A-PDF MERGER DEMQ

Report n. 129

Incentive Compatibility Constraints
and Dynamic Programming in
Continuous time

Emilio Barucci, Fausto Gozzi, Andrzej Swiech

Pisa, Dicembre 1998


http://www.a-pdf.com

Incentive Compatibility Constraints and Dynamic
Programming in Continuous Time *

Emilio Baruccit, Fausto Gozzij! Andrzej Swiechx

T Dipartimento di Statistica e Matematica Applicata all’Economia
Universita di Pisa,

Via C.Ridolfi 10, 56124 Pisa, Italy

i Dipartimento di Matematica, Universita di Pisa,
Via F. Buonarroti 2, 56127 Pisa, Italy

* School of Mathematics, Georgia Institute of Technology,
“ Atlanta, GA 30332, U.S.A.

Abstract

This paper is devoted to the study of infinite horizon continuous time optimal
control problems with incentive compatibility constraints. An incentive compatibil-
ity constraint is a constraint on the continuation of the payoff function at every
time. We prove that the dynamic programming principle holds, the value function
is a viscosity solution of the associated Hamilton-Jacobi-Bellman equation, and that
it is the minimal supersolution satisfying certain boundary conditions. When the
incentive compatibility constraint only depends on the present value of the state
variable, we prove existence of optimal strategies, and we show that the problem
is equivalent to a state constraints problem in an endogenous state region which
depends on the data of the problem. Our analysis is useful to address second best
pareto optimum-incentive compatibility constrained problems. Some economic ex-
amples are analyzed.
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1 Introduction

In this paper we study optimal control problems in continuous time/infinite horizon with
incentive compatibility constraints. We consider a classical infinite horizon optimal control
problem with a constraint on the continuation value of the plan at each time ¢ > 0. The
continuation value at each time ¢ is constrained from below by a function of the state and
of the control at time ¢. The constraint can be interpreted from an economic point of view
as an outside option/incentive compatibility constraint.

This type of constraint gives rise to two different optimal control problems: optimal
stopping problems and optimal control problems with incentive compatibility constraints.
In the first case we have a positive perspective: we want to study the optimal behavior
of an economic agent in a dynamic setting allowing him at any time in the future to
stop the process and to exercise an outside option which gives him a reward which is a
function of the state (termination payoff). In this setting the set of admissible controls
includes those violating the incentive compatibility constraint. The agent is allowed to get
the termination payoff. In the second case we have a normative perspective. The point
of view is the one of a social planner who wants to characterize optimal contracts or
second best solutions to dynamic problems under incentive compatibility constraints for
the agents of the economy, The set of admissible controls does not include those violating
the incentive compatibility constraint. The social planner looks for an optimal policy for
the agents among the policies which do not include the termination of the process by the
agents. The goal is the definition of a social contract taking into account the fact that
the agents can decide in the future to go out of the contract. This event is prevented by
including the incentive compatibility constraint,.

Many economic problems can be fitted in the framework described above. They belong
to the so called second best literature. There are two main classes of models where this
type of problems arise. The first class comes from the study of differential games. The
second class comes from policy making without full precommitment (time consistency
problems).

It is well recognized that in differential games such ag the exploitation of a common
resource ([Benhabib and Radner, 1992, Dockner, Sorger 1996, Tornell and Velasco, 1992,
Dutta and Sundaram 1993, Dutta and Sundaram 1993}), capital accumulation
([Fudenberg and Tirole 1983]), pollution, voluntary provision of a public good ([Dockner et al. 1996]),
the outcome of the noncooperative interaction obtained as a subgame perfect equilibrium
or as trigger strategy equilibrium may be Pareto inefficient, i.e., the reward for the agent
is smaller than the one obtained by a representative agent under perfect competition
(the so called tragedy of commons). This result leads to the problem of designing con-
tracts which are efficient among the subgame perfect equilibria (see [Rustichini, 1992,
Benhabib and Rustichini, 1996]) and to the problem of designing contracts yielding at
any time in the future a utility level higher than the one obtained according to a specific
subgame perfect, equilibrium. This type of problems can be formalized as the maximiza-
tion of the utility of the representative agent under the constraint that at every time
in the future the continuation value of the consumption plan is greater than the utility
obtained from the strategy of a subgame perfect equilibrium. Typically the constraint is



given by the value function of a control problem without constraints.

The second clags of models comes from optimal taxation problems in an intertem-
poral setting without full precommitment, or in great generality from the analysis of
an economy where there is a private sector and the government. The problem is the
definition of an optimal plan without full commitment at time zero (for instance a tax
plan made up of taxes by the government and saving decisions by the private sector)
in such a way that the private sector and the government do not have an incentive to
deviate at each date in the future (decisions are taken sequentially without commit-
ment), see [Chari and Kehoe 1990, Chari and Kehoe 1993, Marcet and Marimon, 1992,
Marcet and Marimon, 1996] for some interesting examples.

The incentive compatibility constraint is endogenous to the model, it is usually given
by a function only of the state and not of the control (in many cases it is a value function of
the associated unconstrained problem). The outside option can aiso be interpreted in some
cases as a policy variable (fixed costs, royaltics, taxes) or as an exogenous opportunity
(different investment opportunity). This type of constraints has been recently analyzed
in discrete time in [Marcet and Marimon, 1996, Rustichini, 1998a, Rustichini, 1998b]. In
the first two papers the problem has been studied by means of Lagrange multipliers, in
the third one through dynamic programming. Our paper provides a dynamic program-
ming solution to the problem in the continuous time case, some similarities between our
characterization of the value function of the constrained problem and the one provided
for the discrete time case in [Rustichini, 1998a} can be noted (see Remark 4.5).

The optimal control problem is a state constraints problem with infinite horizon,
a discounted objective function and an additional constraint on the continuation value
for the plan. Such a constraint concerns the future of the trajectory and gives rise to
non standard technical problems. In this paper we first analyze a constraint described
by a function of the control and of the state and then we restrict our attention to the
case of a function depending only on the state. In the general case we prove that the
Dynamic Programming Principle holds. This allows us to write the Hamilton-Jacobi-
Bellman equation (HJB in the rest of the paper) associated with our problem and to
prove, under suitable additional assumptions, that the value function of the constrained
problem is a solution in the viscosity sense of that equation. We cannot obtain uniqueness
of the solution of the HJB equation in general but we are able to characterize the value
function as the minimal viscosity supersolution (satisfying suitable boundary conditions)
of the associated HIB equation. Restricting our attention to the case where the incentive
constraint only depends on the state variable, we prove a result about existence (and
uniqueness) of optimal strategies and then we prove that the above problem is equivalent
to a state constraints problem in a region £ which is implicitely determined by the
data of the problem. Some topological properties of E are discussed. This allows us to
adapt known results and techniques on state constraints problems in order to study the
properties of the optimal trajectories.

In Section 6 two economic examples with a limear state equation, concave objective
function and an incentive compatibility constraint defined by a constant are analyzed. The
first example is the optimal saving problem, the second is the firm’s capital accumulation
problem with adjustment costs. In both cases the value function is constrained from below



by a positive constant. The analysis shows that the solution of the constrained problem
depends on the value of the parameters of the model. In the first example, if the interest
rate is larger than the discount rate then both the value function and the optimal policy
of the constrained problem coincide with those of the unconstrained problem, provided
that the initial stock of capital is large enough. If the opposite condition holds then
the constrained vaiue function is smaller than the unconstrained value function and the
second best optimal control induces a smaller rate of consumption than the first best
policy. The minimal stock of capital allowing existence of the second best policy is larger
than in the first case. In the second example, as the constant describing the constraint
goes up we observe four different parameter regions. For a small constant (first region)
the constraint is not binding and therefore the unconstrained solution coincides with the
constrained solution, for a higher constant (second region) the unconstrained solution is
equal to the constrained solution but the initial stock of capital should be large enough
to have a solution. As the constant is furthermore increased (third region) the investment
rate is higher than the first best solution and an initial stock of capital larger than in the
previous case is needed to have a solution. Finally when the constant is beyond a certain
level (fourth region) the problem becomes ill posed for every initial stock of capital.

Summing up in the two examples we have that an incentive compatibility constraint
has two effects: it restricts the state region for which a solution exists and it induces
a higher rate of investment. The optimal policy foresees a stationary level of the state
variable when the incentive constraint becomes binding.

The paper is organized as follows. In Section 2 we describe the problem. In Section 3
we show that for an incentive compatibility constraint described by a function of the state
and of the control the Dynamic Programming Principle holds. In Section 4 we characterize
the value function of the constrained problem as a viscosity solution of the HJB equation.
In Section 5 we restrict our attention to an incentive compatibility constraint defined by
a function depending only on the state. In Section 6 we analyze two economic examples.

2 The Problem

Let C  IR? and let C be the set of all functions ¢ : IRT + C that are measurable and
locally integrable. Given ¢ & C consider the state equation

{ #(s) = f(z(s),e(s)); s20 (1)

.'IB(O) =0, ToE ]Rna

where f is a function that is Lipschitz continuous in z, uniformly with respect to c. In
the standard framework the positive real half-line describing the domain of the function
c represents the time dimension of the problem. The function ¢ is the control, ¢(s) € IR
is the value of the control function at time s. The dimension of the state variable z is n
while d is the dimension of the control variable. Let 2(¢; 2o, ¢) € IR" denote the solution of
(1) at time £ > 0 given the control ¢ € C and the initial condition z € IR™. The solution
always exists given the assumptions specified above.



