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Abstract

In this paper we introduce the Backward-Forward Stochastic Differential Utility. The agent’s
utility associated with a consumption plan is defined backward in time, but it is also affected by
the agent’s habit, defined forward in time. Therefore the utility process becormes the solution of
a backward-forward stochastic differential equation. We consider the case when the agent’s habit
is affected not only by past consumption but also by past experienced expected utility levels. By
using and extending to our needs the existence results known in the theory of Backward-Forward
Stochastic Differential Equations, we prove existence of the utility process and we are able to give
an explicit representation of the utility gradient in two particular cases. The first one is when the
utility function is linear in the habit and the coefficients are deterministic. The second considers a
utility process that can be written as a function of the instantaneous consumption and of the habit.
In both cases we develop the general equilibrium analysis deriving the interest rate of equilibrium,
the market prices of risk, and a version of the CAPM.



1 Introduction

The analysis of the agents’ decisions under risk plays a central role in modern economic
theory and mathematical finance. In an intertemporal setting, the standard framework is the
time Additive Expected Utility (AEU) which extends the classical Von Neumann-Morgenstern
expected utility theory to a multiperiod setting. The AEU is based on an axiomatization
of the agents’ preferences: provided that the agents’ preference relation satisfies certain
assumptions, the induced consumption plans order can be represented by the AEU.

This framework has recently come under attack. Two main objections are put forward
in the literature: the first concerns the axiomatization and the representation of the agent’s
preferences through the AEU, the second the implications that the AEU assumption has on
the dynamics of the economy (consumption, asset prices, interest rate, etc.) when joined by
the Rational Expectations hypothesis.

The first objection is based on a long list of experimental results contradicting the AEU
axioms and on some unpleasant theoretical facts. Experimental evidence has shown that the
agents do not behave according to the Von Neumann-Morgenstern Axioms (e.g. the Allais
paradox) and that the standard setting is not rich enough to analyze the agents’ behavior
when their beliefs are affected by information ambiguity (e.g. the Ellsberg paradox). Some of
the theoretical problems concern the temporal additivity, i.e. the assumption that the agent’s
benefit from the consumption at time £ does not: depend on what happens at time ¢’ # ¢. This
requirement rules out the possibility to include durable goods and habit formation in the
analysis. Moreover in this setting the risk aversion and the willingness to substitute across
time are mutually intertwined (high risk aversion/low substitution or low risk aversion/high
substitution).

The second criticism comes from the intertemporal asset pricing theory developed since
the seminal papers of [Lucas, 1978, Breeden, 1979, Cox et al., 1985]). Indeed, many diffi-
culties arise in the attempt to reconcile the AEU asset pricing results with the empiri-
cal evidence. Among those, we recall the following: the equity premium puzzle (see e.g.
[Mehra and Prescott, 1985]), the AEU dynamic optimization restrictions are rejected by the
data (see e.g. [Hansen and Singleton, 1982]), consumption data show a dynamics smoother
than the theoretical consumption process, excess volatility (see e.g. [West, 1988)]).

The Stochastic Differential Utility (SDU) approach developed in [Epstein and Zin, 1989)
and [Duffie and Epstein and Skiadas 1992] offers an appropriate tool to address some of these
problems. We refer to [Constantinides, 1990] for a reexamination of the equity premium puz-



zle, to [Epstein and Wang, 1994] and [Epstein and Wang, 1995] for the analysis of the agent’s
decisions under uncertainty, to [Epstein, 1988] for the analysis of risk-aversion and intertem-
poral substitution, to [Constantinides, 1990, Detemple and Zapatero, 1991 and 1992, Detem-
ple and Giannikos, 1996] for habit formaticn and finally to {Grossman and Laroque, 1990]
and [Hindy and Huang, 1993] for durable capital goods.

The SDU is the continuous time version of the discrete time recursive utility function
introduced in a stochastic environment by [Epstein and Zin, 1989], where the utility index
associated with a discrete time consumption profile {¢;, ¢11,...} is defined through an ag-
gregator W. At time ¢, this aggregator links the utility index for a consumption plan (V;) to
the current consumption ¢; and to the certainty equivalent of the utility associated with that
consumption profile from time ¢ 4 1 onwards {cpq1,...} (CVipy) © V; = W(er, OViq). This
way to model the agent’s preferences allows to disentangle the risk aversion (through the
certainty equivalence) from the willingness of intertemporal substitution (through the aggre-
gator W). The continuous time version of recursive utility was proposed in a deterministic
setting in [Epstein, 1987] and in a stochastic one in [Duffie and Epstein and Skiadas 1992].
In the latter, the utility function is defined as the initial state of the solution of a backward
stochastic differential equation identified by an aggregator, represented by a pair (f, A),
where f is a differential version of W and A a local risk aversion measure.

One of the key features of the SDU with respect to the AEU is that the time separability
is removed, allowing to introduce features such as local substitution (consumptions at nearby
dates are at most perfect substitutes), durable goods (the satisfaction related to a good is
not instantaneous but lasts for a period of time), habit formation (the instantaneous utility
function depends on instantaneous consumption and on past consumption), endogeneous
time preferences (the discount factor is not constant, it depends on consumption). This is
done by assuming that the aggregator f is a function of the instantaneous consumption and
of another process, defined forward in time, often representing a smoothed average of past
consumption. In this general formulation, the SDU process becomes part of the solution of
a backward-forward stochastic differential equation (BFSDE), where the utility process is
defined backward in time, but is intertwined with the so called habit, which is the solution of
a forward equation. In the current literature only decoupled systems have been considered,
where the utility process depends on the habit process, but not viceversa. This requires that,
the agent’s habit at time ¢ depends on past consumption, but not on past expected utility.
'To remove this restriction, we suggest a more general utility process characterized by a full
BFSDE. The agent’s expected utility at time ¢ is therefore affected by past consumption and



by what the agent expected in the past about the future. We will call this utility process
Backward-Forward Stochastic Differential Utility (BFSDU).

