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Abstract

This paper provides a basic framework for the the evaluation of
the impact of ”imported” infections diseases. By combining some
standard epidemiological formulations with the so called stable model
with immigrations we try to answer the question of the role played by
several demo-epidemiological profiles of the immigrants on the long
term endemic profile of a given population.

1 Introduction

A quite relevant problem of the recent italian demographic evolution has been
constituted by the continuous immigrations inflow from developing countries,
such as Senegal, Nigeria or the North Mediterranean Africa, to which it super-
imposed in more recent years the stream from Eastern Furope, in particular
from the former Jugoslavia and Albania. Despite the still very low level lev-
els of social integration of immigrants in the population of destination, it is
widely recognized at present, especially at the level of official policy, that the
so called "migratory solution” appears at present perhaps the only available
solution to both the problems of aging and decaying of the italian popula-
tion. This aspect is common to other developed countries, many of which
are experiencing levels of fertility well below replacement, but is especially
relevant in Italy, which is characterized at present by the lowest TFR of the
world.



The almost official existence of a ”migratory solution” which could be
pursued in the near future by many developed countries as the main policy
against aging, engenders, as a central public health issue, that of monitoring
and evaluate the impact of the "imported” infectious diseases.

For instance, with regards to the problem of control of diseases such as
HBV (HBV control constituted the main motivation for the present study,
but this could be repeated, mutatis mutandis, for many other infectious dis-
cagses: HIV and tuberculosis could constitute other relevant problems) it is to
be remarked that all countries of origin of migration streams directed toward
Italy are characterised by average or very often high levels of endemic HBV.
Hence, an important question regards the possible impact of immigrations of
carriers of HBV on the transmission dynamics of the disease in the ”arrival”
population. This is especially relevant if we consider that these flows have
had a central role in the recruitment of new cohorts of internal prostitution
(for instance a large part of the nigerian, albanese and former Jugoslavia
women) which could reveal particularly effective for what concerns the dif-
fusion of STD, since very often accepts unprotected sex.

In what follows we explicitly develop a basic demographic framework for
evaluating the impact of external migrations on the dynamics of some typical
endemic infectious disease, such as HBV, experienced at endemic levels by
a given “host”! population which is subject to below-replacement fertility.
In this preliminary investigation we will make the very simple assumption,
typical of demographic analysis, by which immigrated individuals imediately
subsume the demo-epidemiological patters of the host population. The em-
phasis of the paper will hence be on typically demographical problems. The
demographic apparatus that we will consider and enlarge to deal with the
dynamics of infectious diseases, is based on the so called stable population
models with immigrations (Arthur et al. 1982, 1988, Mitra 1987, 1990). This
model, initially developed to study the effects of immigrations on populations
subjected to below replacement fertility, predicts that ”if fertility persist at
some level below replacement, a constant flow of permanent immigrants will
generate a stationary population” (Arthur and Espenshade 1988, 316). The
model enables one to answer, under the basic assumption of total adoption by
the immigrants of the demographic patterns of the host population, specific

LA terminology clarification is needed: in the usual epidemiological jargon by haost
population we mean the population which is actually experiencing a disease. In this paper
we sometimes use "host” population to refer to the population which hosts the migration
stream.



questions such as: which will be the ultimate size and age structure of the
long term stationary population corresponding to a prescribed immigration
profile? What’s the role of the age structure of immigrants? The complex
metabolism of age structure permits to evidence a dramatic dependence of
the ultimate size of the long term population on the immigrants age stuc-
ture: it’s by no means the same thing if immigrants are young inviduals
at beginning of their fertile period rather than old individuals. Due to the
complex nonlinear underpinnning which result when we try to combine de-
mographic and epidemiological factors, it becomes particularly of interest to
answer questions such as: what’s the impact on the long term endemic equi-
librium of different. migrations streams on the basis of the age of immigrants
and their epidemiological statuses? Clearly, if we consider a migrant who is
carrier of HBV, we expect completely different outcome if such a migrant is
a young prostitute 20 years old rather than an old person near to retirement.

'T'he present paper is organised as follows: in the second section we re-
call the properties of the basic age structured model with immigrations, in
particular of the model of constant immigrations in a population with below
replacement fertility following the basic work by Arthur et al. 1982. In sec-
tion three a brief review is made of mathematical models for the geographical
spread of infectious diseases. In the fourth section a simple aggregate (lLe.
without age structure) demo-epidemiological framework is developed by su-
perimposing a typical SIR epidemic mechanism to a population experiencing
below replacement fertility. The main difference with respect to traditional
epidemiological formulations is the possibility of immigration of subjects of
all possible epidemiological statuses. A more general model recognising age
structure as well is developed in section five, in which a SIR model with age
structure is superimposed to the full model of Arthur et al. Its equilibrium
features are developed in section six, whereas in section seven some explicit
formula aimed to define the impact of several age profiles of immigrants on
the endemic profile of the host population are developed.A more general
model recognizing the age of infection as well is briefly introduced in section
eight: this model appears to remedy to a drawback implicitly infroduced in
the more simple formulations. A model for the evaluation of immigration
profiles on the endemic structure of a disease as HBV is presented in section
nine. Critical points of the approach and directions for future research are
indicated in the last section.