Given a set A C IR", define for every zy € A the set C4(zo) as the set of controls
¢ € C such that x(t;ze,¢) € A for every ¢ > 0. A represents the state constraint, for
example a positivity state constraint requires A to be the positive orthant in IR"™.

We consider two different control problems: an unconstrained and a constrained proh-
lem.

Let us first take a continucus objective function fy : A x C — TR. Given xy € IR”, the
unconstrained problem is just a classical state constraints optimal control problem with
infinite horizon: maximize the functional

Ty = [ e folalts o), clt))dt 2

over all controls ¢ € C4(xo) such that J(zg, ¢) is well defined, see e.g. [Hartl, Sethi and Vickson, 1995]
for the maximum. principle approach and [Soner, 1986, Capuzzo-Dolcetta and Lions, 1990,
Cannarsa et al. 1991, Ishii and Koike, 1996, Soravia, 1997b| and [Bardi and Capuzzo-Dolcetta 1998,
Ch. 1V] for the dynamic programming approach to this kind of problems.

The unconstrained value fimction is defined as

Va(zo) 2 sup  J(xo;0),

eeCa (’no)

Viu{zg) = —oo when Ca(xy} = . Under suitable controllability assumptions (e.g. the set
A has a C1! boundary and Vg, 3 ¢p such that {f(zo, co), n(2)} < —= where n(zo) is the
outward normal vector at zy and ¢ > 0 is independent of xp, see [Cannarsa et al. 1991,
Remark 4.7]) we have that C4(xo) # @ Vzo € A. We make the following assumption.

Assumption 2.1
(i) The sets A and C are closed and conver.
(ii) f is continuous and there exists a constant M > 0 such that
|f(z1,¢) — (azg,c)|<M|:c1—9:2| Vxy, e € A, Ve e C
F(z, ) < M(1+ |2] + |e]) vz € A, Vee C. 3)

(i#1) fo is continuous and uniformly continuous in x, uniformly in c.
To ensure that the value function V,, is always finite we also assume the following,

Assumption 2.2 For every xy € A and every admissible control strategy ¢ € Ca(wo) we
have |J(zo;c)| < M(|zo|) where M is a suitable nondecreasing function on IRY.

Only few results on state constraints optimal control problems are known without
making further assumptions. We will not concentrate on this topic since we want to focus
our attention on the incentive constrained problem defined below. Further assumptions
will be needed, some of them, like Assumptions 2.4 (ii) and (jii) will also imply “good”
properties for the unconstrained problem.



To begin with the constrained problem we define C(xo) as the set of controls ¢ €
Ca(zo) such that the following constraint is satisfied for almost every ¢ > 0:

/:OO e~ fol(s; 20, ¢), e(8))ds > e D{x(t; mo, ), (1)), (4)

where D : A x C — IR is a suitable continuous function. The constraint (4) can be
interpreted as an incentive compatibility and/or rationality constraint. The control plan
should guarantee at each time t a residual payoff higher than a function of the state and
of the control at time t. The function D can be interpreted as an ocutside option.

The constrained problem consists of maximizing the functional (2) over all controls

cE C(Cﬂo)

Remark 2.3 Having decided to work with measurable control strategies, the above con-
straint (4) cannot be well defined for every time ¢ > 0. This fact can be overcome by
choosing a different set of control strategies: the one of functions ¢ : R — IR? that are
right continuous with left limit (RCLL in the following) at every time ¢ > 0.

However, choosing this set of control strategies will render the problem difficult, since
this set cannot be easily handled. For this reason we will always work with the measurable
strategies merely pointing out the results that can be proved also in the RCLL case (e.g.
the Dynamic Programming Principle). When D does not depend on ¢ (see Section 5) there
will be no reason to deal with RCLL control strategies and therefore we will consider only
measurable admissible controls. [ |

The constrained value function is defined as

Vizo) @ sup J(zo;c), (5)

¢&C(wo)
V(zo) = —oo when C(zo) = 0. Obviously C(zq) C Ca(wo) so that we have
V(x0) < Vi(wo) Yz € A.

Let us define the set £ C A as the set of all € A such that C(x) # §, i.e. the set of all
z € A such that V(z) > —oc. Setting Dy(z) = inf e D(x,c), then

Ec{ze A:V,(z) > Dy(z)} C A.
Both the unconstrained and the constrained problem can be rewritten by setting
+00
w(t; xg, €) =/a e P00 fo(x(5; 20, ), ¢5))ds. (6)
The function w(-; 3y, ¢) is then the unique solution of the problem

{ w(t) = pw(t) — folz(t; zo,c),c(t)) t>0
limy 0o € P w(E) = 0.
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The unconstrained problem becomes:
Mazximize J(zo,¢) = w(0) under the constraints

(1) = [((0),(0) 10

(0) = pwlt) — Jo(a(e). ) ¢ >0

2(0) = xg (7)
limy—, .00 ePPw(t) = 0

x(t) € A,
while the constrained problem is obtained by adding the requirement that
w(t) > D(x(t; zo, ), c(t)) t>0.

We observe that the above problem is not a standard state constraints problem since the
new state variable w solves a backward equation with terminal condition at t = 4c¢. This
indicates the main difficulty we have to face when dealing with an incentive constraint:
not only it is a non local constraint (which would be eliminated by adding the new state
variable) but also a constraint on the future value of the plan. The above formulation is
equivalent to the first one and will be useful in some proofs (see Section 5).

We now collect various technical assumptions that will be used in the paper. Here
we denote by B(zp,r) the closed ball in IR™ centered at xy with radius » and we say that
a function w : IR™ — IR™ is a modulus if it is continuous, subadditive, nondecreasing,
and such that lim, o w(a) = 0. Moreover, given € > 0 and z € E we say that a control
strategy ¢ € C(x) (respectively in C4(x)) is e-suboptimal for the constrained (respectively
unconstrained) problem. if J(x;¢) > V{(z) — € (respectively J(z; ¢} > V,(z) — &).

Assumption 2.4
(i) For every x € E the set of pairs (fo(z, C), f(z, C)) is closed and convex.

(ii) For every xq € E, T > 0 there exists » > 0 and a modulus w such that, for every
y € B(zo,r) N E there exists a control strategy ¢, € Cp(y) such that

f [ folz(t; v, ), ()| + | f (2B s 60) (@) dE S w(lt —1a]), VO<t,1 ST,
(8)
ft e e | fola(t; ¥, ¢y), ey (1)) ]dt "Z5° 0 wniformly for y € Bz, r)NE.  (9)

(it1) For every zo € E, T > 0 and for every ¢ > 0 there exists r > 0 and a modulus w
such that, for every y € B(xg,r) N E there exists an c-suboptimal control strotegy
¢ye € Culy) such that

to
[ oot )] 4 L ) e e < wllts—ta), YOS 1,82 <1,
) (10)
./t e folw(t; Y, cye) cpe(t)ldt “=5°0  uniformly for y € B(zo,r) N E. (11)
1



(iv) For every o € F, T > 0 and for every ¢ > 0 there exists v > 0 and a modulus w
such that, for every y € B(zy,r) N E there exists an c-suboptimal control strategy
¢y € C(y) such that

|9:(t1,y, cy,s) - .’,C(tg‘, v, Cy,s)l < W(|t1 - t2|) Vi, t2 € [O,T]- (12)

Remark 2.5 Assumptions (ii), (iil), (iv) are expressed in a quite complicated form. This
is due to the fact that in some economic examples both the set of states and the control
set are unbounded. In the bounded cases we could avoid or stmplify such assumptions
(see e.g. [Soravia, 1997b]). |

Remark 2.6 We observe that:
1. Assumption (i} (8) implies that

sup |z, y, ¢)] < +o0. (13)
tc{0, T,y B(zo,rINE

2. Either of the conditions (iii)-(10) or {iv) implies that

sup[o(t s epe)| < oo (14)
te[0,T),y€ B(xo,r)NE

3. Assumption (8) (respectively (10}) implies equintegrability with respect to y €
Bz, r) (respectively with respect to y € B(xy,r) and & > 0) of the functions
Z'(t;y, ¢y), Wt v, ¢y) (respectively @'(¢;y,¢,.), w'(t;y, ¢y c)). By equintegrability of
a family of functions {d;},7 € I defined in a subset O of IR™ we mean that

Vo >0, 36 > 0: A di(t)dt < a for every i € I, O1 C O, measure(Oy) < 6.
1 (15)

4. Since E is not known in general, we will be checking Assumption (i) for z € A (or
for Vu(x) > Do(x)), which will in particular imply it for x € E.

3 The Dynamic Programming Principle

In this Section we prove the Dynamic Programming Principle for the constrained problem.
This is a standard result for the unconstrained problem. In the constrained case it is not
obvious because of the constraint on the future value of the plan. We will prove the result
by assuming in the whole section that Assumption 2.1 (ii)-(iil) is satisfied and that the
control strategies are measurable, locally integrable and such that the functional .J is well
defined. By standard adaptations of the arguments below, it can be seen that the result
also holds when f; is only continuous, and when we take RCLL control strategies.
We need two useful Lemimas.