Existence of the utility process is proved in a general setting, whereas the optimal con-
sumption problem and the equilibrium analysis are developed in two particular cases. The
first one is a linear BFSDU with deterministic coefficients, the second one is a nonlinear
BFSDU. In these two cases we characterize the Arrow-Debreu price process, we determine
the equilibrinm interest rate dynamics and the assets’ risk premium. In the linear case we
show that the equilibrium price process is smaller than the one obtained with the AEU and
the risk premium is higher than the one obtained with the AEU. The general equilibrium
analysis assuming a nonlinear BFSDU is more difficult. A conclusion similar to the one
obtained with a linear utility function is obtained for the equilibrium price process, but no
general result can be stated about the equilibrium interest rate and the risk premium. In
general, a BFSDU does not help to solve the equity premium puzzle and does not induce a
smoother consumption process.

The paper is organized as follows. In Section 2, we present our economy. In Section 3,
we present the backward-forward stochastic differentiol utility and we recall the necessary
conditions to ensure existence and uniqueness of the utility process. In Section 4, we ana-
lyze the optimal consurnption problem via the martingale method. In Sections 5 and 6 we
analyze two particular cases of BESDU for which we are able to solve explicitly the optimal
consumption problem. In the first case the BFSDU is linear with deterministic coefficients,
while the second one considers nonlinearities but it assumes that the utility at time T can

be written as a function of the current habit and of the instantaneous consumption.

2 The Economy and Related Literature

We consider a standard pure exchange one consumer economy with complete markets. Let
(Q2, F, P) be a complete probability space, on which a standard Brownian motion in R? (W)
is defined. The economy has a finite time horizon [0,7] and W determines the flow of
information through its natural filtration, augmented of the P-null sets and made right
continuous, that we indicate by {F; : ¢t > 0}. Let F; be trivial.

We denote by

T
£? = {X : X isapredictable process such that E'(f | X5|%ds) < +oc},
0
and by £7, the space of £? processes with values in IR
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There are d+ 1 financial securities, which are continuously traded in frictionless markets
and their equilibrium prices are denoted by S* (i = 0,. .., d). The 0-th security is the risk-free
asset, its price is given by

59 =40 exp{/ot rydul},

where r, is a strictly positive, progressively measurable bounded process and s > 0. The
d-dimensional vector of the security prices ST = (S',..., 5% (where T denotes transpose)
instead satisfies
St 0
dS; = Siusdt + o7 dWy], Sy=8y, 8= ,
0 8¢

where the d-dimensional vector of mean returns p° and the d x d volatility matrix ¢° are
bounded and progressively measurable and s, > 0 for all ¢ = 1,...,d.

Each security pays dividends and the cunmlative dividends process of security 4 is denoted
by D;. The vector of cumulative dividends satisfies

dD, = pPdt + oPdW,,

where ¢” € R*! and ¢? € R*? are bounded and progressively measurable. Lastly, the
gain process is defined as G = S5+ D, where the sum is done component by component and
therefore it is an 1té process (dG; = [uSdt + oFdW;]). The gain process can be written in
returns rates as follows S, [fedt + ovdW]. Let o, be invertible.

In a complete markets economy there exists a unique equivalent martingale measure,

called the risk-neutral probability measure, given by

(1) Q(A) = E[leA]: AEfT:
(2) v = ew{= [ xaw, -3 ['|nlfas)
where

A= (o) e ~ 1], 1=(1,...,1)

denotes the market price of risk. Assuming no arbitrage, the discounted gain from trade is
a martingale under Q(-).

"The density ¢ can be interpreted as the equilibrium price density of a one consumer
economy. The agent is described by a pair (U, e), where U : £2 — R is a utility functional



and e € £2 is an endowment process. Finally by ¢ € L2 we denote the consumption process

t
and by C; = 4o + f csds, 4y > 0, the cumulative consumption.
0
A portfolio process or trading strategy, 7 = (7%, 7) = (% «',...,7%), is a measurable,
square integrable adapted process, where the i—th component represents the amount of

money invested by the agent in the i-th asset.

Definition 2.1 : A pair of consumption and portfolio policies, (c, ), for the representative
agent is admissible, if it satisfies the budget constraint

dXt = (T'tXt + €t — Ct)dt + Tr-t(#t - 'rt].)dt +~7'I'-t0'tdm, X() = 0, XT 2 O,

where X represents the agent’s wealth and Xp > 0 is the no-bankruptcy condition. An

admissible pair (¢, ) is optimal if there is no other admissible pair (¢, n') such that U(c) >
Ulc).

Definition 2.2 : A triple (S,¢,7) is called an equilibrium if (¢, m) is optimal, given the
price processes S and the market clearing conditions ¢, = e, (consumption good market) and
m = 0 (securities market) are satisfied for all t € [0, 7.

To keep the notation simple, we assume d = 1. The results can be easily extended to the

multidimensional case.
The standard Additive Expected Utility U is defined as

UC)=Vole), Vi= E(];T e“ﬁsu(cs)&s +v(X7)|F), t=0,

for a given consumption process ¢ and a given utility function u identifying the agent. The
factor 3 represents the discount factor (8 > 0) and »(Xr) the utility from wealth at time 7".

The Stochastic Differential Utility (SDU) is instead defined as U = V;, where V is the
solution of the backward stochastic differential equation

1
dV, = [~ f(ee, Vi) = AWV lo} Pldt + o) dWs, Vi = v(Xr).

