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1 Introduction

In these last years a new look inside second order optimality conditions has
been given by some authors; such conditions have been established without
any requirement of constraint qualification unlike the classic second order
optimality conditions [see 1-10].

Recently in [6] the authors have extended necessary second order optimality
conditions obtained by Penot [9] in such a way that sufficient conditions can
be obtained from necessary ones by replacing non strict inequalities by strict
inequalities.

The main purpose of this paper is to refine the results given in [6] in order to
obtain more general optimality conditions.

2. Statement of the problem
Consider the problem
P:maxf(x):xe S
where S is a subset of a finite dimensional real normed space X and f is twice

differentiable real valued function defined on an open set including S.
Troughout the paper, the gradient and the Hessian of f at Xg € S are denoted

by ’(x,) and f’’(x,) respectively; the gradients are considered to be row
vectors, while vectors in X are considered to be column vectors and the
transpose of a vector v is denoted by v', For a vector d in X, the set of all non
zero vectors in X that are orthogonal to d is denoted by d* and the set of all
vectors which are orthogonal to f’(x,) is denoted by ker (x,).

For a better understanding of the optimality conditions that we will establish
in section 3, we recall some recent results .



As 1s well-known, by means of the Bouligand tangent cone to S at X,, defined
as 8'(xg) ={ d:3 {xp} <8, x> x,, T oy — +oo, with oy (X - X)) —d ],
it is possible to establish the following first order necessary and sufficient

optimality conditions:
- if x,is a local maximizer of f over S, then f’ (Xg)d £0 whenever de S'(x,);

-1 f°(x,)d <0 whenever 0O=de S'(X,), then x, is a local maximizer of f over S,
When x,is a critical point, we have the following second order optimality

conditions:
a)if x,is a local maximizer of f over S, then f’ (%,)d <0 whenever de S’(x,)

and if d e $’(xg) kerf(xg), then d' f’(x)) d<0;
b)if F(x)d<0 whenever de S’(x,) andd' ’(xy) d < O whenever
0#d € S’(xy) kerf’(x,), then x,is a local maximizer of f over S.
From now on, we assume that f*(x,) = 0.
Unfortunately, a) and b) do not hold in general, as is shown in the following
example.

Example 1

Consider problem P where S={(x,x?) : x > 01, f(x,y) = - X* + 2y and the point
Xo=(0,0). It is easy to verify that §’(x,) = {d=(d,,0), d, 20}, I (x))d =0 for all
de S'(xy), d' () d=-2 d% < 0 for all O=de S’(x,), so that b) holds but x, is
not a Jocal maximizer of f over S. Furthermore, if f(x,y) = x* - 2y, X, 18 a local
maximizer of f over S, but a) does not hold since d' 7’ (xp)d= 2 d% > 0 when
d,#0.

Example 1 points out that 5’(x,) is not an appropriate set in establishing

second order optimality conditions, so that some authors [6-10] have
introduced new sets. Penot in [9] gives the following definition:

Definition 1
The second order tangent set to S at X, in the direction d is the set defined as

8 (xgd) = {w: A wy — w3 t; = 0%, such that Xp = Xgttpd+ litiwn eS}.

By means of S7’(x,,d), the following second order necessary optimality
condition is established [9] :

If x,is a local maximizer of f over S, then the following conditions hold:

) f'(x)d £0 whenever de 8°(x,).

mifde S'(xpn kerf’(%,), then F(xy) w+d ' (xg)d<0forallwe S (X d).



Replacing the inequality in ii) by strict inequality, a sufficient optimality
condition can not be obtained (see [6]) ; for such a reason in [6] the following
second order tangent set is defined:

Definition 2

Let k be a nonnegative real number and d a vector in X. The second order
tangent set to S at X, in the direction d is the set defined as

Ti(S.xy.d) = {w: 3 {xq} <8, Xp = Xg,d 0 — +eo, 3 B — +oo, with

&“ -k, o (X3-xy) = d and Bn [0 (XpXp)-d] — W]

Cn

Remark 1
Let us note that when k = 2, the set T,(S,x,.d) coincides with 57(%,,d)

In [6] the following second order optimality conditions are established.