Lemma 3.1 Let Assumptions 2.1 (ii)-(#i) and 2.2 be satisfied. Given any T > 0, 2y €
E, ¢ € C(xp), the control op defined as er(s) = o(T+s) with s > 0 belongs to C(x(T; xo, ¢)).

Proof. Given a ¢ € C(z) we have to prove that
+00
f e—psfo(x(s; CL‘(T, :CO:C):CT): CT(S))dS > e”‘”tD(m(t;m(T; mUaC)a CT):CT(t))a a.e. t > 01
t

where ¢r(r) = (T +r) for r > 0 and z(r; (T 29, ¢), er) = 2(r + T; 2o, ¢). Therefore, the
above inequality is equivalent to

+oo
j e folz(s + Tz, ¢), (T + 8))ds > e P D(z(t + T; zg,¢),e(T + 1)), ae.t>0
t
and, by the change of variable o = s -+ T, to

+oo
f e folx(o; @o, ), c(o)Ydo > e DDzt + T zo,¢),e(T + 1)), a.e. t>0
t+T

which follows from the fact that ¢ € C(xp). This implies that .cT € C(z(T; ze,0)) [ |

The above Lemma states that given an initial state point for which a control satisfying
the constraint (4) exists then such a control restricted to the interval [T, +o0) for every
T > 0 satisfies the constraint (4} starting from z(T'; zq, ).

Lemma 3.2 Let Assumptions 2.1 (ii)-(iii) and 2.2 be satisfied. Givenxq € E, T > 0 and
¢ € C(xg), take a control trajectory er € C(x(T; o, ¢)) and define the new control

c(t tel|0,T
er(t) = { ei()t ~T) te %T, +)oo). (16)

If Hx(T;zo,¢);Cr) = J(2(T;xp, 0); ¢), then ¢ € C(xo).
Proof. Given a ¢ € C(xo) and the control ¢; defined in (16) we want to prove that
+00 |
/ e folz(8; 20, 1), c1(8))ds > e " D{a(t; 20, 1), c1(8)) a.e. t > 0.
i

Let first ¢ > T Since z(r; 29, ¢1) = z(r = T;2(T; o, ¢), Tr) for r > T, then for every t > T
the latter inequality is equivalent to

+o0
l e ” fo(x(s — T 2(T; wo, ¢),Tr), Cr(s — T)) ds > e # D(z(t—T, 2(T; %o, ¢), 1), er(t—T))
and, by the change of variable 0 = s — T, to

00
l_T e fo (x(o; 2(T; 20, €), Tr), er(0)) do > e P D(w(t — T, x(T'; x, c),er),er(t—1T))

which follows from the fact that ¢y € C(«(T;=,c)). Therefore for every ¢t > T the con-
straint (4) is satisfied.

10



Let now ¢t € [0,T). In this case

+o0 +oo
[t e ™ fo(x(s; 2o, 1), €1(8))ds = f e folx(s; o, ¢}, e(s) )ds

t
+ [ / " e o (s 2, 01, ca(8))ds — / T e fo@(s a0, ) e(s))ds] . (17)
T ? ? ? T bl b bl
Let J(z(T'; zo, ¢);er) > J{z(T'; 20, ¢); ). Then it is easy to show that
+-00 +00
e (o), e)ds - [ e fo(alsian, o) elsl)ds > 0. (18)

Following the argument we have employed in the first part of the proof we have that
+oo _ 400 _
fT e P folz(s; 20,01}, 01(8))ds = ]T e P folx(s — T;2(Tzg,c),2r),er(s — T)) ds

oo - '
= e_pT/O e fo (x(0; 2(T; 20, ¢}, 8r), Er(0)) do = e J(2(T; xo, ¢); B1),
where o = 5 — T. Similarly
+o0 ‘
L e~ fo((s; w0, ¢), ¢(3))ds = e~ J(w(T'; 70, €); ¢).

Therefore the inequality in (18) is established. The claim now follows from the fact that
¢ € C(zp), which implies that,

f+m e folz(s;z0,0), ¢(8))ds > e P D(x(t; zo, ), e(t)) a.e t>0.

t

Since ¢(t) = e1(t) for t € [0,T") and ¢ € C(zo) it follows from (17) and (18) that
+0a +oo

/ e folz(s; 2, c1), e1(8))ds > ] e " fo(z(s;z, ), ¢(8))ds > e P D(x(t; xg, ), 1 ().
t i

Therefore for every t € [0, T’} the constraint (4) is satisfied by the control ;. |

Theorem 3.3 Let Assumptions 2.1 (ii)-(ii) and 2.2 be satisfied. Then for every T > 0
we have

V(zo) = sup Jr(Zo; c),
C Zq

where r
Jr(zo;c) Y /0 e fo(z(t; 2o, €), c(t))dt + TV (x(T; mo, €)).

11



Proof. First we prove that

Vi(zo) 2 sup Jp{wmo; c).
ceC(zo) :

Let ¢ € C(xp). It is enough to prove that Jr(xg; ¢) < V(xg), where
T
Tr(zie) = [ e fo(a(t; 2o, o), o{t))dt -+ €TV (a(T; 0,)
J0

From Lemma 3.1 it follows that ¢y € C(2(T; xo,c)). If this control is optimal then from
the definition of the value function it follows that Jr(zoic) = J(zg;c) < Vmg). If er
is not optimal starting at z(T’;zg,c) then for an arbitrary € > 0 we can find a control
cer € C(x(T'; 29, ¢)), (the so-called e-suboptimal control), such that

V{x(T; o, ¢)) < e+ J(x(T; xo,¢); cer), and J(z(T;zo, €); ) = J(@(T; 20, ¢);0r). (19)
Then, by Lemma 3.2, the control ¢, defined as

cft telo,T
¢:(t) = { cg,qg(t -T) ¢t 2 %T, +)oo)

belongs to C(zq) and we have
Jr(zo; ) € J(wp;¢) + e Te < V(mg) +¢,

where the first inequality comes from (19} and the second from the definition of the
value function. This can be proved for every £ > 0 and therefore Jr(zp;¢) < V(zg) for
zg € Clzo). ,

To complete the proof we have to prove the opposite inequality. We observe that for
every & > (0 there exists ¢, € C(xo) such that

V(zo) < J(zg;cl) + £

and, by Lemma 3.1,

T
Hanscl) = [ € fofalts 20, )y )t + eI (@(T 20, L) cor)

T
g fo e“’tfo(x(t; Zo, C;),C’E(t))dt + EMPTV(.’E(T; xg, CIE)) == JT(.’IZO; C"E)
Therefore
V{zo) < Jr(zo,cl) + 5,

which implies that

Vi(zp) £ sup Jr(zo;e¢).
eeC(xo)

12



4 The Hamilton-Jacobi Equation

The dynamic programming principle proved in Section 3 allows us to conclude that the
value function is a solution of the associated Hamilton-Jacobi equation in the sense of
[Ishii and Koike, 1996!. The Ishii-Koike definition of solution is based on the carlier defi-
nition of Soner [Soner, 1986].The arguments employed below are similar to those used in
[Ishii and Koike, 1996, Soner, 1986].
Define A(z) to be the set of all ¢ € C such that there exists r > 0 such that for every
y € EN B{xz,r) there exists ¢(-) € C(y) such that ¢(¢) = ¢ for £ € [0, r]. We will assume
that
Alz) #0 (20)

for every z € E. In simple words we can say that the set A(z) is closely related to the set

of ¢ € C that are starting points of admissible strategies for the constrained problem and

we can think of it as the set of istantaneous contol strategies that are effectively doable

when we are at state z. The set £ in Examples 6.1 and 6.2 satisfies this assumption.
Let

H{z,p) = ‘228{< flz,e),p > +folz,c)}

and

Hin(z,p) = 23%)) {< f(z,c),p > +fo(z,c).}

Since C may be unbounded both Hamiltonians may take infinite values. However, being
a supremum of continuous functions, H is lower-semicontinuous in p. Moreover, H is
uniformly continuous in z, uniformly for bounded p such that H(z,p) is finite.

We now give the Ishii-Koike definition of viscosity solution applied to this case (recall
that the Ishii-Koike definition is a little stronger than the one introduced in a similar
context in [Soravia, 1997b]). Let U* and U, denote respectively the upper- and the lower-
semicontinuous envelope of U/ : E — IR.

Definition 4.1 A locally bounded function U : E — R is a viscosity subsolution (respec-
tively supersolution) of the equation

pU — H{z, DU) =0 (21)

in E if whenever U* — ¢ has a local mazimum (respectively, U, — @ has a local minimum)
at x relative to E, where ¢ € CY(E), then

pU*(z) — H(z, Dy(z)) <0 (22)

(respectively, :
pUs(z) — Hin(z, D(x)) 2 0.) (23)

A function U 1is a viscosity solution if it is both a wviscosity subsolution and o wviscosity
supersolution.

In the above definition ¢ € C'(E) means that there exists an open set Q such that E C Q
and ¢ € CHQ).
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Theorem 4.2 Let A(z) # 0 for every x € E, and let Assumptions 2.1-(1i)-(1i),2.2,
and 2.4-(iv) be sotisfied. Let H be upper-semicontinuous at every point (x,p) such that
H(z,p) # +o00. Then the value function V defined in (5) is a viscosity solution of (21) in
E.