2 Immigrations in populations with below re-
placement fertility

Even though the asymptotic outcome of the interaction through migrations of
several populations experiencing their own internal metabolism, was already
clarified since the beginning of the seventies, thanks to the development, by
Rogers and coworkers (see for instance the classical Rogers 1975), of the so
called multiregional and subsequently multistate schemes, the development
of theoretical results for the assessment of the impact of several age struc-
ture of migrants on a given host stable population, is quite more recent.
Arthur et al. (1982) have studied the long term consequences of a constant
migration stream, characterized by a stationary structure of entries by age,
on a below replacement population. Their analysis, limited to the standard
demographic assumption of "imediate adoption” by the immigrants of the
"host” population demographic behaviour, gives a simple "renewal model”
based proof of the convergence to stationarity of such a population and sup-
plies the basic formulas for the assessment of its asymptotic behaviour. In a
subsequent paper Arthur and Espenshade (1988) have studied the long term
behaviours which are implied by different assumptions on the age structure of
immigrants. Mitra (1987 and 1990) has studied more in detail some asymp-
totic properties of populations subjected to migrations. Cerone (1987) has
provided a more rigorous renewzl analysis for the stable population model
with immigrations. Schmertmann (1992) has considered more in detail the
possible "rejuvenating” role played by the immigration streams in popula-
tions characterized by below replacement fertility. General theoretical results
for multiregional-multistate extensions of the basic model are developed in a
series of papers by Inaba (1988a,1988h,1993).

In what follows we recall the basic features and results for the stable pop-
ulation model with immigrations (SPI) with reference to the more relevant
case of below replacement fertility.

In broad terms a population model with immigrations is described by the
following McKendrick-Von Foerster type PDE (Langhaar 1972):

(g— + g) n{a,t) = I(a,t) — pla, t)n(a,t) (L)

subjected to the following boundary and initial conditions:



n(0,t) = B(t) = fo‘”n(a,t)m(a,t)da 2)
n{e,0) = no(a)

where n(a,?) is the age structure of the population, I(a,t) the age-
structured immigration stream at time t, B(t) the birth density per unit
time, m(a,t) and j(a,t) the time invariant age dependent fertility and mor-
tality rates. The previous models thereby embodies the critical demographic
assumption that the immigrants, once entered, imediately subsume the de-
mographic behaviours of the host population as stated by their mortality and
fertility rates. Some general results concerning model (1) are available since
the paper by Langhaar (1972) (some note is reported in the appendix).

It is to be noticed that, by correctly reinterpreting the several quantities
involved (vectors and matrices in place of scalar functions), the formalism
(1) can be extended to treat much more general population processes, such
as general multiregional-multistate age dependent population dynamics sub-
jected to immigrations from the rest of the world. In such case we would

have for the i-th local population of a given multiregional system the follow-
ing PDE:

a 8
(5 + 5) ni(a,t) = = [u(a, &) + ai(a)] nila, )+ 3 | gii(a,t)ni(a,t) + Lia, 1)
7
where g;; are the "internal” migration rates from region j to region i, and:
ala,t) =>_ qi(a,t)
J

is the total emigration rate from the i-th population. Moreover n; are
the population densities in the m regions, and finally I; are the exogenous
migrations from the rest of the world.

The last expression can be rewritten in compact form as:

(g + g) n (a,t) = Qa,t) n (a,t)+ I (a,t) (3)

where 72, I denote respectively the population vector of the n geographic

areas involved and the vector of immigration from the rest of the world toward
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such populations, and Q is a generalised survival (or attrition) matrix which
captures the overall age dependent attrition process.

For what concerns dynamical properties of the model (3), a rigorous
analysis is of given in Inaba 1988, who presents both a ”traditional type”
solution, by showing that the problem can be put in a standard renewal form
and thereby analysed by means of standard demographic tools, and a modern
semigroup approach.

In what follows we will, coherently with our main interest, rather be
interested in the more specific and simpler models considered in the more re-
cent demographic literature involving a constant over time migration stream
toward a stable population with below replacement fertility. Let us then
consider, following Arthur et al. (1982), a stably (ie characterized by time
invariant age dependent mortality and fertility schedules) decaying ”host”
population due to a basic reproduction rate (Rg) less than one:

Ro = / a)da < 1

where ® is the survival function, which is exposed to a constant over time
migration stream I(a). Under the given assumptions, equation 1 reduces to:

(g + g) n(a,t) = I(a) — p{a)n{a,t) (4)

Under the assumption of below replacement fertility, the constant immi-
gration model admits a unique stationary solution which is also GAS. Such
equilibrium solution is found from the time independent ODE associated to

(4):

dgff’) — I(a) ~ p(a)n(a) )
Equation (5) gives:
n(a) = n(0)%(a) +/ jds—nN( )+ nua) (©)

where:

q)(a) — e f; p(8)ds



is the survival function,and ny(e) + ni(a) are, respectively the native
and the immigrated components of the total population. By substituting (6)
within the boundary condition (2) we get:

Bt) = B fomn(a,t)m(a)da,=

:lf%mm@+ﬁﬁwigwkmmm=

n(0) fooo P(a)mia)da + fow Ga I(s) gg))m(a)dsda =

= BRy+ B, (7)

where the first term is the internal components of births, while By are the
births from immigrated individuals once entered the host population. We so
casily get the equilibrium solution for total births:

By
-2 ®)

From (8) the equilibrium age structureof the total population follows by
substituting (7) into (6):

B

n(a) =n@ﬂ®+ﬁ%@$$@=3ﬂ@ffﬂ@§3m=

®(a) + ns(a)

1—- Ry

Hence the total population at equilibrinm is:

n = Beg+n; 9)

For what concerns dynamical properties of the basic model (4), a rigorous
proof of the GA stability of the equilibrium solution has been given by Cerone
(1987) (but see also the already quoted Inaba 1988) by showing that the
problem can be put in & standard renewal form and thereby analysed by
means of standard demographic tools. A heuristic justification only valid
for the below replacement fertility case with constant immigrations, can be
given (as done in Arthur et al. 1982), by constructing the long term renewal



equation of model (4). This is obtained by substituting the long term solution
(t > a) of (4):

n(a,t) = B(t — a)p(a) + /Oaf(a:)i—((i%dm = B(t ~ a)p(a) + n;(a)  (10)

into the birth equation. We so get:

= [ B(t= a)p(a) + nr(@) m(a)da = [ Bt~ a)ola)dat By (11)

JO

where B are the births from immigrants:

By = /000 /Oa I(m)%m(a)dmda

The equation 11 is a renewal equation with a constant forcing term and
can be easily solved by means of Laplace transform approach. Its asymp-
totic behaviour is obtained, by means of the tauberian theorems on Laplace
transforms, the application of which is always valid under the assumption of

Ro < 1, as:

. . , Br By
el * _ it
Jim B(t) =lim sB (s) =lim T () ~ 1

which is exactly (8).

Quite a remarkable problem is the evaluation of the impact on the long
term equilibrium size of the population of several age profiles of the im-
migration schedule. Let us then consider the equilibrium size of the total
population:

aneg—I—n;: 1 o+ ng (12)

T
— Hy
which can be rewritten as:

Tk b1
- 1ER0/ (fo I()ggai )dsda—l—f (/ 3ds)da,

m{a)dsda + / ni(a)da = (13)




Let us now interchange the order of integration in both expressions We
get, by writing as w (rather than oo) the upper bound of the possible ages
(the domains changes from: 0 < ¢ < w; 0 < s < a;to0 <s<w;s <a<w;).

n o= - fORo Om ( /0 “1(3)28 m(a,)ds) da -+ /0 - ( fo “I(s)%ds) da =
- - f"RO / “I(s) - [-q);[—s) ( [S‘” @(a)m(a)da)] ds + fo " 1s) ( f: %gda) db14)

€p

- = [ 169) Uls)as + [ 1(@)e(s)as

where:

1

U(s) = 30 (/Bw @(a)m(a)a’a) (15)

The U(s) quantity represents the conditional (conditionally on being still
alive at age s) expected number of of daughters remaining to be born since
ages 8 per a single woman aged s. Definitively (14) expresses the final size
at any moment of time as the sum of two components both related to the
immigration flows: a)the future population of native-borns descendants of

immigrants; b)the number of past immigrants who are still alive at that
time. We can write:

= 1?@;{) + /Ow I(s)e(s)ds (16)
where:
V= L “I(s) - Uls)ds (17)

where 'V is the actual content of "birth potential” contained in the immi-
gration profile. In particular if we assume that the migration flow is concen-
trated at only one age x, (ie: I(x) migrants aged exactly x) we can write:

€p

= ROI(’,E)U(CL‘) + I(z)e(x) (18)

which has a quite easy interpretation.




3 Immigrations in demo-epidemiological mod-
els

There exists at present an extensive body of literature on the specific role
of "demography” in epidemiological models. For what concerns the role of
vital dynamics several efforts have heen made in recent time to systemati-
cally remove the classical assnmption of & constant population, typical of the
simplest epidemic models. Among these, mostly stimulated by the need to
understand the dynamics of long term epidemics, such as HIV, we recall An-
derson, May and McLean (1988), Busenberg and VanDenDriessche (1991),
Jacquez et al. 1988, Mena-Lorca and Hethcote (1992), Gao and Hethcote
(1992), Mena-Lorca, Gao and Hethcote (1995), Thieme (1992 and 1994)

For what concerns more specifically the problem of migrations of pathogens
among a system of local populations several research directions have been
developed. A first one, quite popular among theoreticians, derives from
the ideas of classical physical diffusion theory and is based on the super-
imposition of several epidemic mechanisms on a population which spreads
spatially following a suitable diffusion PDE (some references in the classical
Bailey 1975). Although such an approach can result quite useful for biologi-
cal populations, its assumptions are very unrealistic for human populations
and it will not furtherly mentioned here. More closely to the traditional
demographic tool-box, Bailey (1975) introduces a simplified version of the
classical "russian” model for influenza, in which epidemic spreads in a sys-
tem of local subpopulations which interact among them on the basis of a
classical markov migration model Remarkably, already at that time Bailey
was noticing how sharply the introduction of geographical heterogeneity puts
in crisis the classical homogeneous mixing apparatus based on bilinear mass
action incidences: if we consider two cities which differ only in the amplitude
of their populations, the respective localised FOI's would be different just
because, under bilinear mass action assumptions, they directly reflect the
relative size of their populations.

