of the
relationships between fertility rates and age of entrance into adulthood appear quite necessary
developments. A useful starting point could be the field study of the relationship age at
adulthood and the condltlonal TFR:

TEW = - m(nE ma, (Dar

6. Evaluating the role of increasing women’s education on the TFR of a population

~ In this section the relationships developed so far are used in order to answer the specific
question of what might be the effect of an increase in women'’s education on the total fertility

rate of a given population?
The data set used here was collected by the Italian National Statistical Institute

(IS’I‘AT) during a retrospective survey held in 1988 (“Indagine Multiscopo sulle Famiglie,
secondo ciclo™). From the survey individual data about each interviewed woman are available
for what concerns in particular the following variables:

¢ the number of children ever born;

o marital status and age at marriage;

o educational level.

Only data for women aged between 40 and 49 at the moment of the interview are used for the
present investigation. The sample was splitten into two five-years cohorts: 2450 women
between 40 and 44 and 2321 women between 45 and 49. The average number of children
ever born computed from the survey data is respectively 2.04 for the oldest cohort and 1.92
for the youngest one. Comparing with table 1, in which the same statistics are calculated on
the same cohorts from the whole italian population data by Santini (1995), it is worth noting
that these are exactly the two cohorts in correspondence of which Italy switches to the status
- of below-replacement fertility country. Survey data seem thus to be underestimated with
regard to population data.
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Table 1. Children ever born for Italian female cohorts aged 40-49 in 1988 (Santini, 1995).

Cohort 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
TFR 219 216 214 214 212 210 208 207 201 196

Some further assumptions need to be introduced for our investigation, concerning the
connections between marriage and fertility on the one 51de and between the end of formal
education and marriage on the other.

For what concerns the connection between marriage and fertility, the already
mentioned linear Henry’s approximation (5.15) is used: the number of children ever born is
supposed to be a linear function of the age at first marriage. This assumption, introduced for
the first time by Henry (1976), was also used by Inaba (1996). Though in principle very
rough, it is to be regarded essentially as a local approximation, (5.15) has the merit of being
surprisingly accurate from the practical point of view, and moreover is particularly useful for
its mathematical manageability. In this paper, estimates of the parameter of the regression
line are calculated from individual-level data (excluding first marriages over the age of 40).
The estimates of the regression line for the relation (5.17) are reported in table 2.

Table 2. Parameter estimates for the lmear relatzonsh:p between children ever bom and age
at marriage.

Parameter Estimate Std. Error  P-value
Age at the

interview:

40-44

U +3.85720 0.01261 0.0001
v -0.07754 0.00539 0.0001
Age at the

interview:

45-49

u +4.25626 0.14209 - 0.0001
Vv -0.08780 0.00590 0.0001

In order to obtain the approximated TFR, the mean age at marriage and the proportion ever
married for the two cohorts were calculated. The mean age at marriage is 23.74 for the oldest
cohort and 23.16 for the youngest one; the percentages ever married are given, respectlvely,
by 94.2% and 93.6%.

The TFR calculated by means of the approximated method are respectively 2.05 and
1.94, giving thus a quite satisfactory approximation for the TFR’s of the survey data.

With a reproductive behaviour such as that exhibited by the two cohorts considered, a
one-year increase in the age at marriage would bring down the number of children ever born
for married women by about 0.08-0.09 (parameter V). Inaba (1996) estimates with the same
method, for Japanese women, a decrease of about 0.11; the decrease is obviously lessened by
the presence of women never marrying, which enters as a multiplicative factor,
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But the main interest of this part is to evaluate the effect of an increase in women’s
educational level. In order to achieve this goal, the conditional age at marriage is assumed to
increase linearly with the age at the end of formal education. Formally:

E,[X]=A,+An (6.1)

By assuming (6.1) we deliberately avoided to impose the restrictions found in the previous
section and simply looked for a linear relationship between age at adulthood and the mean
age at marriage (in some sense remaining more close to the spirit of Henry’s relationship, i.e.
of an approximate but possibly useful, relationship). The same assumption, though in a
different framework, that of a structural model, was formulated for instance by Marini (1985).
This assumption is consistent with the model, if a delay in the end of formal education brings
a delay in age at marriage. As women who attained a higher level of formal education tend to
have a shorter interval between the end of formal education and marriage, regression
coefficient less than 1 is expected.