Proof. Let V* — ¢ have a local maximum at xy € E. We may assume that the
maximum is 0. If H(xy, Dy(zg)) = +00 we are done. If not we will argue by contradiction.
If (22) is not satisfied at zp then the continuity of H at (x4, Dy(x¢)) implies that there
exist 7,8 > 0 such that if v € E, |z — m| < r then

pp(z) — H(z, Dp(z)) 2 6. (24)

It follows that there exist . € E,x, — x as ¢ — 0, and almost optimal controls ¢, € C(z)
as in Assumption 2.4-(iv) such that

> — foe e folz(t; 2e, cc), ce())dt — e (e, Te, Ce)) + ()

= _AG e (fO(x(t; Te,Ce), Ce(t)) — pp{x(t, Xe, €))

+ < fl@t: 3o, c0), eelt)), Dot 2, ¢)) > )dt.
Therefore for some t < € we have
pp(a(t, ze, o)) — folz(tize, ce)y ce(t))— < flat; 2e, ce), ee(B)), Dop(a(t; e, )} >< 2e.

However this contradicts (24) since by Assumption 2.4-(iv) |z(¢; z., c.) — x| < 7 for small
€.

Let now V, — ¢ have a local minimum (equal to 0) at zq € E. Let ¢ € A{xg). Let r
be as in the definition of A(x). Let ¢,(-) € C(xz), for z € B{zg, ), be such that ¢,(t) = ¢
for t € [0,7], and z(t;z,¢) € E for ¢t € [0,r]. For 0 < € < r let x, € £ N B(xg,7) be such
that

V(ze) < plae) + &,

and lim, .oz, = zg. The dynamic programming principle gives
V@) 2 [ e fo@lti me ca,), o, (E)dt + €V (a(e, 7y o))
Therefore |
2 [ folotie ), 00, (0)dh + 6 pla(e, 20 00) — (a)
= [ e (folalts e ca), calt)) — pp(a(t, e, c2,)

+ < F@lts 70 2,), 00, (8)), Dilalt e ) > .

14



It follows that for some y, = z(t; 2., ¢z, ) we have

2¢ 2 fo(ye, ) — pp(ye)+ < flye, €), Dip(ye) > -

Moreover, since ¢, (t) = ¢ for ¢ € [0, r], we have lim._ ye = z¢. Thus, passing to the limit
as € — (), we obtain

PVi(mo)— < f(Zo,¢), Dp(xo) > — folro,c) = 0.

Since ¢ is an arbitrary element of A(z;) the claim follows. [

Remark 4.3 Assumption 2.4-(iv) and the continuity of the Hamiltonian in Theorem
4.2 are only needed in the subsolution part. What we really need is that if ¢ is as in
the proof, H(xq, Dy(xp)) < +oo and (22) is not satisfied at zg, then po(x(t;z., c)) —
H(x(t;z, c.), Dp(z(t; 2, ¢.))) = 6 for = in some neighborhood of zg, e2-optimal controls ¢,
and 0 <t <e. [

We now give a characterization of the value function.

Proposition 4.4 Let u be a locally bounded and globally bounded from below, lower-
semicontinuous viscosity supersolution of (21) in E. Let Assumptions 2.1 (ii) — (4ii),
and 2.2 be satisfied and let H = Hy, in intE. Ifu >V on E\intE thenu >V in E.

- Proof, The’proof generalizes, improves, and simplifies the proof of the first part of
Theorem 2.1 in [Swiech, 1996]. Let ¢ € C(Z),T > 0, and let R be such that ||z(-; Z, ¢))| zeego.17y <
R. Denote K = ||’U.||Loo(EmB(O’R+1)). Let

ue(z) = inf {u(y) + M}

yEENRB(0,R+1) e

be the inf-convolution of w. It is Lipschitz contimious and semi-concave on E U B(0, R),
and 4, /" u pointwise. Let E,, = {x € EN B(0, R) : dist (z,0E} > 2y/K¢p}. Denote by
z% a point such that
' izt — z|?
2

The point z* may be not unique. If € < ¢,2vKe < 1, and « € E,,, then z* € intE.
We will be denoting by Dtuc(x) (respectively, D™ u.(z)) the generalized superdifferen-
tial (respectively, subdifferential) of u. at x (see [Crandall et al. 1992]). We notice that
D*u () is always nonempty since u, is semi-concave. It is rather standard to notice that
if p € D~ uc(x) then p € D-u(a*), p= (z* — z)/e and thus

u(x) = u(zt) +

+
0 < pufa™) ~ Hin(z*,p) = pu(zt) ~ H(z™, i

).

€

Therefore . , . \
ot —af? et —af?

2¢ €

0 < pu(x) — H(z,p) + p

15



Denote

ot |2 €

It is easy to check that lim._,ow(z,€) = 0 (see [Crandall et al. 1992]) and that w(-,€) is
upper-semicontinuous. Therefore u, satisfies

w(z, €) = sup {(3 + L)M} .

pue — H(x, Due) > —w(z,€).
Let now p € DV u(z). Then

n n
M n,n k() T n 1
p=lim > APp?, where >N = 1,p0 = Du(al), |27 — 2| < —.
i=1

N—00
i=1

3

Using convexity of H, and lower-semicontinuity of H and —w(:, €) we now have

puc(w) - H(z,p) = puc(z) — Ha, Y AP0 - ox(n)
i=1

> DA (pue(a?) — H(al,p})) — oale,n) 2
i=1

T
> = Z)\ZLLU(J}Z?, 6) - 02(63 n) = —w(m, E) - 03(65”)5
=1
and letting n — oo we obtain
puc(x) — H(x,p) > —w(z, ¢} for © € E,. (25)
Let
T, = min{inf{¢ : 2(¢;7,¢) € E,}, T} .
It follows from (25) that

puE(m(S))_ < f("L'(S, fﬁ‘,C),C(S)),ps > _fO(m(S; .’f,C), C(S)) 2 —0’(.’17(8; 3_31 C)J E)a (26)

for 0 < s < 7,05 € DTu(z(s; %, ¢)), where o(x,¢) — 0 as ¢ — 0. Since Z and ¢ are fixed
to simplify notation we will write z(s) for z(s; #, ¢). Denote 1(s) = u.(x(s)). The function
Y is in WH'(0, 7). To see this one notices that if u® are smooth mollifications of u, then
ug(z(s)) converges weakly in W' (0, ,) and also converges in C[0,7,,] to (s). Let us

now choose a point sy such that 1’(se) and z'(sq) exist. The semiconcavity of u. gives us

|z — =(50)|”

ue{z) < ue(2(s0))+ < Pag, # — 2(80) > + 2¢

Therefore

B = Uon) (o), 28 mal0) | [o(s) = a(so)

5 — 8 5 — &g 2¢(s — sp)
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if 8 > 8 (respectively s < 34). This, together with the fact that 1'(s) and z'(sg} exist,
yield that ¥'(s0) =< Dy, #'(s0) > for almost all s4 € (0, 7,,). Hence we can integrate (26)
to obtain

u®) 2 [ e fala(558.0), () dste o uclalry; 7,6)~ [ 007 7,6)sel(re), s
Letting € — 0 and using the Lebesgue dominated convergence theorem yield
u(F) > /0% e P folx(s; 2, 0),¢(s))ds + e Pou(z(1,; Z, ¢)).
We now let ¢g — 0 to obtain
(@) > ]0 " e fo((s; T, ), o(8))ds + e PTu(z(r; F, ),
where 7 = min {inf{t : (t;%,¢) € OE}, T}. If 1 =T we have
u(Z) > /UT e fo(z(s; Z, ¢}, c(s))ds + e~ "Tu(z(T; &, c)). (27)

If z(7;Z,¢) € OF then u(z(r;z,c)) > V(z{r;%,¢c)) and using the dynamic programming
principle we arrive at ‘

u(z) > [ e folw(s:,0),e(e))ds + TV (2147, ). (28)

If 7 =T for every T then we let 7' — co in (27), otherwise we use (28). This yields u > V
in . ‘ [

Remark 4.5 1. In [Rustichini, 1998a] for the discrete time case a characterisation
of the value function as the maximal subsolution of the discrete time Hamilton-
Jacobi-Bellman equation is obtained. Such a characterisation does not seem to be
possible without further restrictions in the continuous time case, as indicated below
in Remark 6.2.