The pair (f, A) is called an aggregator, it is given by two measurable functions f : Ry xR —
R, A: R — R. ¢" is a square integrable progressively measurable process. By taking
conditional expectations, V; may be equivalently rewritten as

T 1 -
V= B([ [fle, Vo) + AVl Jds +0(Xr) | 7).
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As pointed out in [Duffie and Epstein and Skiadas 1992], any aggregator (f, A) adwits an
ordinally equivalent “normalized” aggregator (f, A), where A = 0. In what follows we

directly refer to f as a normalized aggregator. V becomes the solution of

®) Vi B([ £(2.(0).V)ds + Vil

i

where the general process Z(C) € £2 may have different characterizations yielding different
utility functions (see [Duffie and Skiadas, 1994]):

o Additive Expected Utility: Z,(C) = ¢i, f(c, V) = u(c;) — 8V,

Uzawa utility function: (time varying discount factor)

Z(C) =,  [lee, Vi) = uler) ~ B(Z)V4,

Habit formetion:

H
Zf(c) = (Ctayt)a Ye = Yo + A h(Cs,ys)dS, f(ct:nytam) = U(Ct, yt) _ﬁt.[/t,

Durable capital goods:

ZI(C) = [: ktgscst; f(Zta Ift) = U(Zt) — BV,

where k is a progressively measurable bounded process.

3 Backward-Forward Stochastic Differential Utility

In this section we present a generalization of the SDU by considering a utility process de-
fined backward-forward in time. The backward-forward feature comes from the fact that
the instantaneous utility from consumption depends on the agent’s habit which is deter-
mined by past consumption/expected utility. This structure destroys the time additiv-
ity property and it is a step ahead from the models considered by [Constantinides, 1990,
Detemple and Zapatero, 1991, Hindy and Huang, 1993, Detemple and Giannikos, 1996], in
which the agent’s habit is a function only of past consumption.

The habit is a weighted average of past consumption and of the conditional expected
utility levels that the agent experienced in the past about the future consumption plan. This
utility process captures the fact that the agent’s prefereces are affected by past consumption
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and by what he expected in the past about the future. The utility from current consumption
is negatively affected by the habit. If one’s expectation in the past about his own future
utility was high, then the agent is accustomed to that utility level and therefore he gets a
low satisfaction from current consumption.

These ideas are formalized in the following system:

T
(4) Vi= E([ (ales,Ys) - BVi)ds +T|7)
+ 1 1
(5) Y: = yoe~ o o 4 5, [0 e Je LY, 4 (1 — w)e)ds,

where 3, a, § are bounded and positive adapted processes, 1 € [0, 1], yo is & constant and T'
is a square integrable Fr—measurable random variable. The properties of the function u will
be specified later. We refer to U(C) = Vy as the Backward-Forward Stochastic Differential
Utility (BFSDU), The random variable I" represents the utility at time 7. We restrict our
attention to an exponentially discounted utility process (3; does not depend on ¢ or ). Our
analysis can be extended to an endogenons discount factor and to a time varying stochastic
coeflicient p, under the appropriate conditions, with some computational costs.

The process Y describes the agent’s habit, yy is the standard of living at time zero. The
constant p is the weight describing the forward/backward characterization of Y. If p = 0,
then Y is independent of the utility process ¥V and we obtain the classical backward habit
formation process, as in the papers [Constantinides, 1990, Detemple and Zapatero, 1991,
Detemple and Giannikos, 1996], that we mentioned before. If ;1 = 1, we have the other
extremal case, when the habit is affected only by the past expected utility. The processes «
and ¢ measure the persistence of past habit and the effect of the instantaneous consumption
on the habit. To simplify the analysis we will consider only the case of constant o, 8, 3.

A complete backward-forward model incurs in some mathematical difficulties about the
existence of the solution (V,Y). In general, this is not implied by the usual hypothesis of
Lipschitz coefficients and some technical restrictions are needed, except when u = 0. In this
case, the system is decoupled: for a given ¢, the habit process solves a forward equation
independent of V, whose equation is instead solved backward in time, once Y is known.
When p > 0, to ensure existence of the solution of the system (4)-(5) we use the results in
[Antonelli, 1993] and those in [Ma et al., 1994]. In this field, it is important to quote also
the results of [Hu and Peng, 1995], but we do not consider their approach here, since the
required monotonicity condition is not verified by the coefficients of our equation.

To apply the results in [Antonelli, 1993] we make the following Assumption.

9



Assumption 3.1 :
A. yo is o positive constant, o, § > 0.
B.u:RY x R — RY and there exists a constant k > 0 such that

lu(e, 2} — ule,w)| < klz — w| VeceRy, z,welR;

C. B is an adapted process, bounded by a constant M,
T

D. for any c€ £2, T € L3(P) and B( f lu(es, 0)|2ds) < +oo.
0

We recall that S? is the Banach space of semimartingales X so that E( sup |X,]) < cc.
= 0<t=T

Proposition 3.2 : Let Assumption 8.1 hold and set

K = max{max(k, ), max(u8, sup |3[)}.
0<s<T
If VBKT < 1, then there exists o unique pair (V,Y) in 5% x 8% satisfying (4)-(5)-
Proof: Let us rewrite (5) implicitly
it
Y=o+ [ (SIuVi+ (1 pes] — a¥,)ds.

Under Assumption 3.1, the operator

. ( " ) N "(ulenYs) - B.Vi)ds + TIF)
W)\ o [0+ (1 e - aYopds

goes from éﬁ X 7,9’_2 into itself. If \/BKT < 1, L acts as a contraction on 5% x §%, which is
a Banach space and hence it identifies a unique fixed point. For more details we refer the
reader to [Antonelli, 1993]. |

Under the same assumptions one can show, again by a contraction argument, that the system
has a unique solution also when the initial condition for the habit is specified coherently with
the dynamics of the process, that is yo = uVo + (1 — p)cg, provided that we choose T so that
VI0KT < 1.