Specifically motivated by this last fact, i.e. that usually, since individuals
are distributed in space, this implies, as & rule, non random mixing between
individuals of different groups, Sattenspiel (1987) has modelled the spread
of a disease as a consequence of the natural interaction among individuals
of a population due to the need for the attendance of common social func-
tions. She explicitly considers a population consisting of several interacting
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subpopulation. Two different types of interactions between individuals are
considered: interaction (essentially at random) between individuals within
each subpopulations because of ”geographic” (latu sensu) proximity, and in-
teractions between individual of the same or different subpopulations because
of the attendance of common social functions. The main results of the model
are in Sattenspiel (1987) and Sattenspiel and Simon (1988).

Sattenspiel and Powell (1993) have studied the measles epidemic in Do-
minica in 1984 by connecting the geographic distribution of incidence of
measles essentially to the observed mobility pattern. Motivated by such prob-
lems Sattenspiel (1994) and Sattenspiel and Dietz (1995) have considered in
broad terms the problem of mobility by developing a basic mover-stayer type
model which is quite well suited for the study of temporary mobility, ie sim-
ple patterns of mobility such as daily commuting, which involve a start from
the residence place with a visit to another region and than coming back to
the originary region (without multiple visits to other regions). Their model
is based, given n interacting subpopulations, on a system of n? equations,
describing the dynamics of both N;; ("movers”: those residents at region i”
who are in region ”j” at time t) and N type individuals. A merit of the
scheme by Sattenspiel and Dietz is that of being a quite flexible tool in that
practically all types of mobility behaviour can be represented as its special
Cascs.

Sattenspiel and Dietz (1995) also show how to apply the model to study
the geographical spread of diseases in subpopulations which are characterised
among them by such mobility behaviours.

Despite the relevance of the aforementioned contributions, they just con-
stitute examples of the role played by population mouvements in determin-
ing the actual transmission dynamics of a disease in a given population. As
quoted 1n the introduction, the broad immigrations streams experienced by
some developed countries such as Italy in the very last period, have a different,
nature compared with the problems those previously considered: they con-
stitute In many cases definitive migrations which could contribute to shape
it a new way the host population. In this case, even from the point of view
of public health authorities, the more relevant questions do not regard, as
in the Sattenspiel and Dietz model, the shape of the mobility process and
the way in which this shape influences the dynamics of & a given infectous
diseases, but essentially the features (age, epidemiological status, etc) of the
entering population and how these features impact on the dynamics of the
infectious diseases experienced by the host population. From this point of
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view the natural tool-box appears to be the demographic theory exposed in
the section two. It is therefore the aim of the present paper to develop a
demoepidemic framework which. tries to assess the role of immigrants profile
in defermining the shape of endemic profile of a population. Although very
simple this type of models appears to be the natural tools by which to deal
with the present problem. In what follows we will only be concerned with
the case of a below-replacement fertility population since this latter was the
motivation of the present work, but there are no difficulties in treating other
cases.

We [inally briefly mention another possible useful development, which
is our aim to consider in a foregoing work. It still lacks, at least to my
knowledge, in epidemiological theory an explicit consideration of infection
processes within systems of subpopulations interacting among them through
the typical demographic mechanism of the multiregional model (a.4). The
multiregional model is obtained by superimposing the typical markov model
for population redistribution to classical population theory & la Lotka-Leslie
(Rogers 1975). The direct consideration of whatever epidemiological mech-
anism, for instance a classical SIR scheme, within the frame of the demo-
graphic multiregional scheme briefly introduced in section two, gives rise the
following multiregional multistate model:

(g + “g) Xila,t) = = [mla,t) + g7 (a) + Mfa, )] Xi(a, 1) +

+3 gl (o, t) X (a,t) + I (a, 1)

(5+3) 700 = Me0X(0,0~ o)+ 1:00) + o @] i 139
A AR
(5+5) 800 = w@¥0.0 - jua) + () ) +

+ Z qﬁ(a, t)Z;(a,t) + I (a,t)

The previous model, which assumes migration rates differentiated on the
basis of the epidemiological statuses of migrants,despite the trick of writing
the incidence of the disease as a linear term, is a genuine nonlinear multistate-
multiregional model for the geographical diffusion of epidemics.

A simplified version without age of the previous model takes the form:

12



Xi(t) = Mi—[u+ @+ MOV X(t) + T () X5 (8) + IX (1)
Yi(t) = ()X() s+ v+ Gl Vi) + T gYi() + IX (@) (20)
Zi (t)y = wYi(t) - [#1+Qi]zi(t)"|‘ECIjz'Zj(t)+If(t)

which adds vital dynamics as well to the basic markov scheme used by
Bailey 1975. A simplified version of model (20} was considered for instance
in Scalia Tomba (1991) to deal with the problem of migrations of individuals
from high risk groups to lower risk groups as a consequence of the social

alarm induced by HIV/AIDS.

4 A basic SIR model with constant immi-
grations spread in all the epidemiological
classes

In thus chapter we start our investigation of the demographic problem of
evaluating the consequences of a definitive immigration stream with its epi-
demiological load toward a given host population.To do this we will cast
the study of the transmission dynamics of a typical SIR disease within the
demographic frame of "stable through immigrations” populations.

Let us to begin start from the following basic SIR model characterized
by a stationary demography obtained through a below replacement fertility
plus constant immigrations in all epidemiological classes.