2. When F is open then '\ intE = () and the value function is then the minimal su-
persolution. This characterisation is similar to the one obtained in [Soravia, 1997b,
Theorem 4.5]. However, the assumptions used in [Soravia, 1997b, Theorem 4.5] are
different from ours and moreover we deal with unbounded solutions. In fact, the
characterisation provided in Proposition 4.4 seems to be the best possible in the
generality stated there. In Remark 6.2 below we have explicit examples of two func-
tions V1 and V5 such that V] < V4. V) is the value function, however they both are
viscosity solutions of the associated Hamilton-Jacobi-Bellman equation. To obtain a
characterisation on the other side (as the maximal subsolution in a certain family)
in this setting one should at least consider subsolutions with a prescribed growth at
infinity.

|
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Remark 4.6 Suppose that D is independent of ¢. A sufficient condition for H = H,, in
int# is that V, > D inintE, i.e. that for every z € intE there exist & > 0, ¢ > 0 such that

V(y) 2 D{y)+6 fory e B(z,e). (29)

To see this we take any ¢ € C. We need to show that ¢ € A(z). Let ¢;(t) = ¢ and let
r be small enough such that if y € B(z,r) then y(t;y,c1) € B{z,¢/2) for t € [0, 7],

' )
[ e*ﬂt\fo(y(t;y,cl),cl(t))mt< §’
0

and 5
Diy(tsy,en) - D)l < g for t € [0,7],

Let c; € C(y(r;y,¢1)) be such that

oo 26
/+ e_f’tfo(y(t; y(r;y,c1), ea)s eo(t))dt > V{(y(r;y, e1)) — g > D(y(r;y,c1)) + 3

Define
c1(t) te [0,r]

() = { c2ft—~r) t>r
It is now clear that ¢(-) € C(y) since if T € [0, r] then

L e holaltsy,e), et > Dlylriy,e) + 22 — & > Dy(Tsy,0),

3 3
Thus ¢ € A(z).

A suflicient condition for (29) is for instance that D is a smooth function satisfying
pD(z) — Hn(z,DD(z)) < 0 in intE.

We notice that if V' ig lower-semicontinuous at every point of E \ intE and H = H,,
in intE then V, is a lower-semicontinuous supersolution of (21), V = V, on E \ intE,
and so if the assumptions of Proposition 4.4 are satisfied then V < V, in E ie Vis
lowet-semicontinuous. Therefore, if also the assumptions of Proposition 5.7 are satisfied,
the value function V is continuous in E. [

5 State Incentive Compatibility Constraints

In this section we will assurne that the constraint map D only depends on the state variable
x. As we have observed in the Introduction many incentive compatibility constraints for
economic problems are of this type.

In the next four subsections we will address the following points:

e in Section 5.1 we will prove that the problem can be viewed as a state constraints
problem in a region £ to be determined from the data of the problem;

18



e in Section 5.2 we will give sufficient. conditions for closedness and other properties
of B,

e in Section 5.3 we will present some regularity properties of the value function;

¢ in Section 5.4 we will prove an existence result for optimal strategies.

5.1 Equivalence with a state constraints problem

Consider two new control problems in the region E. Given 2y € E and ¢ € C, a number
7 such that x(7; 2o, c) € OF and z(t; zg, ¢) € E for every ¢ < 7 will be called an exit time
of the trajectory from E (there can be many 7 like this: we will denote by O(zg,c) the
set of all exit times). Define the payoff function

Tar(zo;c,7) = fﬁ " e P fo (), ) dt + e D(z(7))
and the value function

VET(SED) = sup JET(.’L‘Q; C, T).
ceC, 7€ {an,c)
Consider moreover the state constraints problem of maximizing the payoff functional (2)
in the narrower region E. For zy € E define the value function

Vec(ze) = sup  J(zo;c).
c€Cp(zo)
The following result is stated assuming that Assumption 2.1 holds, but it remains true
algo if the sets A and C are open.

Theorem 5.1 Let Assumptions 2.1 and 2.2 hold. Then, for every o € E we have
Vsc(o) = V(zo) < Ver(xo).

If E s closed, then
V(.’BQ) = VET(.’L‘D).

Proof. Let us consider the first statement. Given an z, € E it is easy to prove
that Vso(zo) > V{xo), in fact we have that C(zo) C Cr(zp). This follows from the fact
that ¢ € C(xo) implies that @(t;x0,¢) € E for every t > 0. Indeed by contradiction if
z(; zo,¢) ¢ E then C(z(t; 29, ¢)) = @, which is impossible by Lemma 3.1.

To prove that Vio(zp) < V(zg) we show that for every control strategy ¢ € Cr(zo)
there exists another strategy @ € C(zo) such that J{(z0;%) > J(zp;c). If ¢ € C(x) then
there is nothing to prove. Assume that this is not the case. Then there exists I > 0 such
that

fm ¢ fo(w(t; %o, ), o(t))dt < ¢ P D (a(F; z0,c).
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Let to be the infimum of the set of such 7. If 1, = 0 then J(2n;e) < D{zg) < J(20;¢) for
every € € C(xg), where C(xp) # 0 because zy € F, and there is nothing more to prove. If
to > 0 then the continuity of fy and D implies

|77 e ol 0, 0),efs))ds = € D(a(toi 2nr ) (30)

0

and, for £ < ¢,
400
/ e~ fo(x(s; 2o, ), e(s))ds > e~ D(z(tp; mo, c)).
Jt

Consider a control strategy ¢, € C{xz(to; zo, ¢)) that satisfies J(z(to; zo, ), e ) > J(x(to; 20, ¢), €).
Such a control exists since z(y; zg, ¢} € E and (30) holds.
'I'hen, by Lemma. 3.2, the control strategy € defined as

3(t) = { c(t) t e [0,1)

Ce(t —to) t € [to, +00)

belongs to C(z). Moreover, by (30), the definition of 2, and the fact that ¢;, € C{z(ty; 2o, c)),
it follows that

J(xg;T) — J(zg; ) = £+m e~ fo(x(s; @0, T),T(8))ds — e"”t"D(m(tg;_mg,‘é)) >0

proving the claim that Ve (z) < V().

Ver(zp) is greater than or equal to the values of the other two value functions. This
comes from the observation that both C(zp) and Cr(z)) are subsets of the set of controls
that we consider in the exit time problem.

To prove the second statement, assume that F is closed. Above we have shown that
Ver(zo) 2 Vsc(zo) = V(xq). It remains to prove that given a control strategy ¢ with exit
time 7 < 400 there exists T € Cp(zg) such that

Jer(zo; ) = /OT e™" folz(s; zo, €), ¢(s))ds + 7" D{x(7; 20, ¢)) < J(20;T).

To find such € we first consider a control strategy ¢, € C(x(7; %o, c)) (such ¢, always exists
since, by the closedness of E we have x(7;19,c) € E). We then define

2(t) = { c(t) tei0,7)

et — 1) ter,+oo).

Since C(x(7;20,¢)) C Crlz(7;20,¢)) it is clear that € € Cg(z). Moreover, since ¢, €
C(z(r;20,)),

+oo
J(z(r;20,0);¢7) = /0 e folz(s;x ()20, ¢), ¢r), 02 (8))ds > D(z(7;2g, ¢))

so that, by the definition of ¢,

00

J(z0; ) m[o e " fo(x(s; 0,T),T(s))ds

20



_ ‘/Or e fola(ss20,), ol ))ds 1 [F+°° e P e folz(s — 7y 2(7; 20, €), )y (s —7))ds

= /OT e fo(x(s; w0, ¢), c(s))ds + e J(w(7; 20, ¢); ¢r) = Jer(z0;C,7)

which completes the proof. [ |

Remark 5.2 In light of the above theorem, when D is independent of ¢, the Hamilton-
Jacobi-Bellman equation related to the incentive compatibility constrained problem co-
incides with the one obtained for the problem constrained in the region E. However this
does not, help resolve the issue of uniqueness of solutions. We also observe that the above
theorem gives a condition under which the state constraints problem and the exit time
(or stopping time) problem have the same value function. [ |

Remark 5.3 From the proof of Theorem 5.1 above (see the second paragraph of the
proof) it follows that, given z € E, if ¢* € Cg(z) is optimal for the state constraints
problem in £, then ¢* € C(z) and so is optimal also for the incentive constrained problem.
This fact will be useful in the analysis of examples in Section 6. [ ]

5.2 Properties of the set E

We now give a sufficient condition for the closedness of E. Obviously, as recalled in Section
2, EC{z:V,(z) > D(z)} C A, and V, (z) > V(z) for z € E.

Proposition 5.4 If Assumptions 2.1, 2.2 and 2.4, (i)-(31) are satisfied, then E is closed.

Proof. We use some arguments related to the well known “Fillipov existence theo-
rem” (see e.g. [Cesari 1983, Ch. 9]).