In Section 5, we will show that our analysis can be fully developed when the equa-
tions are linear with deterministic coefficients. This simple case allows full generality for
the terminal value T, but the linearity condition is quite stringent. To include some non-
linearities in our model, we consider also the approach developed by [Ma et al., 1994] and
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[Cvitanic and Ma, 1996]. This method associates a Partial Differential Equation (PDE) to
the backward-forward system. To apply their technique, we have to impose that the final
condition I' depends on the consumption and on the habit at time T’ (g{cr,Y7)) and to
use the process ¢ as a state variable. Namely, for each consumption process ¢ € L%, with

dynamics
(6) de, = p(t, e )dt + o(t, c;)dW,, ey = Yo > 0,
we want to find an adapted pair of processes (V,Y") that satisfies
T
() Vo = Blgler,Yr) + [ [ules,Y,) — BVilds|F)
£
(®) Yi = w0+ [ [Vi+ne, - a¥lds,

where v = 6y and n = §(1 — p) and g is a measurable R-valued function on R2.

Equation (6) is clearly independent of the other two and by Picard’s iterations we can

prove

Proposition 3.3 : Let u(t,x) and o(t,z) be deterministic, continuous in t, globally Lips-

chitz in x with constant ky. Then there exists a unique ¢ € éz, solution of (6).

Note that ¢ € §2 implies ¢ € £2. Once the unique consumption process is determined,
we proceed to solving equations (7)-(8). Having changed the nature of the final condition of

V, we need to replace condition D of Assumption 3.1 with

D. g:RT" xR~ RYU{0} is such that g(0,0) = 0 and for the same constant k, we have
|g(z1, 31) = gl2, y2)| < k(ler — zo| + |y — 32).

T
for any x1, %0, 41,92 € R, besides E(f0 |1e(cs, 0)|2ds) < +oo.

With the same notation as before for K, we can prove

Proposition 3.4 : Let Assumption 3.1 A, B, C and condition D’ hold and assume that

(9) KT\/3(1+ K?) < 1.

Then there exists a unique solution (V.Y) € S% x S? for (7)-(8).

11



Proof: We proceed exactly as for Prop.osition 3.2. For any given ¢ € S% we define the

operator
1
Lc(m)ﬂ(pcww) °+f(”"’s+”‘ff“‘@)ds
TNEW T B [ e ¥~ BVIs-+ o FOLVINIZ)
which, under our hypothesis, is again a contraction on $? x éz. O

Summarizing, we can affirm that for 7" small enough there exists a unique triple ¢, X, Y
that satisfies equations (6),(7) and (8).

Remark 3.5 : If equation (6) is such that the solution ¢ is positive, for instance in the
linear case, then due to the linearity of (7) in V, its solution may be rewritten as

T B
Vim B (o RO e ) 4 [T el O, stz
. t

which implies that. V; > 0 for all w and ¢, because of the properties of g and u. Consequently,

heing (8) linear in all variables, we have

= e %y, +f vV ~|~ncs}ds} > e Ty > 0.
for all w and ¢.

To address the optimal consumption problem and to carry out the equilibrium anal-
ysis we will need the standard concavity condition of UJ{(C) with respect to C. For the
Backward SDU, this is readily obtained by assuming that the aggregator is concave in c
(see [Duffic and Epstein and Skiadas 1992]). The situation is slightly more complex for a
BFSDU. On this point we have the following Proposition

Proposition 3.6 Let the same hypotheses as in Proposition 3.2 or 8.4 hold and let us as-
sume that u, g : {0, 00) X (—o0, 00) — (0,00) are strictly concave in ¢, strictly decreasing in y
and concave in the couple. Then for any c',c* € L2, with respective cumulative consumptions
C', C?, and any constant X € [0,1], we have

UAC + (1= M)C) > AU(CH) + (1 — WU(C?).

12



Proof: Here we prove our statement only for the system (7)-(8), indeed when g does not
depend on ¢ and Y, the proof remains the same, since the final condition for the differences
is simply O.

For ¢ € £? (i = 1,2) let (Y, V) be the corresponding solutions given by Proposition 3.4

and set

& = A+ (1-NE WA HI-NYE VR a1 — A
W= dulc, Y+ (1= N, YD), g = Ag(ch, YA + (1 — Ng(ck, Y2).

With this notation, the couple (Y*, VV*) verifies the system
T
V) = Blg+ [ [ - pvdslF)
¢
Y = w+ f WV + ey — a¥]ds.
0

On the other hand, for T small enough, associated to the consumption ¢, there exists a

unique pair of processes (X, U*) solution of
T
U = Blgleh X)) + [ [u(ed, X2) - BU)ds|F)
t
A
X = yot [ U2 +nck — aXds.
0

We want, to show that V3 < Ug. When we take the differences between the above processes,

we obtain the system
T
(1) =W = Bl YD) + [ [l V) —ud) - B} - V]dslF)
t
R e A N LU B (R )
0
For this pair, we introduce the four stopping times

n = inf{t>0: X} ~Y < 0}AT
7 o= inf{t>0: X} -Y)>0}AT
S1 = inf{t>0: U=V <O}AT
S, = inf{t>0: U} -V > 0}AT.

Being 7; stopping times, the sets {r; = 0} are F5— measurable and must have probability

either 0 or 1, since the initial o —algebra is trivial.
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We want to show that P(r; > 0) = 1. Indeed, if this is true, then P(r; = 0) = 1 and, for
a.e. w, X} ~Y¥ > 0 on [0,71]. On the other hand, by linearity, from (11) we may write

t
(12) X} - Y} = e fo (U — VN)ds
and consequently, for a.e. w, we have
X’\ . Y)\ —at  af
0 < lim =t = tim —— [ e (U2 = Vs = v(U} - V)

implying the concavity of the Utility function.

It remains to prove that P(ry > 0) = 1. By contradiction, we assume that P(m =0) = 1,
then P(r; > 0) = 1 and with the same argument as before we can conchude that U2 —V3* < 0.
If Uy — V3! < 0, the continuity of paths implies P(S; > 0) = 1; if U — Vi@* = 0, instead we
have two possibilities, either S; = 0 or §; > 0 a.s. In both cases, 5; > 0 a.s. leads to an
immediate contradiction. In fact U} — V;* > 0 on the random interval [0, S;] and, from (12),
the same happens for X} — Y}, that is to say S; < 1y a.s. and hence P(r; > 0) = 1.