X=1Ix +bN ~ (B + XX
Ye=Iy +AX — (u+0)Y A=Y (21)
Z=vY +1I;— pZ
The previous model differs from the classical SIR epidemiological model
in that the recruitment takes place in all the distinct epidemiological classes
and not only in the susceptible one.
By adding the three state equations we get:

N=X+Y + Z=I+bN - p(X +Y + 7) (22)

ie:
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Ne= I (b— p)N (23)
where: I = Ix + Iy + I, ,which, under the below replacement fertil-
ity assumption, gives rise to a long term stationary population at the level
I/r (r = b—p). This is formally analogous to the assumption, quite frequent
in standard epidemiological modelling, of a constant recruitment in the sus-
ceptible class plus mortality at a constant rate (sometimes called CID, *con-
stant immigration demography”. For what concerns the specific role of the
CID assumption the reader may refer for instance to Bailey 1975, Jacquez
et al. 1988, Capasso 1992, Mena-Lorca and Hetheote 1093, All these models
assume that, as usual in standard epidemiological theory, all the recruitment
flow is concentrated within the susceptible class.

‘The most peculiar feature of epidemic models with immigrations not lim-
ited to the sole susceptible class but spread over all the epidemiological classes
is the imediate lost of the existence of the DFE, a fact which implies the lost
of the threshold character typical of the classical epidemiological models.
This fact was pointed out by Bailey (1975) an in his basic model for sus-
ceptible and carriers dynamics, with recruitment at constant rate in both
classes. Bailey’s model is described by the equations:

X = Iy—BXY
Y = Iy—’UY

Having always in mind the role of carriers in a basic SIR model, in his
nowadays classical paper (1976), Hethcote noticed that the presence of a
constant number of carriers in the host population prevents the existence of
the disease free equilibrium equilibrium, thereby eliminating the thresholds
character of the model. This is quite obvious to realize: a constant inflow
of infectious individuals from year to year implies that eradication is defini-
tively a not reachable target, a fact observed many times in real populations.
This fact raises the need to redefine the target of the possible immunization
policies, usually aimed to eradication in classical epidemiological models. We
will discuss these aspects more fully elsewhere.

4.0.1 Equilibrium calculations

Since DFE are no more possible, the system only possesses an endemic equi-
librium of which it is quite casy to conjecture the global stability. We get:

14



X=0 — X*= IxibV

BtA
F e # - TpdA XY Iy A vy A IxdBN
}_/_0 — Y= ptu ”',u+v+,u+uX """u+v+u+v ey
Z=0 - Z*mN——(X*—I—Y*)

and so, suppressing the * for short:

o Ix bV
X FA /
— Iy A X A BN
Y = (M-'u + Lt }..!.+/\) + utv pt A (24)

A=Y =5 |G + ) + i

Notice that in the last equilibrium expressions we have separated the old
term inherited from the basic SIR model without immigrations from the new
one due to migrations.

a)by assuming that the equilibrium FOI is much larger than the death
rate, we get the approximate evaluation for the equilibrium FOI itself:

Iy Ix bN g
A\ =AY = + = — Iy + I)+ BN 25
& ﬁK#+v p+v)+u+v} M+UKX v) I 25)
The last expression, apart the neglection of the death rate is quite similar
to the equilibrium FOI of the basic SIR model:

N WA
A_M[M+v 1]_u+v (26)

with the difference due to the explicit appearance of the two migrations
terms. Anyway this last notation suggests a useful interpretation of the equi-
librium FOT of the basic SIR model. The equilibrium FOI is the percentage
rate at which new infections appear, at equilibrium. In the last expression
this rate is defined as the difference between the product and the deash rate.
b)More precisely, let us work on the general:

5\ fé; [ I A AN B | (e+ NIy + AIx +bN)
= v + Iy =
p+v B A g+ A v s+ A

from which we gét:
M#+A)mE§JUﬂY+AUX+JY+5NH
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80 obtaining the quadratic equation in A:

M (A-pA-—B=10 (27)
where:
A=(Ix + Iy +N) B=_Zouly (28)

It’s easy to check that equation (3.9) always has two real solutions, only
one of which is positive, the greater one namely, and so adequate to the
representation of the equilibrium FOI. In fact:

J\=-;-(A—;J,:|:\/(A—;1,)2-I—4B)

which shows that, independently on the fact that A is greater or lesser
than p, one and only solution is always epidemiologically meaningful.
Finally, the susceptible fraction at equilibrium is given by:

3—£m Ix +bN
N T N@p+N

4.0.2 The effects of vaceination

Let us now introduce vaccination into the basic system, by assuming that: i)a
fraction py of the native newborn population is vaccinated at birth, ii)there
exist a screening on immigrants, which is of course uneffective on recovered
and infective individuals, but is able to immunize a fraction ps of the sus-

ceptibles. The basic system of the previous section will consequently modify
to:

X: (I —po)x + (1= p)bN — (+ N X
V=1Iy + A\X — (u+v)Y A= jY (29)
Z= DN +podx +0Y + I — ua

Since our system has no threshold character we can not have a goal of
eradication unless we assume the imported infections can be driven to zero.
Rather it is expected that the role of vaccination can be that of minimizing
the number of infections due to the internal metabolism of the discase.