First we consider a sequence (z,lnenw C E converging to a point z, € A. Let ¢, €
Cg(z,) be an admissible control for z, provided by Assumption 2.4-(ii). Then we take
the equivalent form of our problem by introducing the variable w as in (7) and for every
n € IN we consider the trajectory

(2", w™) (2, 0) (2, €0) € WEH([0, +00); IR™).

ac

Assumptions 2.2, (8) and (13) give equiboundedness and equicontinuity of the sequence
{(z™, w") }new and equintegrability of the sequence {((z"), (w™))}nen. We now use the
Ascoli-Arzela Theorem to say that, along a suitable subsequence, we have the uniform
convergence on bounded subsets of [0, +oc):

2t = a®(), Wt —w(),

where 2., € C([0, +00); R™) and w., € CY([0, +00); IR). Moreover, by the Dunford-Pettis
Theorem (see e.g. [Cesari 1983, p. 329]) we obtain that, along a further subsequence if
necessary, we have the L'-weak convergence on bounded subsets of [0, -+o0):

(mn)r E— ‘5()1 ('wn)’ - ?7():
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where £o € Li, ([0, +00); IR™) and n € LL ([0, +oo); IR). By integrating we get

2"(8) = 2+ [ ‘(7Y ()ds

so that, passing to the limit we obtain

z™(t) = 2o + fotlg(s)ds

so that = € WE([0, +00); R™). :

On the other hand, setting 2"(t) = e #*w™(t), we have (") (t) = e~# fo(z™(t), ¢, (1))
and so, by (9), ;7 |(2")'(t)|dt — 0 as t; — +o0, uniformly for n € IN. We now claim that
(z™) converges weakly in L'([0, +00); IR) fo the function t — ((¢) = e~#5(t). Indeed, by
the weak convergence of w™ above we have that

(zn)f — C1
L*-weakly on bounded subsets of [0, +oc). Then for any ¢, > 0
¢ (®)]dt < limi f Yy @)l
[ Ic®)la < timint [ (¢ 0)

but the right hand side is bounded uniformly for ¢; > 0 by (9), so that ¢ € L([0, +00); R).
Moreover, given g € L*([0, +oc); IR) we have that for every ¢, > 0

[ sty - o] <] [" o0 10 — ol [ 1601+ ool d

and the claim follows by taking first ¢; sufficiently big and then letting n — +oo.
Having the weak convergence of (") in L1([0, +00); R) allows us to pass to the limit
as n — 00 in the relation

+00
2™(t) =f (™) (s)ds
t .
obtaining (defining z°°(t) = e "*w™(t))
+0o0

22(t) = G(s)ds,

t

so that 2% € W"([0, +oc); IR) and (2*)' = ¢ which implies that w™ € W21 ([0, +00); R),
and (w™>) =n.

At this point we can apply the so-called Closure Theorem (see e.g. [Cesari 1983, p.299
or p.340]) to say that the trajectory (%, w™) satisfies the differential inclusion

(%) (t) € f(z™(¢),C); (w=)(t) € pw*™ — fo(z™(¢t), C).

The hypotheses needed to apply the Closure Theorem of [Cesart 1983, p.299]) require that
the set valued map £ x R — F x IR

() — F(z,w) Z (f(z,0), pw —~ fo(=, C)) (31)
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satisfies the so-called property (Q). This property holds when (see again [Cesari 1983,
p.293, 8.5.iv]) Assumption 2.4(i) is satisfied and the map in (31) is upper semicontinuous
by set inclusion. This property [Cesari 1983, p.291] says that, for every (zo,wy) € E x IR
and every £ > 0 there exists 6 > 0 such that

U Fz,w) C {(z,w) such that d((z, w), F(zg,w0)) < &}
(2w}eB((20,w0),8)

and this is clearly automatically satisfied when Assumption 2.1 holds. We remark that
the result [Cesari 1983, p.293, 8.5.iv] holds only for autonomous set valued maps. This is
the reason why we did not use 2 as a state variable.

Now we can apply a theorem about existence of measurable selectors for solutions
of differential inclusions (see [Cesari 1983, p.278, 8.2.iii]) which gives that there exists an
admissible strategy ¢® such that -

5(E) = 2t 70y ®) wS(0) = [ T el 1y (2%°(s), () ds.

It is now enough to prove that all the constraints are satisfied for (zu,ws), but this is
an immediate consequence of the uniform convergence stated above. [ |

The following proposition about the convexity of E is elementary and will be useful
in treating some examples. It also holds when the sets A and C are not closed.

Proposition 5.5 Let Assumptions 2.1, 2.2 hold. Assume moreover that A is convez, fo
is concave in (x,c), [ is linear, and D is convexr. Then E is convex.

Proof. Let z;,20 € E, and let ¢; € C(z;), ca € C(xp). Take A € (0,1) and set
) = Az + (1 — A)@g, ex = Aey + (1 — A)eg. First of all we observe that z, € A since A
is convex. Then it is enough to prove that ¢, € C(z,). By the linearity of f we have that
for every £ > 0
z(s;zx, e0) = Ax(s; 21, ¢1) + (1 — A)x(s; 22, c2)

so that, by the concavity of fj

—+00
f e=?) fo(x(s; 2, 1), a(8))ds >
H

A L " 0 (s 1, ), ea(s))ds + (1~ A) ﬁ " =0 fy (053 30, 02), () s

and, by the admissibility of ¢;, ¢2 and the convexity of D,
> AD(z(t; 1, 01)) + (1 — N)D(x(t; 22, €2)) = D(x(s;25, €3)).
which gives the claim. |

For the one dimensional case we have also the following result whose proof we omit
since the arguments it uses are similar to the ones of the proof of Proposition 5.5.
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Proposition 5.6 Assume that d = 1 and that Assumptions 2.1, 2.2 hold.

1. Assume moreover that A is conver, fy s concave in (z, ¢) and increasing in x, f is
concave, D s conver and decreasing. Then E is convex.

2. Assume moreover that fy is increasing in x and D is decreasing. Then x € E implies
thaty € E for everyy >z, y € A.

5.3 Regularity of the value function

Proposition 5.7 Let Assumptions 2.1, 2.2 and 2.4-(i1i) be satisfied. Then V is upper
semacontinuous.

Proof. Let z, — z). We will prove that limsup,,_, oo V(Zn) < V(xg) ie that
limsup,_, . Vsco(zn) < Veo(zo) thanks to Theorem 5.1. First we observe that we can
restrict our attention to the case when z,, € F for every n € IN and zy € £. We then take
a sequence of control strategies ¢, € Cg(x,) such that

T(@m, ) > V{(n) %

and let (z* w™) = (2, w)(; Z,,¢,) be the associated trajectories. By applying the same
arguments as those used in the proof of Proposition 5.4 we obtain that (z", w™) converges
uniformly along a subsequence to an element (2°°,w™) € W2 ([0, +00); R™) which is
still associated to an admissible strategy ¢.,. Then

1
limsup V(z,) < limsup w™(0) + —= w™(0) < V(xo),

n——4-00 fi——4-00

which gives the claim. [

Remark 5.8 In general we cannot expect continuity of the value function. In fact also
in the state constraint case (which is a special case of our problem when D < J for all
admissible strategies) there are examples where the value function is not lower semicon-
tinuous, even under the assumptions of the above proposition (see e.g. [Soravia, 1997b,
Ex. 4.3]). However, using Remark 4.6 above, we can prove continuity in some cases (see
Section 6). |

The following proposition holds under the assumptions of Proposition 5.5.

Proposition 5.9 Let the Assumptions of Proposition 5.5 be satisfied. Then the value
function is concave.
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Proof. Let 1,z € F and A € (0,1) be given. By the definition of the value function
we have that, for every £ > 0 there exists ¢ € C(21), s € C(z5) such that

AV (z1) + (1= NV (22) < A (21, e16) + (1 = N)J(zg, €3¢ ) + 2¢,

and by concavity of f,

)\V(ml)-l—(l—)\)V(mg) < /D+ooe_ptf0()\:l}(t;$1,cle) (1 A) (t :132,(225) /\Cla(t)+(1—A)ng(t))dt+26.

Then, by the linearity of f, setting a3 = Azy + (1 — A)xz, exe = Acre + (1 — Aeg. and
recalling that ¢y, € C(xz,), we have thanks to Proposition 5.5

)\V(.’El) + (1 — .,Ug < / _ptfo t TA,C)\E) C,\E(t))dt + 2e S V;J(.ZL‘,\) + 2e.
The claim follows by the arbitrariness of «. [

For the one dimensional case we have the following result whose proof is similar to
the last one and we omit it for brevity.

Proposition 5.10 Assume that d = 1 and that Assumptions 2.1 and 2.2 hold.

1. Assume moreover that A is convez, fy is concave in (x,c) and increasing in x, f is
concave, D is convex and decreasing. Then V' is concave.

2. Assume moreover that fo is increasing in x and D 18 decreasing. Then x,y € E and
y = = implies that V(y) > V(x).

5.4 An existence result for optimal strategies
We state and sketch the proof of an existence result for optimal strategies.

Theorem 5.11 Let Assumptions 2.1, 2.2 and 2.4-(ii1) be satisfied. Then for everyzg € E
there exists an optimal strategy for the constrained problem.

Proof. We again use a modification of the well-known Fillipov Theorem adapted to
our problem in the formulation given at the end of Section 2. We only sketch the main
points of the proof since they are based on the arguments used in the proof of Proposition
5.4.

Let g € E, (cn)nenw € Cr(zp) be a maximizing control sequence for our problem
starting at xp and satisfying Assumption 2.4-(iii). Let then (z,w™) = (z,w)(:;z0,cn)
be the associated trajectories. Arguing as in the proof of Proposmon 5.4 we obtain that
(z", w™) converges uniformly along a subsequence to (2, w™) € W, ([0, +00); IR™*!) for
which there is an admissible strategy c,,. Then

Vi(zg) = ]11‘1’1 J(z0; ¢} = llllloo’w (0) = w™(0) < V{zy).
and 80 ¢y, is optimal for the state constraints problem in E. The claim follows by applying
Remark 5.3. ]
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Remark 5.12 If f; is independent of z, strictly concave in ¢, and the uneconstrained
problem is closed under convex combinations then the optimal strategy is unique (see
Section 6).

|

6 Examples

In this Section we analyze two simple economic examples. The first one is a consumption
problem, the second one is an investment problem with adjustment costs. In both cases
we assume that the incentive compatibility constraint is given by a constant. The point of
view is the one of a social planner who wants to analyze the optimal capital accumulation
in an economy where the private sector can stop the process at any time in the future
and go abroad if the future utility/profit is smaller than a given constant. The social
planner wants to define the optimal capital accumulation path among the policies which
do not lead the agents to break the contract terminating the accumulation process. The
incentive compatibility constraint is set equal to a constant to fully carry out the analysis.
In a policy perspective we can think of the constant as a control variable (tax) managed
by the government at ¢ = 0, e.g. 2 sunk cost to run the firm, etc.. The second best policy
defined below can be conceived as a social contract that the government proposes to the
private sector taking into account his opportunity to go abroad.