Hence we can aflirm that Sy = 0 a.s. and U3 ~ V3 = 0. So S; > 0 as. and for this
bounded stopping time we can apply the optional sampling theorem to rewrite (10) as

G2
02> (U} = V) 1lpcs,y = Ble (U3, — Vi) +£ e P 0u(c}, X2) — ullds|F) Lp<sy),
which in particular holds for ¢ = 0. On the other hand, by the continuity of paths
0> Ug, — Vg = 0s,ery + (U — V) 1is,-m

and U — V2 = g(c3, X3) — g3. On {S; = T}, also 7, = T, thus X3 — ¥} < 0 and by the
assumptions on g (decreasing in y and strictly concave in ¢, concave in the couple) we have

g(c%,X%) _g% > 0

which contradicts the previous inequality, thus {Sy = T'} has measure 0. It is easy to check
that S; < 73 a.s., 50 X3 < Y} on [0, 5] and the assumptions on u imply u(c}, X)) —u > 0.

Summarizing we have
)
0= =T = B Uy, -Va)+ [ e ulc), X2) —wlds)
S.
= B[ e Du(c}, X2) — wds) > 0
t
which is a clear contradiction. O
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To develop the equilibrium analysis assuming that the rapresentative agent is character-
ized by a BFSDU we will need an explicit representation of the solution of (7)-(8), at least
at time 0. A linear BFSDU presents no problems, but problems arise when nonlinearities
are introduced. In our analysis we follow [Cvitanic and Ma, 1996]. Being the terminal con-
dition of V' a smooth function of ¢y and Y7, a functional link carries through at all times,
so there exists a function @ such that V; = 8(¢, ¢, ¥;). This function may be characterized as
the solution a nonlinear degenerate parabolic partial differential equation associated to the
BFSDE. '

To prove this fact, we adapt the techniques of [Cvitanic and Ma, 1996], where a more reg-
ular case is considered. The link between Backward or Forward-Backward SDE’s and quasi-
linear parabolic PDE’s has been extensively studied by many authors (e.g. see [Ma et al., 19944
Duffie and Lions, 1992]).

Some more regularity on the coefficients is needed and so we strenghten our hypotheses
with the following

Assumption 3.7 :
(i) B is uniformly bounded by M and yo >0, o, 6, p > 0;

(i) The functions p,o : [0,T] x R. — R are differentiable, with derivatives uniformly
bounded by a constant ky;

(iii) the function g : RY x R — R* U {0} is differentiable with partials uniformly bounded
by a constant k;

(w) u:RY x R — R* is differentiable, with \———‘ <k (k as in (i4i)) and g

I < k?; fOT
some ko > 0 for all z,y;
(v) w,g are strictly increasing and coneave in ¢, strictly decreasing in y and concave in the

couple.

We first prove that the solution shows continuous dependence on the parameters. First,
let us extend u and g to all R xR by continuity and let ns take ¢, z, y varying in [0, T]x R x R.
We consider the following flows associated with our equations

8 t
(13) ch® = 33+f p{r, Ci’m)dr—l-fo a(r,c®)dW,, T =z

t
(14) Y;t,a:,y = y—i—/‘ Vvt’m’y'F'I]Ct’m _ ayt,m,y]d,r._ Y;,m,y =y
(15) V= Bl VE) 4 [Tl Vi) — BV + |,
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For any fixed #4,%0 € [0,T), 1,20 € R* and y1,y2 € [yoe™*T, +00), we denote
c=cpt, YI=YEMY, Vi=VEP =12
where s V ¢ stands for max(s, t).

Proposition 3.8 : Under Assumption 3.7, the above flows are continuous in t,x,y. More
spectfically, for given t, and zy, there exists a constant C, depending only on ki, T,t1, 2,
p(r, 0}, o(r,0), such that
(16) E(sup |c; — ej*) < Chl|ma — 21 + ta — ta]).

s€[0,T]
Moreover, for given ty,x; and y,, provided that 8K(K + 1)T < 1, there exists a constant
Cy, depending only on k, k1, ke, T,t1, 21,11 such that

Collzz — > + |y — wal* + [t2 — t1])
17 E(sup [|[Y2 Y+ [VZ-VI]H < :
( ) (36[0,pj"]” 4 5 | ’ 8 8 I] ) —_— 1 _ \/—8—(K2 +K)T
Proof: We rely again on the argument explained in the previous propositions, therefore here
we just sketch the proof.
By the Lipschitz property, it is easy to verify that

Vi ioAs
ci—al < e - w4 5(sVia—t) [ Kol = P+ [ lulr, chlar?
. ) ns
svig * toNg !
+ 5[ falr,d) = ol DA+ [ ot cb) Wi,
5 [AWAY:]

taking expectations and applying Doob’s inequality we get
112 2 tviz
E(sup |2 — el|?) <Blzg — a1 |? + 5E2(|t ~ £5| + 1)/ E(sup |c —cl[*)dr
0<s<t t2 0<s<r

+3lta=tal(1 + =) |1+ gwax (s, O + |o(r,0))

and using Gronwall’s inequality, we are able to derive (16).

Similarly we can show
3V ia
V2V < Jyo ~wi| + K[g V2=V +1V2E =Y+ - cllldr

& 71 4 1
+ K[ IV Y+ letar,
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On the other hand, because of the martingale representation theorem, there exist two pre-
dictable processes Z} and Z? such that

, , , T . ) . T . T o
V= e )+ [ )~ ey~ [ 2w, it ([ 17 < +os

svi;

Taking the conditional expectation with respect to F;, by the Lipschitz property of the

coeflicients, we obtain
T
V2= Vil < 2 (KU~ bl + 1 =Y + [ (KIVE = V24 17 = Y2+ haed —
avin
+ [ B+ 20+ Rl + (0,0 vl )
SVE]
Summing the two differences, we get

) T
Y2~ YA+ V2=V S (K4 + B ((K2+K) [ =y mz—wudrm)
2}

i
o 1 (Kick—epi+ (v [T 1 - dlani)
t2
17
+ K+ KV I)B ( [1%] 41V + el + [u(0,0) i)

Squaring both sides, applying Cauchy-Schwarz inequality and Doob’s inequality, we obtain,
for some constant C' depending only on T, K, ko,

C? ' T
2yl 2 yslp 2 |2 2 _ 12
| Y2~y + |V Vitlie < v—grgezap {Jw | +E(/t2 |2 ~ ey)?dr)

1o
o= BTV IV + P + (0, 0)r) )

02
<
= 1-8T(K+K?2)?