Theorem 1
If x4 is a local maximizer of f over S, then the following conditions hold:

1) '(x))d <0 whenever de S'(x,).
1) If0=d e $(x) kerf’(x,), then

() f'(xy) W + d' £°(x,) d < 0 whenever w e T,(8.xy,d) N d*
(b) d £"(x) d < O whenever 0 € T,(Sx,.d)

(¢) f'(xg) w <0 whenever w e T (Sx,.d) nd*-

Theorem 2
Suppose that a point x, satisfies the following conditions :

i) (x))d €0 whenever de S7(Xp).
) If de S'(xpm kerf’(x,) with [l d || = 1, then

(8) £(xp) W+ ' £"(x;) d < O whenever w e T(Sx,.d) A d*
(b)d £°(x;) d < O whenever O & T,(S.x,.d)

(€) F'(x,) W <0 whenever w e T(Sx,,d) nd*-

Then x,is a local maximizer of f over S.



Let us note that (a). (b) of ii) in Theorem 2 do not ensure the optimality of the
point X as it is pointed out in Example 2 which stresses also the rilevance of

condition (c).

Example 2

Consider problem P where f(x.y) =-y,S={(xy):y = xVx , x 20} and the
point x,=(0,0). It 15 easy to venfy that 8’(x,) = {t (1,0), t 2 0}. Let d=(1,0); we
have f*(x,)d= 0, 'I‘2 (S.xy.d)=2, T (S,%g,d) M d*= {w=(0,w,), w,>0}.

Since f’(xp)w = - w, < 0 whenever w ¢ T (8, x4, d) m d*, condition (c) is
satisfied and X, 18 a local maximizer of f over S.

Let us note that if for a vector z in X we denote by 7 the projection of z on
the hyperplane orthogonal to f'(x,) and by z* the projection of z on the line

[f'(xo)] generated by £(x,), wehavez= 2 +z* and £(x))z = f'(x,)z*. As a
consequence, denoting by P,(S,x;,d) and P,(8.x,,d) the projections of
TZ(S,XO ,d), and TO(S,XO,d) on the line [f’(x,)], respectively, theorems 1 and 2

can be reformulated as follows:

Theorem 1%

If X,y is a local maximizer of f over S, then the following conditions hold:
) (x)d <0 whenever de S’(x,).

i) If 0=de S’(xyM kerf’(x,) , then

(a) P(xp) w+d (x,) d <0 whenever w € P,(S.Xqd)

(b) f*(xy) w <0 whenever w & PO(S,x0 4.

Theorem 2*

Suppose that a point x satisfies the following conditions :
i) P(x,)d <0 whenever de S’(xy).

) If d e S’(xp)n kerf’(x,) with ll d Il = 1, then

(a) '(xq) w + d' £’ (x) d < O whenever w € P;(S,xo,d)

"

(b) f'(x,) w < O whenever w e PO(S,K0 ).

Then Xy 18 a local maximizer of f over S.



3 New second order optimality conditions

From now on and without loss of generality, we will assume that any bounded
sequence is a convergent sequence (substituting the sequence with a suitable
subsequence, if necessary).

In this section we will establish new second order optimality conditions by
refining condition ii) of theorems 1* and 2*.

With this aim we introduce new second order tangent sets as follows:

T;(S,xo,d)= {w:3 {xp} €S, x5 %5, F oy > +oo with o (x5-%,) = d,
20 [0 (Xp - %g) - dJ* = ).

*
TySxpd)={v:3 (x4} =8, x;—x,,3 O~ +eo, I B, — +oo with

Pn

e — 0 such that oy (x4-x,) — d and B, [0 (Xg-X,) - dJ* — v},

The following theorems hold.

Theorem 3
If x4 is a local maximizer of f over S, then the following conditions hold:

D1 (x,)d<0 whenever de S’(X,).
i) If 0=de S’ (x,)N kerf’(x,) , then

3
(a) f'(xg) w +d' £’ (x,) d < 0 whenever w T2 (S.xgd)
*
(b) f'(x,) w <0 whenever w € 'I*0 (S$,x0.d) .

Proof.

Condition i) is very known.

Letd e S’(x))m kerf’(x,). Then there are sequences {xp}, {a,} such that
Xp€ S, 0y >0, 0y (x5 - %) —> d.

d_ 'n
-
Applying a second order Taylor expansion using the mean value theorem, we
have:

o (f(xy) - f(xb)) = (xy) (vp)* + %I;(d+vrl ) £’ (Xg+0p(Xp - %) (d+vy, ) (1)

Let vy be defined by v = o (x - X,) - d so that Xp =X+

where 0 <8, <1 foreveryn.