6.1 Consumption with a fixed Positivity Constraint on the Value
Function

We consider, for a € (0,1), the problem:

00 AN
max J{¢) = max/ e""ii(—)—dt
0 o

(t) = ax(t) — c(t), z(0) = mzp

subject to the usual constraints ¢ > 0, z > 0 and to the following incentive compatibility
constraint on the payoff function:

+co .
ﬁ G ) c(uS)ds > D(x(t; zg,c)) VE2> 0. (32)

The function D is assumed to be equal to a positive constant Dy > 0.

This is a classical optimal consumption problem, ¢ denotes consumption and z denotes
the stock of capital, a is the coeflicient of the linear technology, a > 0, i.e. the istantaneous
interest rate. The constraint (32) says that the continuation value should be greater than
a fixed positive level D,. At every time the agent wants a utility in the future bigger than
this constant.
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The value function of the unconstrained problem is finite for every starting point
zg 2 0 if and only if ca < p (see e.g. [Fleming and Soner, 1993, p.29]). We will assume
that this holds from now on. The HJB equation is

pV(x) — H{z,DV(z)) =0, x>0,

where the maximum value Hamiltonian H is given by

H@Jﬂ=&m{mw—dp+g}=amHJ%@)

c>0
with
+o0 ifp<0
Ho(p) = o :
o(p) { —l;—"“pﬁ ifp>0
The maximum is reached at ¢* = p!/(®~1. Thanks to Remark 4.6 (take for instance
D = —1) we have that H;, = H inside the region A = IR*, and H,, = 0 on the boundary
of the region A =TR™ (in fact in this case it is easy to see that ,A(0) = {0} which implies
H;, =0 on 0A).
It is natural for our problem to look for solutions with positive derivative. In this
case the HIB equation for the unconstrained problem becomes
1-—
!

pV(z) — axDV(z) I —— DV (2)]"51 = 0,

and the value function satisfies V' (0) = 0, which in light of the above remarks about the

Hamiltonians is a necessary condition for it to solve the equation in the viscosity sense.
It can be easily checked that the value function is a classical solution of the above

equation and is given by V,(z) = ba® where b = 1 [’ﬁ—“f]aul. In feedback form, the
optimal palicy is c*(t) = b13"(t), where b = 2. The optimal trajectory x* starting at
a given point x is given by z*(t) = el ¥z so that c*(t) = byel@ )iz,

Let us now consider the constrained case. First we observe that V;, is greater than
Dy when

v
8

i
Dals
x 0 —0} > (.

B
Therefore we have I/ C {zg : Vi,(z0) = Dy} = [2°, +00). We have the following result,
depending on the value of p/a.

Propaosition 6.1

(i) If a > p (which is equivalent to a > by ) we have that E = [z°,+00) and V,, =V in
E (otherwise we have V = —o0). The optimal policy for the unconstrained problem
is also optimal for the constrained one.

(1) If p > a (which is equivalent to a < by ) then the value function V is smaller than
Vii. In this cese E = [T, +00), where

D l/e
= — (pa Do) < 20
a
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and there exists a unique optimal policy given by T (t) = c(zp)el* "t (where c(z,) <
b1zo) until the point x =T is reached and then by T (t) = (paDy)'/*.

Proof. If a > p, then the optimal policy for the unconstrained problem is admissible
for the constrained one for every initial datum z > = since

400 * & bamaea(a—bl)t bo ba—l
—p(s—1t) [c*(s)] ds — —1%0 > 170 _ 4% o >D
ft ¢ a alp—ala—b)] ™ alp — ala — by)] a 0 Velo) 2 Do.

If p > a then it can easily be shown by looking at the above calculations that the optimal
policy for the unconstrained problem c(t) = byz(¢) violates the constraint (32) for large
t > 0, so that the value function V' is smaller than V,,. From Proposition 5.4 it follows
that £ is closed (Assumption 2.4 (ii) is satisfied by simply taking the constant control
¢ = ay at every starting point y € E). From Proposition 5.6 it follows that E is convex
and that if z € F then also any y > « belongs to E. This means that E is either empty or
E = [7, 400) for some T & (0, +-00). Now it is clear that the point (paeDy)Y/®/a belongs to
E since for this point the constant control ¢ = {pa:Dg)'/® satisfies the incentive constraint.
Indeed, for every t > 0 we have

]+ e Pls—t) paDOds = Dy.
t o

This fact implies that £ is not empty and that T € [z°, (paDy)'/*/a). To determine T we
use the Maximum Principle for state constraints optimal control problems. From Theorem
5.1 we know that the problem

oft)®

+o0
max J{c) = max/ e~ dt,
: 0

2(t) = az(t) — c(t), =(0) =z

/ ? empten A8 > Dy VE>0 (33)
4 (87

corresponds to the following state constraints control problem in the half line £ =
[Z, +00):
oo Ik
max J(c) =f e*f’”c(—)dt
0 (87

&(t) = ax(t) — c(t), z(0) ==xzo, =(t)>7.

1t can be shown that this problem has a unique solution by applying a slight modification
of the arguments used to prove Theorem 3.11 (we omit the technicalities here) and Remark
5.12. However the existence of an optimal strategy can also be proved by checking the
sufficient conditions for optimality (see e.g. [Hartl, Sethi and Vickson, 1995]). The current
value Hamiltonian and the Lagrangean are, respectively

04

H(z,c,p) = — ‘f‘P( & c), L(z,c,p; u) = H(z,c,p) + ulx — T),
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the maximum value Hamiltonian is

1 -~
Ho(z,p) = axp + "—aﬁpa/(aml)

A sufficient condition for (z,c) to be an optimal pair starting at a given point zg is that
there exists a continuous, piecewise differentiable function p : IRt -+ IRT, and a piecewise
continuous function p: IRY — IR such that

Bt) = (p — a)p(t) — (),
Z(t) == a:c(t)‘— c(t), =(0) = =z,
2ty 2T, p(t) 20, pt)(z(t) —T) =0,

with the transversality condition limy.., e e #'p(t)x(t) = 0, where

see [Hartl, Sethi and Vickson, 1995].

Assume by contradiction that T < (paDg)/*/a. Setting the starting point zo = =,
it is easy to check that the control ¢ = a% satisfies the above conditions if we have
p(t) = (az)*! and p(t) = (p — a)p(t) > 0. This control is then optimal for the state
constrained problem in E. But from Remark 5.3 such a control is also optimal for the
incentive constrained problem. Since it gives a value of the functional strictly less than
Dy we get a contradiction. Therefore T = (paDp)/ /0.

The optimal strategy for a given starting point xzy > T can be found implicitly
by solving the above system by straightforward arguments that we outline below. From
the equation for the costate p we get that, before touching the boundary we have p(¢) =
p(0)eP~% Tt then follows that, before touching the boundary, the optimal control strategy
has the form &*(¢) = c{zo)e(* ) where c(xp) = p(0)/~1. The optimal state trajectory
is given by

T(t) = [33’0 — 9_(56_0)} ™ + Me(a—fn)t.
b by
It can be shown that the state-costate pair (z,p) satisfies the transversality condition and
the continuity of p only when ¢(xg) < byzg and
e(wo) [brzo — c(20)] Y = T [(by — a)z] T/
(it is enough to impose that 2 decreases and that at the time ¥ when z(f) = 7, p is
continuous). From the uniqueness it follows that this is the optimal trajectory. [ |

The incentive compatibility constraint affects the agent’s saving process. If the inter-
est rate is higher than the discount rate then the first best solution satisfies the incentive
comaptibility constraint, but a large initial stock of capital is needed to have a solution.
So, taking into account the fact that the consumer can go abroad in the presence of a fixed
cost,, then the second best solition gives the first best solution if the interest rate is higher
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than the discount rate provided that the initial stock of capital is large enough, otherwise
a solution does not exist. In this case the economy is so rewarding that the agents do
not want 1o go away. If the discount rate is higher than the interest rate then the second
best solution foresees a slower rate of consumption than the first best solution and the
constrained value function is smaller then the unconstrained value function. Moreover a
solution for the constrained problem exists provided that the initial stock of capital is
larger than a minimal stock of capital which is higher than the one needed in the first
case. If this does not happen then there is no second best solution.
'The Hamilton Jacobi-Bellman equation for the constrained problem is

pV{x) — Hy(z, DV(z)) = 0, (34)

where, similarly to the unconstrained case we have that H;, = H inside the region E and
Hin = pDy on OF, see Remark 4.6. The value function satisfies V(T) = D, which again
is necessary for V' to be a viscosity supersolution. The equation is therefore the same as
the one for the unconstrained case but it is defined on a different set. However, if p < a
we have V,, =V, whereas for p > a we have V, > V.