= tlPUVIE + IV IR 0,01
=lt1.20] =lta1.t2] =lty.ta]

{lve = wnf® + 7116 = s

which gives our thesis, by virtue of (16). a

By hypothesis, all the coefficients occurring in the previous equations are deterministic
and differentiable. By the standard technique of time shift and becanse of Blumenthal’s 0-1
law, it is possible to show that the functions

vt =c®  lt,z,y) =V, 0t a,y) = Vo
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are all deterministic. Proposition 3.8 tells us that these functions are locally Lipschitz in z, y
and Hblder of order ; in ¢, consequently their derivatives are defined a.s. and bounded on
compacts. It is to be noted that basically the same proof gives also the continuity of U(C')
in ¢, with respect to éz norm.

Our next goal is to prove that 8(t, z,y) is a viscosity solution of a degenerate semilinear
parabolic PDE. This will enable us to deduce some useful properties of V. First we would
like to remind the notion of viscosity solution for second order operators.

Definition 3.9 : Let L = L(t,8, D8, D*6) be an elliptic (possibly degeneraie) operator and
let us consider the PDE problem in a certain domain O C [0, T| x R?

(18) { % + L(t,68,D6,D%) =0

0(t,z,y) — glz,y) =0  (t,z,9) € 8O,
0 € C(O) is said to be a viscosity sub- (resp. super-) solution of (18) if for any function

@ € CY*(0), taken any (£,%,5) € O, which is a global mazimum point for 8 — o, we have

o . _ N -
(19) So(t,5,9) + L(E,5,5,6(5,7,5), DolF, 7, 5), D*0(F, 2, 7)) < (resp. >)0
6(t,%,7) — g(z,4) < (resp. >)0  whenever (£,Z,7) € 00.

8 is said to be a solution of (18) if it is both a viscosity sub and super-solution.

Remark 3.10 : By the previous proposition, we have that the function 8(¢,z, ¢) = V;**¥ is
indeed continuous in [0, T] x R x IR, answering the first condition of viscosity solution.

Theorem 3.11 : Under Assumptions 3.7, 0(t,x,y) is a viscosily solution of the PDE prob-
lem in [0,7] x [0,00) X [yoe T, o0),
08  o’(t,x) 5% 99 50
AT TR o5 g 08 _
(20) 5 + 2 B2 + M(t,m)&n + (v8 + nx ay)ay u(z,y)+ B8 =0
H(T,w,y) = g(a;,y)

Proof: We remark that by construction, the processes c?, Yi®¥ and VA®¥ have all continuous
paths and they are adapted with respect to the filtration generated by the Brownian motion.
Therefore by the Markov property and the pathwise uniqueness of the solution, it is possible
to show that actually Vi»*¥ = (s, ct®, Yo%) a.s.

To show our statement, we need to prove that 0 is both a sub and a super-solution of
(20). As a matter of fact, we show only the sub-solution inequality, since the proof of the
other goes along the same lines.
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Let us consider a point (f,z,y) € {0,7] x R X R and a function ¢ such that

0=6(t,z,y) — ¢(t,2,y)
is a global maximun for # — ¢ ( without loss of generality we can assume this maximum to

be zero).
This means that for any stopping time, necessarily

(21) 9(7‘1 cs_!‘r" Y:Imly) —_ (ID(T, Ci.’m’ Y:,-Tgy) S 0.

For ease of writing, from now on we omit the superscripts of ¢,Y and V. Applying Itd’s

formula to ¢ in the interval [, 7], because of the equations for ¢ and Y, we have

T d
o, ¢, Y:) = (L, 2, ) ~i~f a(r, c,.)gg(r,cr,)/;)dwr
2 2

-I—/ [ (r,cr, Y, +(;('r cr)%gp(r Cr, Yo) + 1i(r, c,«)gtp(r cr,Y)]

o
+ / {(W} + e — Y, ) 2o (r, 0, Yr):l dr.
¢ o
On the other hand, becanse of (7), using the martingale representation theorem, we have
Ot,2,4) = Vi = Vo + [ [uler, Yo) = 80 Widdr — [ Z,aw,
[ ' t

= b(r,e X)) + [ Tulern ¥o) = BlrVidar — [ 2,
t t
Substituting these last two equalities in (21), we obtain

02> G(Ta CT:Y) - 'SD(TaCT:Y)

2 2
= G(t,m ,y +f [ 7' yCry Yy %"('ra Cr)%;f'(ry CraY;")} dr
+ / { (“r ¢ Yr) + (VVy + e, — aY)gy (r,e,Y,) —ule,, Yr) +,6’(?")V;] dr
3<P
-I-/ [ a(r,c, aa:(fr Cr, r)} dw,..