Consider the sequence {o(vp)*}; the following exaustive cases occur:
1) {o,(vy)*} is a convergent sequence, that is 205(Vp)* = w

2) {op(vy)*} is a divergent sequence in norm, that is O H(vp)* Il = + oo



¥
In the first case w € T, (S, x;.d) and from (1) we have

2 0t (f(xp) - £x0)) = (xg) [20p(vy)*] +(d#v, ) (kg8 (xp, - %) (v, )

so that 2 alz,l (f(xp) - f(x0)) = f'(xp) w+d' f°(xy) d. If X, is a local maximizer

of fover S, then 2 O:fl (f(xp) - f(xo)) < 0 and therefore ii) (a) holds.
In the second case consider any sequence {B,} of positive number such that

By Ball (vp)*l

Bp(vp)* — w (for instance By = T ). Since

_
I} (vy)*

Bn

o 0 sothatw e T::(S, Xy, d). From (1) we have:
n

obviously it results

Bron(f(xy) - f(Xp)) = £(Xy) Bpy(vy)* + %‘g(dwn ) £ (xg+8p(Xg - Xg) (d+V, )

so that Bpo, (f(xpy) - f(xg)) — '(xy) w . If x,is a local maximizer of f over S,
then B0 (f(xp) - f(x4)) <0 and therefore ii) (b) holds. ¢

Theorem 4
Suppose that a point X, satisfies the following conditions :

1) (xg)d =0 whenever de S’(x).

i If de S'(xpM kerf’(x,) with I d | = 1, then

(a) f'(xp) w+d' "’(x,) d < 0 whenever w e T;(S,xo,d)
(b) f'(x,) w < 0 whenever Ozw ¢ T:(S,xo,d) .

Then x,, is a local maximizer of f over S.

Proof.
Suppose that x,is not a local maximizer of f over S. Then there exists a
feasible sequence {x;} converging to X, such that f(xy) > f(x,) for all n.

1 : :
Define o, = TR obviously we have o (xp, - Xg) — d € S’(x,) with
n %o
Ild [t = 1. Since oup(f(xy) - f(x,)) is positive for all n, it is easy to prove, by

means of first order Taylor’s expansion, that i) is not violated only if
f’(x4)d = 0. Therefore let us assume that de kerf’(x,).

¥
If {20, (vy)*} is a convergent sequence, with 20, (vp)* —> w e T, (S, %y, d),

from (1) we have 2 alzl (f(xy) - f(x))) — f'(xg) w +d' £7(x,) d 2 0, which

contradicts ii) (a).



If onl(vp)* Il = + oo | setting Bp =

By 1

*
= * ; -
On = oy Il (vp* 1] — 0 sothat Br(vp)* — w e T (S, xy. d) with | wll = 1.

1
Tv* I we have B, — + o0 and

From (1) we have

%n

W (f(xp) - f(xy) =
(v n)* 1 ..
=1(x,) (vl + 20l (vl (d+vy ) (X548 (Xy - Xo)) (d+v,)

so that T(vaﬁ (f(xp) - f(xy)) — 7 (%) w 2 0 and this contradicts ii) (b). ¢
n

Remark 2
It 1s easy to prove that

P (S, %x5,d) < T (S, x4,d) and P (S, x4, d) CT (S. xg,d) .
Example 3 points out that these inclusions are proper and, consequently, the
necessary optimality condition stated in Theorem 3 is more general than that

given in Theorem 1 or 1*. Furthermore, the sufficient optimality condition in
Theorem 4 is more handable than the one in Theorem 2 or 2*(see examples

3,4), since it can happen that kerf’(x,) N (T (S Xo.d) N dH= D, or equivalently
Oe PO(S Xq.d), while we have f° (Xg)w # 0 whenever 0 #w e T (S Xy, d) .

Example 3

Consider problem P where f(x,y,z) = x*-3z, S={(x, y,2) 1y =xVx, z=x". x 2 0}
and the point x,= (0,0,0). It is easy to verify that §’ (Xg) = {t(1,0,0) ; t 2 0}.

Let d= (1,0,0); by means of simple calculatlons we find f*(x,)d = 0,

T, (S, %y, d) = P, (S,%,, ) =B T, (S, xy.d) = {w: w=(0,0,2)] |
Py (S %9, ) =Ty (5. %,.d) = {(0,0,0)).

Let us note that ii) (b) of Theorem 2* is not satisfied, so that Theorem 2*
cannot be invoked to estabhsh the optimality of X, ; on the contrary, ii) of

Theorem 4 is satisfied since T (S, x,d)\ {(0,0,0)}) = & and

' (xg)w +d'f7(x,)d=-6 +2 < 0, 5o that X, is a local maximizer of f over S.