We get:
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Bt A
Iy - A X* I A (1 —po)d 1-—p)bN
VE oo y -+ S § n (1 —=p2)dx +(1—p1) (30)
HA-v p+v  ptov f+ A
. Iy A" (1 —pg)IX + (1 —pl)bN
A= BY* = 5
b ﬁ,u+v+,u+'u A

In particular, if the vaccination of immigrant susceptibles is not possible
at the moment of entry but must be delayed (p; = 0) the last expressions
simplify to:

X* = Ix+(—p1)bN

A
o X0 Iy 2 Ix{1-p )bV
V9= fmeste = S o : (31)

Bt
A*:ﬁy*zﬁP&h+ALhi&ﬁﬂﬂ]

fetu ptu pEA*

Determination of the equilibrium FOI is analogous to the previous case;
suppressing again * for short, we get:

N lIy LD (1—p2)fx+(1-p1)bN] (32)

u+v ptv B+ A

from which follows:

Alp+A) = [Ty (p+A) + A((1~ p) Ix + (1 = p1)bN)]  (33)

Bt

ie.
AMp +2) = ;—f—_@: [dy + A (Iy + (1 = pa)ix + (1 — p1)bNN)] (34)
giving the quadratic equation in A:

N — (Ay — p)A— By =0 (35)

In particular:

Ay = E%(IY + (1= p2)Ix + (1 — p1)bN) By = ;ﬁ%fy (36)

and:
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By=B Z<Ay <4 (37)

As for its counterpart without vaccination (3.6), equation (4.6) has one and
only one epidemiologically meaningful solution.

4.0.3 Stability analysis

It is quite natural to conjecture that, since the system does not possess any
DFE equilibrium, the unique endemic equilibrinm of the system (3.1) be
always (AS. The actual proof can be done for instance by adopting Beretta
and Capasso (Capasso 1993) representation which uses as main ingredients
the existence of a unique endemic equilibrium plus bilinearity of the FOI (see
the appendix for the actual proof). Another simple strategy is to observe
that the total population decouples and always goes to its equilibrium. This
permits to study the long term behaviour of the full system as the behaviour
of an asymptotic two-dimensional system, of which it is easy to prove the

- global stability. For details see Manfredi and Salinelli (1997).

5 The fully age structured SIR problem with
immigrations

By explicitly introducing age-structure within the basic SIR problem of
the previous section, we have the following system of Ross-McKendrick-
VonFoerster PDE’s:

AX(a,t) = Ix(a,1) — (u(a) + A(£)) X(a, 1)
AY(a,t) = Iy (a,t) + Mt)X (a,t) ~ (p(a) + ) (a,) (38)
AZ(a,t) = Iz(a,t) +vY(a,t) — pla)Z(a,t

where:

o 0
A= —
da T 5 ot
is the McKendrick-VonFoerster aging operator, and u(a) is the age de-
pendent force of mortality. As a starting point we will choose the simplest
assumption for the FOL A(2), ie of course the traditional homogeneous mixing
assumption:
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5f Y (a,t)da = BY (t) (39)

System (1) has to be completed by suitable BC. Assuming no vertical
transmission of the disease (all births susceptibles):

X(0,£)=B(t) Y(0,8)=0 Z(0,4)=0 (40)

where B(t) arc the births per unit time, F'inally we need a set of prescribed
initial distributions:

X(e,0) = Xg(a) Y(a,0) =Yp(a) Z(a,0) = Zy(a) (41)
By adding the three equation (1), we obtain the total population PDE:
Anf(a,t) = I{a,t) — pla)n{a,t) (42)
where I{a,t) is the total immigration rate of age a at time t:
I(a, t) = [y (a, t) + Iy(a, t) + Iz(ﬂ;, t)
The PDE (5.4) inherits the following boundary and initial conditions:

BC: n(0,t) = B(t) n(a,0) = nola) = Xo(a) + Ya(a) + Zo(a)

If we explicitly assume that the total immigrations take place at a con-
stant rate and with a time invariant age-structure, we get:

An(a,t) = I(a) — pla)n(a,t) (43)

which is the basic PDE of the so called ”constant immigrations” extension

of the stable population model encountered in the second section. Notice that
in the event of constant births and deaths rates we can recover, by integrating

both members of (40) over all the age span, the ODE (23). The integration
gives:

N({) = /0 da+/ n(e,t)da mfooo playnfo, t)da = (44)
= (45)

from which (23) follows by assuming age independent birth and death
rates:
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N=I+({b-pN

For more detailed considerations on the mathematical properties of the
gystern (38) see Manfredi and Salinelli (1997).

6 Characteristics of the endemic equilibrium

corresponding to the stable long term pop-
ulation

The equilibrium system associated to system (5.1) is given by the following
ODE system:

£ - Ix(a) ~ ((e) + N X (a)
_%—2 =Iy(a)+ AX(a) — () + )Y (@) A=5Y (46)
26) - 14(a) + oY (0) - p(a) Z(a)
where A is the constant FOI of equilibrium. The inherited initial condi-
tions at age zero are:

Of course:

which is the equilibrium equation of the underlying demography.
System (46) is a linear forced system of the form:

diga) — B(a)U(a) ~ I(a) (47)
where:
—(pla)+2X) 0 0 Ix(a)
Bla)y=| X —(pla) +v) 0 (@)= Iy(a)  (48)
0 v ~p(a) I4(a)



Under usual assumptions system (46) has one and only one solution, so
guaranteeing that the endemic state solution is always well defined. The
explicit solution of the equilibrium system should provide also an expression
for the equilibrium FOI of the model.