By the uniqueness of paths, we know that V, = 8(r,c,,Y,), therefore substituting in the
former expression we obtain

T1H 2
l [J(rcry) _(2—)-‘?9 (ryce, r)+#(?“,cr)g(’o(f'0ray)

+(O(r, ¢, Yr) + ey — OfY)(9

ay (T Cry Yy ) ’U,(c,,., K‘) + )8(7')9(7“, Cr,y }/,-) dr

T a(P
+ /t [ZT — of(r, c,.)a—x(r, Cr, YL)} dw., <0.
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Taking expectations, the martingale part gives no contribution and we can summarize the
inequality by writing
(22) E ( f E(r,cr,Y;)d'r) <0,
t
o
where E(: s ) = —5'1_- + L(: B 9('1 ) ')) ‘:0(: i) )) and

1 H? 0
L(t, 2,9, 0(t,2,9), (0, 2,4)) = 50%(6,2) 35 (6,2,9) + p(t, 0) 5o (b, y)

d
+ (v8(t, 2, y) +nz — ay)a—";(t, z,y) — u(@,y) + BBt z,y)

To say that 8 is a subsolution of (20) means that we must verify that X(¢,z,y) < 0. By
contradiction we assume there exists an g9 > 0 such that X(¢, z,y) > & and we define the
stopping time

7 =inf{s >1:5(3,¢, V) < 52—0} AT.

Since X(t,z,y) > €y, we have 71 > ¢ a.s. Inequality (22) holds for any stopping time,
therefore also for 7 and we have

Eon 71
0<n-H<E (/ﬁ Z(s,cs,YS)ds) <0

which is a clear contradiction, hence we proved that @ is a subsolution of (20). Analogously
we can prove that @ is a viscosity super-solution of (20) and complete the proof. |
In [Citti, Pascucci, Polidoro, 1998] it is shown that if vf, +n # 0 in @ and o u are
constant, then 8 is C*®. If o, p, u are C1* then 0, is C'H* and 0, is C. About the sign of the
partial derivatives of 8 we have that at least for a compact subset O with T small enough
then the sign of the partial derivatives of g is confirmed for the partial derivatives of ¢ and
therefore the above condition on the partial derivative of @ with respect to x is satisfied.

4 Optimal Consumption and Equilibrium Analysis

In this Section, we present the optimal consumption problem and the equilibrium analysis
for a representative agent characterized by a BFSDU.

The optimal consumption problem (maximization of I/ over the set of the admissible
consumption-portfolio policies of Definition 2.1) can be handled via dynamic optimization
techniques or via the martingale method (see [Cox and Huang, 1989 and 1991]). Here we
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follow the second approach which seerns mare appropriate for the BFSDU. To simplify the
analysis, we assume 3 constant.
The optimal consumption problem of the representative agent is equivalent to the fol-

lowing constrained static maximization problem:

(23) max U(C)  under the constraint
T + T t

(24) E* (f e Jo "sdS o df - e_foT”dsXT) < EB* (/ e o T““dsetdt) .
0 0

E* denotes expectation under the equivalent martingale measure nested in the complete
financial market model, that is E*(-} = E(yy-), where v is defined by (1), while U(C) = V4,
the unknown initial value of the backward component in the system (4)-(5) or (7)-(8).

We further specify our setting assuming that the endowment process is given by

(25) der = pidt + o dWy,

with Lipschitz and predictable coefficients pf and of in IR and constant initial condition
ey > 0.

When considering the Additive Expected Utility or the Backward Stochastic Differential
one, the constrained maximization problem is solved by exploiting the first order necessary
conditions for optimality and the concavity of U. In the AEU setting (see for example
[Duffie, 1996, p. 205-208]), the problem is solved through the associated Lagrangean. The
consumption plan obtained from the first order necessary conditions associated with the
Lagrangean is parametrized with respect to the Lagrange multiplier, the multiplier is de-
termined by imposing that the consumption plan satisfies the budget constraint. Thanks
to the Inada conditions on the utility function a unique Lagrange multiplier is determined
and therefore the optimal consumption plan is defined. For the BSDU basically the same
procedure can be followed. [Duflie and Epstein and Skiadas 1992] prove that the concavity
of the aggregator implies the concavity of the Utility with respect to ¢, this fact is used to
prove that the first order conditions are sufficient conditions for the optimum. Again, the
constrained maximization problem is solved through the associated Lagrangean by means of
a standard saddle point theorem and the Lagrange multiplier satisfying the budget constraint
is determined exploiting the Inada conditions.

When habit formation is introduced in the stochastic differential Utility, existence of a
solution for the consumption problem is equivalent to showing existence of the solution of a

Backward-Forward SDE and some conditions on the regularity of the inverse of the marginal

21



utility and/or restrictions on the state price process are needed, see [Detemple and Zapatero,
1992]. We want to extend these techniques to solve the consumption problem for an agent
characterized by a BFSDU. Proposition 3.6 guarantees the concavity of the BFSDU. We
address the existence of a solution satisfying the first order necessary conditions and the
characterization of the equilibrium prices process in the next two Sections. Here we focus
our attention on the representation of the utility gradient of the BFSDU. As explained
in [Duffie and Skiadas, 1994], provided the optimal consumption exists, the Arrow-Debreu
equilibrium price process can be characterized by means of the Gateaux derivative of U(Q)
and its Riesz representation evaluated along the endowment process.

Given a reference pair of cumulative consumption and trading strategy, (7, C), and a set
F of feasible directions, the Gateaux derivative of U(C) at (7, C) is defined as the functional

VUG 0) = lim U(C + aC) - UT)

a—0 e’

, CeF

We say that VU(C; C) admits a Riesz representation if there exists a process -y, such that

. T
VU(T;0) = B( [D (cr — B )yuctt).

In [Duffie and Skiadas, 1994, Proposition 2] it is shown that 7, represents the Arrow-Debreu
price process if C is the optimal consumption policy and it coincides with the endowment
process. In the same paper, conditions for the existence of the Gateaux derivative are
provided and the Riesz representation is computed for some utility functions, but in general,
those conditions do not apply to BFSDU.

The linear case, treated in the next section, presents no difficulties, since the hypotheses
will determine an explicit Riesz representation. In the nonlinear case, differentiating formally
(7) and (8), we obtain that the the Gateaux derivatives VV;(C;C) and VY;(C; C) have to

verify the system
(26) VVA(C: C) = E(ga(er, Yr)er + gyler, Yr) VY2 (C; C)
T —_ —
+ [ (o0, Ya)eo + (o, Yo)VYA(T; ) = B, IVA(T; 0))dsl 7,

(27) VY:(C;C) = fﬂt[uvva(ﬁ; C) + ne; — aVY,(C; C)]ds.