Example 4

4
Consider problem P where S={(x,y.z) : y=xVx.z=x ‘\/;3 .x 20},



f(x,y,z) = x2-3z, and the point x, = (0,0,0). We have S’(x5) = {1(1,0,0) ; t =2 0}.
Let d= (1,0,0); by means of simple calculations we find (x)d =0,

T, 5. % =Py (S, %, D= D= T, (5,50 . P, (5. 5,. D)= {000},

T, (S, %0, )\ {(0.0.0)) = {(0,0,1) : t > O} |

Once again ii) (b) of Theorem 2* is not satisfied, so that Theorem 2* cannot be
invoked to test the optimality of x,; on the contrary, ii) of Theorem 4 is
satisfied since T: (S,x,,d)=C and ' (xg)w=-t < 0, whenever Ozwe T: (S, Xy, d),

so that Xp is a local maximizer of f over S.

4 Particular cases

In the previous section we have pointed out the role of condition ii) (b) in
Theorem 4 in establishing a sufficient optimality condition. In this section we
will prove that such a condition is superflous when S is a convex set and this
allows to achieve some classic results. With this aim we establish the following
Lemma.

Lemma 1
Consider problem P where S is a convex set. Suppose that a point x, satisfies

the following condition :
1) F'(xp)d <0 whenever de S’(x).

Then f’(xo) w < 0 whenever w € Tll;(S, Xg. d).

Proof.

we T.(S, xy, d) implies the existence of a feasible sequence {x,} with

Xp—>X, and the existence of positive sequences of real numbers Oy = +oo,

o
Vp = On(Xp - Xp) - d. Define djy = o (xp - X). Since £(x,) d = 0, it results
P&y vp= PEYdy =0, (Xp)(Xp - Xp)- On the other hand, the convexity
of S implies that x, - x, is a feasible direction and thus Xp - Xg € S’(%,), so that
F(x XXy - Xo) £ 0. As a consequence £(xy) Bpvp — Fxy) w<0.

B
B,— +co such that __p; =k, 0y (Xp-%y) ~> d and B, v,—» w where

The proof is complete. *

The following theorem holds.



Theorem 35
Consider problem P where S is a convex set. Suppose that a point x, satisfies

the following conditions :

i) '(xg)d <0 whenever de S’(x,).

i) If d e S™(xp) kerf’(x,) with [l d Il = 1, then ‘
*

f'(xg) w+d' £°(x,) d <0 whenever w € T, (S, x,.d).

Then x,, is a local maximizer of f over S.

Proof.
Taking into account Theorem 4, we must prove that , if d e S’ (XN kerf(x,)

with Il d Il = 1, the convexity of S implies {’ (xg) w < 0 whenever

O=w € T: (S, x4, d). Taking into account the proof given in Lemma 1, we have
'(xg) (v )*="(xg) v < 0. As a consequence f'(x;) B (vy )* — f'(xp) w<0
and , taking into account that 0 2 w € T: (S, Xg, d) < [f7(%,)], necessarily we
have f'(x)) w < 0.

The proof is complete. +

Remark 3
The proof given in Lemma 1 points out that it results £’(x,) w < 0 whenever

*
we T, (S, Xq, d), so that replacing ii) with
iny* If de S’ (x ) kerf’(x,) with fldll=1, then d'f’(x))d < 0
we obtain again a sufficient optimality condition for a convex set which is
more restrictive than ii). With this regard, it is sufficient to consider problem P
where S={(x,y) : v 2 x%}, f(x,y) = x2 - 2y and the point x,=(0,0). It can be

verified that i1)* does not hold, while ii) 1s satisfied.

At last we will prove the following theorem which establishes the equivalence
between ii) and ii)y* for closed local cone S with vertex at X, (that is S 1s the

intersection of a closed cone with vertex at x,and a neighbourhood of Xp)-

Theorem 6
Consider problem P where S is a closed local cone with vertex at Xg - Suppose

. that a point x, satisfies the following condition :
DI(x,)d <0 whenever de S™(Xp).
Then ii) and ii)* are equivalent.



Proof.
*
We have f(x,) w < 0 whenever w & T, (S, %y, d) (see Remark 3), so that ii)*

implies ii). On the other hand, any de S’(x,) is a feasible direction; choosing
X, =Xg + % , Oy =1, we have 20u,(ol, (X, - X,) - d)= 0 for all n, so that

Oe T, (S, xp, d) and ii) implies ii)*. .

As a consequence of Theorems 5 and 6 we obtain the following known result:

Theorem 7
Consider problem P where S is a polybedral set. A vertex Xqis a local

maximizer of f over § if the following condition is satisfied:
f'(x)d <0 for all directions starting from xgand d'f°(x,) d < O if £'(x,)d=0.
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