Explicit calculations give us:

n(a) = n(O)e"J;:w“("")dB—|—/&eﬁﬁ“(m)dmlr(s)ds
0

a) = X(0)e= JoClorrads /O IR RGO SRV (49)

(
Yi{a) = Y(0)e Jolorodds E" o= Jo ey tv)ds [ (s) + AX(s)]ds
() = nfa) - X(a)—Y(a)

N

By remembering that Y'(0) = 0, n(0) = X(0) = B, and introducing the
following quantities:

Pla) = e Jo 1s)ds
Ala)y= e
Vie)= e

we can write (49) in a more interpretable form:

nfa) = B®(a)+ [¢I(s)H2dgs

®(s)
X(a) = Bo(a)A(a) + [§ Ix(s) 1248 ds (50)
Y(a) = f;Iy(s)%(%%%ds+f0“ )\X(s)%(%%%ds

Z{a) = n(a) — X(a) — Y(a)

In particular by substituting the expression for the number susceptibles
in the mnfectious equation we get:

Y(a) = /;Iy(s)ig;::_%gds-l— Ua)\X(s)iEigKEZ;ds:
= Yi(a) + A Oa |:B(I)(S)A(S)+‘ SIX(u)ggz))ﬁ((Z%du ZIIZEZ; Eggds
= Yi(a) + A[BQi(a) + Qu(a)] (51)
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ds = ®{c)V(a) fua 3((2))@ =

@) = [ 2O G T
Dala) = f / L (u @((Z) A(s;

Alu

e

@) Vi), .
@(s) V()

The last of (51) decomposes the total number of infectives individuals
aged a at equilibrium into two main components: a first component com-
posed by immigrated infectives (i.e. infected abroad} survived to death and
recovery, and a second component composed by individuals who were in-
fected within the population. This last can be furtherly decomposed into
two parts: native susceptibles and immigrated susceptibles.

From the last relations it’s easy to determine the equilibrium FOI:

A= ﬂf“ a)da = Y (52)
We have:
Y = ["Yi@da= [T 1) + A (BQi(@) + Q(@)]do = (53)
= Vi +A(BQ:+Q2)
where:
Gy = fo° Qila)da Q= [5° Qa(a)da (54)
Hence:
A=Y+ A(BQy+ Q)]
and finally:
_ B
A TTEBG o) (55)

The last relationship implies that to have an epidemiologically meaningful
(ie. positive) equilibrium FOI we have to show that:

(BQi1+Q2)8 <1 (56)
For more details sce Manfredi and Salirelli (1997).
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7 Effects of the immigrants profile on the en-
demic equilibrium

By simple manipulations of the equilibrium age structure it is possible to
put in evidence the role of the immigrants profile on the long term equilib-
rinm of the population. Let us then generalise formulas such as (18) to all
the epidemiological classes. We get for the total number of susceptibles at
equilibrium:

X = /UmX(a)da:fo [ P(a)A(a )—I—/ IX(S]iEgig;ds} da =
- B/Om@(a, da+/°° [ " Ix(s Ag‘;))ds)daz
= Be+ [ Ix ( @Ei)ﬁfi )d =
~ Bef +f0°° Ix(s)e¥ds (57)

Formula (57) is analogous to (18), and its interpretation is straightfor-
ward. The quantity ef is the expectation of life in the susceptible state for
newborn individuals. Hence (57) says that the total number of susceptible
at equilibrium is the sum of two components: a)a traditional one, given by
the product of the number of births per unit time times the expectation of
life in the susceptible state (s state); b)a second one due to immigration of
susceptibles, which is the sum of the several generation of entries of suscep-
tible individuals of the various ages times their expectation of life in s state
state at the age of entrance. The susceptible fraction at equilibrium may then
be expressed as;

_ Bef + [P Ix(s)elds
~ Beg+ [¢ I(s)e(s)ds
Formula (57) can be furtherly developed by introducing the definition of

B at equilibrium, hence deriving the complete role of immigrations on the
equilibrium schedules of the population.

Perhaps the most simple and interesting application of the framework
developed so far is the evaluation of the impact of several age profiles of the

(58)
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immigrants on the susceptible fraction at equilibrium, via their impact on
the FOL: this can be easily accomplished numerically via formulas as (58).

Similar manipulations can be done on the other relevany quantities.For
the total number infectives at equilibrium we have:

Y = [JOOY(a)——u/OOO /Oaly(s)Mmds—l— :)\X(s)@(a) V(a)ds da =

®(s) V{(s) @(s) V(s)
w© [a ®(a) V(a) © ro ®(a) V(a) _
- /0 [0 I ()5 v et fo [0 AX ()3 7o =
oo w B{a) V(a)
= ./0 Iy (s) (fa mv(s)da) ds + AQ@ (59)

where:

Q='/0°°/6“X(S)%"))'1V/—E3dsda=/0mX(s) (/Sw%"%da) ds  (60)

Hence similar interpretations to those previously used for the susceptibles
are possible; in particular an expression for the FOI can be derived.