As the age at the end of formal education was not asked by the 1nterv1ewer the
ordinary age required for obtaining the highest educational level achieved is used as a proxy
variable. Parameter estimates of the model are reported in table 3.

Table 3. Parameter estimates for the linear relanonsth between age at marrlage and age at
the end of formal education.

Parameter Estimate Std. Error P-value
Age at the

interview:

40-44

A 16.64738 0.44447 0.0001
A, 041732 0.02844 0.0001
Age at the

interview:

45.49

Al 16.87574 0.55466 0.0001
Ag 0.45360 0.03635 0.0001

As expected, the A, parameter is always estimated to be less than the unit. The model
estimates that an increase of one year in women'’s education would lead to an increase of
about 0.4/0.5 years in the age at marriage.

Both these coefficients are lower than those obtained by Marini (1985) for a cohort of
students in Illinois high schools in 1957-1958, followed up in 1973-74, who estimated a
coefficient of 0.718.Clearly, her estimate for the slopes are not imediately comparable with
ours, not only because of the different historical and geographical context, but also because
she uses a structural model, and the parameters measures only the direct estimate (intercepts
estimates as well cannot be imediately compared). For our purposes, it is anyway interesting
to note that also in Marini’s study the estimate of slope coefficient was significantly lower
than the unity.



Referring to formula (5.19), we have that the decrease in the TFR for married women
expected as a consequence of a one-year increase in the average educational level is to be
estimated by the product VA,. This is 0.03 for the oldest cohort and 0.04 for the youngest
one: an increase of one year in women’s education should lead to a decrease of 0.03-0.04 of
the total fertility rate for married women, The decrease of the TFR is lessened by the presence
of women never marrying.

It is clearly to be noticed that the empirical relation used allows marriage to take place
before the end of formal education if the latter happens after around the age of 29. This
- should not be a problem (the approximation has all the faults all linear approximations have:

Henry relationships itself predict sooner or later a negative TFR) provided that we are looking
for a local approximation. Clearly if the end of formal education should take place after the
age of 29, then our whole model should be questioned.

The model suggests that the fall in the Italian TFR may not be only explained by the
increase of women’s educational level, as the TFR of the 1962 cohort is 1.57, .39 lower than
the 1948 cohort, the youngest involved in this example: in order to reach the lower lever just
by postponing the end of formal education, an increase of about 10 years should be required.
As the mean age at the end of formal education is 15.07 for the oldest cohort and 15.39 for
the youngest one, an increase of 10 years of the length of formal education would lead to a
mean age at the end of about 25, that is actually more than the ordinary age when the highest
level of education is achieved.

May these considerations bring to an explanation calling for the distinction between
the end of formal education and the real moment of “transition into adulthood”, the
application presented here is meant to be an example of the possibilities given by the model

- presented with real data, answering to questions related to the demographic consequences
arising from changes in the process of transition into adulthood. It is the aim of the authors to
further explore the field implications of a model as the one presented here, using different
data, both for the Italian case and for low development countries, where the importance of
studying the effect of increases in women's education on the TFR might be fundamental.

7. Directions for future work

Among the directions for future work suggested by the results of the present paper there are
certainly the field investigations of the several demographic functions introduced thanks to
the present age structured formulation involving the process of transition into adulhood,
namely: i)the proportions ever married and the average age at marriage stratified with respect
the age of entrance into adulthood, ii)the fertility rates stratified with respect the age of
entrance into adulthood. '

Looking more forward it seems useful to introduce other selected markers of transition
into. adulthood, such as the process of leaving the family, or that of entering the labour
market. Furthermore it appears desirable the possibility to consider more general and realistic
models for population reproduction. For instance it seems promising to study the effects of
the presence of remarriage, which can become highly relevant for reproduction especially in
modern societies, and of the existence of different routes to marriage. For instance in the
optic of family formation processes, where individuals may or may not experiencing separate
living before constituting their own family, it can be useful to assume that marriage can be
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the outcome of different routes: directly from the birth family, or from the intermediate state
of single. The model below is a representation of this “set of innovations™:

N single
(leaving alone)
Adolescent ] - Maied | Divorced
leaving in family) - —

and appears a promising possible continuation of our work. From this point of view the other
developments by Inaba (1993) seem represent a quite powerful tool-box for the problem at
hand.
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A[ipendix. The stable age-stage structure implicit in the basic model (3.1)

As pointed out in the main text, in order to sort out the chronological age structure implicit in the
constant rates model (3.1), we consider the enlarged model recognising age structure as well:

Ay Po(a,t) ==(1;(a) + v(a))po(a,t)

A,p(a,t) =v(a)py(a,t) ~ (1;(a) + Ma))p,(a,t)
Ayypy(a,t) =A@)p (a, 1) = (;(2) + 8(a))p, (a,t)
A, P3(a,t)=58(a))pe(a, 1)~ p;(a)p;(a, t)

1

where;
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are Von Foerster aging operators, pi(a,t) are the age-t.ime densities in the four states, and
v(a),A(a),|L(a) are age- dependent rates mimicking the constant rates of model (3.1). Moreover the
following BC holds:

P00 =B(t) p,(0,)=p,(0,0) =p,(0,1) =0 @

where B(t) are the total births at time t. Finally initial age-distributions are supposed to be given. In
the event there is no state-dependent mortality (; (a) = u(a) ) we simply have:

A, m(a )y =—p(am(a, ) (3)

showing that the total population satisfies a traditional Von Foerster PDE. In case of state-
independent mortality, the mortality process does not “select”, and the system of the population
weights (or profiles) is independent on the force of mortality. Let us study the systems of the
weights defined by the variables wi(a,t)= pi(a,t)/n(a,t). We quickly have:

a 3) 9 2 9 9) -
(éz-i-“a“{)pi (a,t) = n(a, t)("a—e{fa)wi (a,t) +w,(a, t)(g+§{)n(a,_t) )

But both n(a,t) and pi(a,tj satisfy their Von Foerster-type PDE’s (3) and (1). We hence get Von
Foerster type PDE’s for the weights by solving the previous expression and by using (1) and (3):

A, Wola,t)=-v(a)w,(a,t)
w,(a,t) =v(a)w,(a,t)— A(a)w,(a,t)
A, Wy (a,t) = M(@)W, (a,t) - S(a)w, (a,1) ©)

wa(at)=1-(wo(a, ) +w,(a,t)+w,(a, 1)

plus the boundary conditions: .
Wo(O,0)=1 w,(0,1) = w,(0,8) = w4(0,) = 0 6)

By eliminating time-dependencies from (5)-(6) we get the‘co'rrcsponding equilibrium system :
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d
—wyla)=—v(a)w,(a)

da
d
W2 (a) = Ma)w,(a) - &(a)w, (a)

wi@)=1~- (wo(a) +w,(a)+ wz(a))

Notice that the solution of the system (7) defines the population weights in the asymptotic stable
regime of the system (1). This aspect can be checked in several manners. One intuitive manner of
understanding the point is the following. If we develop the formal solutions of (1) (still under the
assumption of state-independent mortality) we find that the following relations hold for t>a:

Pi(ast)=n(a,t)(0i(a) ~ forall i

where the quantities «; are age-dependent but not time dependent. This means that once the total
population achieves its long term stable state, also the population in each state is forced to be stable.
As the convergence of the total population to its stable form is a global result (whatever be the form
of the initial distribution of the problem), this in turn means that the solution of the PDE system (5)
of the weights, must converge in the long term to a unique time-independent form ay(a) .which is
necessarily described by the unique solution of ODE system (7) (i.e. it holds the identification
wi(a)=ax(a)). _ . :

In the special case of constant transition rates considered in section three of the main text, the
system of the equilibrium weights has the form (again assuming that mortality is state-independent):

. wo(a) =‘—vw0(a)

—d—w (a) = vwy(a) — Aw, (a)
(La 1 0 t (8
-&;wz(a;?t,wl(a)——ﬁwz(a)

wy(a)=1- (wb(a)+ w,{(a)+ wz(a))

A direct resolution of the recursive system quickly leads to the formulas (3.10) of the main text:
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wo(a)=e™ = V(@) -

v - —-vil
wi@=7—r(e™ ~e™) ©)
VA s 1—e *-Dr | g~(v-B
wa@=7e -0 V-8
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