Remark 6.2 The above I1JB equation for the constrained problem does not even have
in general a unique classical solution. Indeed, if we allow for linearly growing solutions,
then in the case p = a =1, & = 1/2 and Dy = 2, the HIB equation becomes (since z° = 1

here)
1

and V(1) = 2. It is easy to check that the functions Vi(z) = 2¢%/2 and V() = = + 1
are both solutions of (35). The function V] is the value function. See e.g. [Soravia, 1997a,
Soravia, 1997b] for an analysis of the nonuniqueness of solutions of Hamilton-Jacobi equa-

tions arising in state constraints optimal control problems. [

Remark 6.3 Despite the lack of uniqueness of solutions of the HIB equation (34), we
have that the value function is always a viscosity solution of (34) and that it is charac-
terized as in Proposition 4.4. Moreover, by Remark 4.6, V' is continuous. The sufficient
conditions for the optimal control allow us in some cases to compute the value function.

6.2 Optimal Investment with a fixed cost

Let us consider the classical optimal investment problem with quadratic adjustment costs
and a linear technology:

max J(ko; v} = max /;Do e Pak(t) — bu(s) — §u2(t)]dt,
k(t) = u(t) = pk(t), k(0) = ko,
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a >0, b>0, c>0, subject to the usual constraint £ > 0 and to the incentive constraint
+eoo Is) 9 .
/ e+ ak(s) - bu(s) — Su*(s)]ds > D Vi > 0. (36)
t

u denotes investments and £ is the stock of capital. The constant D > 0 represents a fixed
cost to run the firm.

Set @ = a/(p + p), the expected return from a unit of capital. Assuming that @ > b
(which means that investments are profitable) and choosing measurable control strategies
u such that ¢ 1 e=?Mu2(t) are square integrable we get that the optimal control-state
trajectory for the unconstrained problem is

1 w* u*
u*(t) =~ [@— b, k*t=—+e"‘”[k-~——], 37
W=t k=" ot (37)
and the unconstrained value function is
a.ll{.‘[) 1 _ 9
V., (ko) = — [@ — B]".
(ko) PR ]

Recalling that the current value Hamiltonian is defined as

C
Folk,p,) = (- phu)pbak—bu—5ut = [~pkp+akl+ up — bu — S| L Foy(h, p)+ Foa(ps )

and the maximum value Hamiltonian as

— 527 4
Hy(k,p) = sup Fo(k,p;u) = [—ukp + ak] + [(p—zc—)] “ Ho (k,p) + Hoa(p),

where the maximum point is reached at u = (p — b) /c, we observe that V,, can be written
as

1
V;L(]{I()) = Tkq -+ ;Hoz (ﬁ) .
Vi is a viscosity solution (here also classical) of the HIJB equation
pV (k) = ~ukDV (k) + ak + Hoo(DV(K)); k> 0.

The set { k:Vy(k) 2 _D_} surely contains the admissible region £ for the constrained prob-
lem. The set is given by

- ~ 1~ 1
[k, +oc), where k= max {0, = [D - ;Hm (b?)} } .
We now describe the behavior of the optimal trajectories for the constrained problem. We

will not discuss the issue of the HJB equation for the constrained problem, mentioning
only that all of the results of Sections 4 and 5.3 can be applied.

Proposition 6.4 Depending on the value of D we have
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(i} If )
”.Dn < E.HOQ (ﬁ)

then for every ko > 0 the optimal strategy u* for the unconstrained problem is still

admissible and optimal for the constrained one. Therefore E = A = [0,+00) and
Vu — V-

(i) If

aut

(@)

then for every ky > k > 0 the optimal strateqy u* for the unconstrained problem is
still admissible and optimal for the constrained one. For ky < k we have Vy(ko) <D
and V (ko) = —oo. Hence E = [k,+00) C A andV, =V on .

(iii) If

1
_HO‘Z a
5 Hox (3)

au*t 1 = @ _ a’p

p T @ <D=k oHe @+ g0,
then the optimal policy for the unconstrained problem is no more admissible for
the constrained one, no matier what the starting point kg is. In this case E =
[k, +00) where k increases with D, k > k > w'/p (the equality holds when D
(qu* /,u)+H02(")/p) k < (u*/u)+ap/(cu®) (the equality holds when D = (au* /) +

[Huo(@)/p] +@%p/(2c1%) ). Moreover k is the smallest solution of the equation

o+ L2 < oo (4F) = D.

The optimal strategy T* for the constrained problem is greater than the one for the
unconstrained problem since we have

_*()ﬁu + c{ko)e (it

for a given c(ko) > 0. The optimal state trajectory is decreasing till it hits the point
k and then it is constant. It is always greater (with its derivative, too) than the
optimnal tragectory for the unconstrained problem.
(w) If
- ot 1 ap
D> + —Hp (@) +
p 02 (@) 2

then E is empty and there is no solution for the constrained problem.

Proof. We only sketch the proof since the main arguments are similar to the ones
used in the proof of Proposition 6.1. Setting for ¢ > 0

J(t, ko;u) = f:m e~ [ak(s) — bu(s) ~ —g—uz(s)}ds,
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by easy calculations we obtain

Tt kos) =ah(t) + T gl [(a — byu(s) — -;iu?(s)J ds =

+o0
£) -+ f =P~ Fyy (@, u(s)) ds
)

$0 that N
I koyu®) = T Lt @) +e*a [k - u—}
14 2
1 a
> —Hy ( ) Vi >0
P Pt
and

au’ 1 a
lim thg, m———-—-{-——'Hog( )
Al ) plo+uy  p T\ptp

Then, by imposing the incentive constraint (36) we easily obtain (i) and (i) and thas, for

— au®
D>

1
+ = Hos (@),
pOM)

the strategy u* is not admissible for the constrained problem, no matter what the starting
point kg is. We now analyze the form of the region £ and the optimal state-control trajec-
tories for the constrained problem by the techniques used in the proof of the Proposition
6.1. We first apply Proposition 5.4 (Assumption 2.4 (ii) is satisfied here by simply taking
the constant control ¢ = —pk at every starting point & € E) and Proposition 5.6 to get
that the region E is a half-line contaired in [k, +00) or is empty. X

Assume that E is nonempty. Then it must be E = [k, +00) for some k > k. By
Theorem 5.1 we know that the constrained problem is equivalent to the state con-
straints problem in the region £. Then we can use (as in Proposition 6.1} the suffi-
cient conditions for optimality for the state constraints problem in the region E (see
[Hartl Sethi and Vickson, 1993]) to get that at ky = % the constant control strategy
= uk is optimal for the constrained problem. Still arguing as in Proposition 6.1 we
then get that & must be characterized by the property that

J(E:@*) = D. (38)

By easy calculations we can see that J(k;%*) is a quadratic concave function of k and
has the maximum at the point (v*/p) + @p/(cu®) whose value is (@u*/1) + [Hoa(@)/p] +
@’p/(2cp?). This means that for D strictly greater than this value we get a contradiction
and so we must have E = (} (case iv). For D less than or equal to this value we compute
k by solving (38). To find the optimal policy in the case (iii) and to show that c(ky) > 0
we use, again as in Proposition 6.1, the sufficient conditions for optimality. [ |

As the fixed cost goes up we observe an interesting scenarios
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e If it is low enough then neither the optimal policy nor the state region allowing
existence of the optimal solution change with respect to the unconstrained case.

e If the fixed cost increases then the optimal policy is the first best solution but a
large enough stock of capital is required to run the firm. The fixed cost does not
affect the optimal investment policy, but the state region allowing existence of the
optimal solution becomes smaller.

o If the fixed cost is furthermore increased then the state region allowing existence
of the optimal solution is fitthermore restricted and a second best optimal control
strategy is obtained. The investment rate is higher than the first best solution. In
this parameters region the fixed cost affects both the optimal investment strategy
and the state region.

e Finally, if the fixed cost goes beyond a certain level then there is no possibility to
recover it, no matter what the initial stock of capital is.

Summing up, the incentive compatibility constraint has two effects with respect to the
unconstrained problem: it restricts the state region for which a solution exists, it induces
a higher rate of capital accumulation and a smaller value function. The optimal policy
foresees a stationary level of the state variable when the incentive constraint becomes
binding.

7 Conclusions

In this paper we have analyzed dynamic incentive compatibility constrained problems in
continuous time. The incentive constraint is a constraint on the continuation value of the
payoff function. More precisely, at every time the residual payoff is supposed to be greater
than or equal to a certain function of the state and /or of the control. We have characterized
the value function associated with the constrained problem by proving that the Dynamic
Programming Principle holds and that it is a viscosity solution of the Hamilton-Jacobi-
Bellman equation. Restricting our attention to an incentive compatibility constraint which
only depends on the value of the state we have shown the equivalence of the constrained
problem with a state constrained problem in an endogenous region. This equivalence is
useful to define the optimal strategy by means of the Pontryagin Maximum Principle.

Two simple economic problems have been analyzed where the incentive compatibility
constraint is given by a positive constant. We have shown that the constrained problem
coincides with the unconstrained problem only in some cases. In general as the constraint
becomes more binding we have three effects: the state region allowing existence for the
constrained problem shrinks, the rate of capital accumulation becomes higher than the
first best rate and the value function becomes smaller than the one obta,lned in the
unconstrained problem.
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