8 Recognising the age of infection as a rem-
edy to a drawback of the previous formu-
lation

The model developed in the last sections is based on quite restrictive as-
sumptions, namely the fact that: a)the immigrant population, once entered,
imediately subsume the demographic and epidemiological behaviours of the
host population, b)the two subgroups imediately start mix homogeneously.
A further assumption that was implicit in our previous reasoning was the ab-
solute absence, in the immigrated population, of any "memory” of their past
epidemiological experience. In other term, in the previous formulation, once
an infectious immigrant aged ¢ enter the host population, not only he sub-
sumes the new epidemiological rules of his new homeland, but also chancels
hist past experience, to become in any sense equal to a native aged a. A
possible remedy to this problem could be the explicit introduction of the age
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of infection. A more general model recognising both ages, the anagraphical
age (a) and the age of infection (c), is the following:

AX(a,t) = Ix(a,) — (ula) + A1) X(a, 1

AY (a,e,1) = Iy (3,0,8) ~ (a(a) + 9(Q)Y (a,¢,1) (61)
AZ(a,t) = Iz(a,t) + [7° v(e)Y (a,¢,t) — p(a)Z(a,1)
where:
3.
A=tate
The new BC are:
X(0,t) = B(t) Y(a,0,t) = A(t)X(a,t) Z(0,£)=0 (62)

9 SEICR and SICR aggregate models for HBV

with immigrations

The problem of immigrations in all the epidemiological compartments, de-
scribed in the previous pages for a basic SIR model with time invariant vital
dynamics, is easily extended to whatever type of epidemiological model. Let
us now, coherently with our main interest in HBV, consider the problem
within the frame of the following basic SEICR model with carriers and con-
stant immigrations:

H=Ig+2X —(u+0)H

Y=1I+0H — (p+v)Y A= B + B,C (63)
O=quY + Iy — (u+9)C

Z= (1~ QY +9)C + Iy~ pZ

which, neglecting the exposed class gives rise to the following SICR model:

X=Ix+bN—(p+NX
V=I +AX - (u+v)Y
C=qu¥Y + Iy — (u+9)C
Z=(1—qWwY + I, — uZ

)\ = ﬁ1Y+,820

29



This models, together with their age-structured counterparts, can be used
to make evaluations, from the point of view of public health, of the impact of
several age profiles of immigrants, in particular individuals carriers of HBV,
on the endemic profile of the host population.

10 Removing the basic model assumptions:
directions of inquiry

A first direction is the systematic development of formulas such as those
presented in the seventh section to extract all useful information they convey,
A useful development could be that of the possible analogon of the concept
of reproductive value of demography in epidemiological context: for instance
with the goal to trace the ultimate effect of a young sexually active 20 years
old individual who migrates into a population in which the disease is endemic.

Furthermore the basic model is based on the two simplest among all pos-
sible assumptions on the demo-epidemiologic behaviours of locals and immi-
grated. On the demographic side it is assumed that the immigrants forget
their old demographic behaviours to imediately subsume those of the host
population. This is assumed also on the epidemiological side, but it seems
quite unlikely due to different habits and levels of social integration of im-
migrants, possibly, genetic diversity and so on. In particular the assumption
that the two populations, host and immigrated, mix homogeneously is very
unlikely as well.

Of particular interest, from the applied point of view, seems the general-
isation of the basic framework to treat the special situations faced in recent
times by developed countries as Italy for selected diseases, such as TBV,
For mstance using core models to keep into account of the recruitment of
prostitutes via immigration, and so on.

A further assumption that was implicit in our previous reasoning was
the absolute absence, in the immigrated population, of any »memory” of
their past epidemiological experience. This problem was briefly discussed in
section eight, and it the first natural extension we aim to investigate.
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11  Appendix 1

11.1 Equilibrium calculations: some simple case

Type 2 mortality plus age-independent immigration Let us for sim-
plicity assume that all the age-dependent immigration functions are constant
and take place only on a given age interval (a4, ¢») which could also be taken
as the entire entire age span {0, IL). This amounts to define:

Iffe) =& =ix Ka)=% =iy Iz(a)=% =1,

and:

By combining this assumption with that of age-independent mortality
(type 2) the equilibrium system becomes the following non-homogeneaus con-
stant coeflicients system:

2o _ i, 1y (o) - pZa) A=y ()
o =i~ pn(a)

Explicit calculations (tedious but simple) give:
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n(e) = n(0)e~re a<a

n(ﬂ)e_“a -l-ﬁ 1 — e—#(a—a1) a1 < e < ay
n(0)e 4 + & |emmlamom) _ gmulaa)] g, < g

X(a) = n(0)e~Gr+»e asm
n(0)e % 4 Jxg [em(etNemes) — g (etNlea-en)] gy < g

and so on.

11.1.1 Type 1 mortality plus constant immigration rates
Let us assume that the survival function be of the so called type 1:

1 a<L

)=y 21

Let us further assume that the immigration functions are constant on a
given age interval (a,,as) which couid also be taken as the entire entire age
span (0, L). In this latter case this amounts to define:

IX(G.):—%C:'LX IY(a)='If:’iy IZ(E)='!L'Z"=3.Z
and:

=1

b~

I{a) =