The existence of this pair is agsured under the same assumptions as in Proposition 3.4. To
study the equilibrium price by means of the Riesz representation of the Gateaux derivative,
we would need an explicit representation of the solution of linear BFSDE’s (26)-(27), but
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such closed formula is not present in the literature. Nevertheless, for this linear model we
are able to obtain an explicit representation of the Gateaux derivative at time 0, while in the
nonlinear setting we recover an almost explicit representation of the gradient by exploiting
the functional link between V' and ¢, Y. This will be shown in detail in Section 6.

Finally, we want to recall the equilibrium analysis results, when using the Additive Ex-
pected Utility, since those will serve as our main reference. Setting & = edo ~redty, the
Arrow-Debreu price process adjusted by the preference discount factor, the first order nec-
essary conditions for the AEU evaluated along the endowment process provide the following
normalized Arrow-Debreu price process £, (we set the Lagrange multiplier equal to 1)

u'(es) = & and v(Xr) = &

To ensure that the price process ¢ belongs to £2, it is enough to assume that the endowment
process is bounded away from zero and that the utility function satisfies the standard Inada
conditions, see [Duffie and Zame, 1989]. The price process & contains many interesting
pieces of information about the economy. In particular, the equilibrium interest rate is given
by the negative expected growth rate of &, while the market prices of risk are the negative
of the volatility in the growth of &,. Therefore one obtains that the equilibrium interest rate
and the market price of risk are

o= B (@) (e + S e)o),
’U.”(ef)

w(et)

-1l = oy oy = =B Con(dG/ Sy, dey),

1
where ¢ = 2{e0

o (e)

5 Linear Backward—Forward SDU

In this section we consider a linear BFSDU, namely
T
Vo= B([ [u(e,) = 7Y, = BVilds + T|7)
:
Y = e ™+ 6 [0 e LV, + (1 — p)e,)ds,

where «, 3,7, 6, p are all positive constants. Similarly to [Constantinides, 1990], where the

istantaneous utility at time ¢ is a function of the difference between consumption and the
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habit at time ¢, we assume that the habit affects the instantaneous utility from consumption
negatively and linearly. To simplify the notation, we take I' = 0, v = ép and 5 = §(1 — 1),

so we have
T
(28) V= B([ Tu(es) = 7Y, — BV:)ds|F)
(]
(29) Yi=w+ fo [V + nes — aY]ds.

Existence of the utility process is assured if Assumption 3.1 and the Assumption in Proposi-
tion 3.2 are verified by u(c) —yy. From (28)-(29), it is possible to find an explicit expression
of V.

For the time being let us treat Yz as given, so we may rewrite the above system in

).

is made up of constants. The solution V, ¥ can be

backward form

()= (L () (552 ()

-8 —v

' /4

where the matrix 4 =

explicitly written in terms of ¢, Y1 as

Vi \ _ T Aat) [ u(cs) A [ 0
(E)—E(/t e o) ds e v |7}

where the matrix e~ ig intended to be

oAl—t) i

n=0

((s=1)4)

nl

Therefore we have
T
V; = E(ft (eﬁ(s"t)u(cs) — efés"t)ncs)ds o} e‘fg(T_t)YTlﬂ)
T
Y, = E(ﬁ (efl(s_t)u(cs) — eggs_t)ncs)ds e eféT_t)Yﬂ.ﬂ),

where ef}f denotes the ij~th element (4,7 = 1,2) of the matrix e?. Solving the last equation

in ¢t = 0 and recalling that Yy = 3o, we obtain

T /s — phs
(30) B =% g ( [ hnten) el ds) |

€33 5]

provided that the denominator is different from zero. Hence substituting E(Yy) in the
expression of Vj, we get

T BASU c.) — eAs e EAT
UC)=Vo=E (/0 (efu(c,) — e, — e 221 (ca) — 53 2)ds + %yo) .

AT
€59 €99
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We can compute the Gateaux derivative of I/(C)}) at a consumption process ¢, along a feasible
direction and we can find its Riesz representation +,, given by

As AT AT _As AT As As AT
_ €11y —eg €y ul(c ) €13 €3p — €19€59
8

s = AT AT
€55 €59
Setting
As JAT AT AAs AT As _ _As AT
. — €11€59 — €15 € K. — €15 €35 — B19€3
s = AT ] s = AT ?
€23 : €23

we can briefly rewrite
¥s = Hg'(¢s) + nK,.

H and K are differentiable functions of the time, by h and % we denote their derivatives.
In Appendix A.1 we analyze the coefficients H, K and their derivatives. In particular, given
our parameter conditions, we show that H, > 0 and K, < 0, Vs € [0,7], while the reverse
is true for the derivatives, hy < 0 and k; > 0, Vs € [0, 7.

To ensure existence of the optimal consumption policy and of a well behaved Arrow-
Debreu price process we impose the following conditions, see [Detemple and Zapatero, 1991,
Detemple and Zapatero, 1992).

Assumption 5.1 The following conditions are satisfed.:
o u(:):[0,00) — (0,00), is three times continuously differentiable, strictly increasing and
strictly concave, lipu'(¢) = oo and lim u/'(c) = 0;
c—0 €00
o In equilibrium (c, = e;, Vt € [0,T]) we have
eﬁseélT - eﬁTequf u’(ea) + 6#2116#2‘5 - eiqzse512Tn >0, Vs € [0’ T];

AT AT
€39 €23

e ¢, >>0, Vs [0,7].

The first condition is the standard concavity-Inada conditions. The second and the third
conditions ensure that the Arrow-Debreu price process belongs to £2. The last condition of

Assumption 5.1 can be weakened to the following

e For each fixed n € N, the function «' is Lipschitz with constant k, on [25, 2] such that
kp < kpp1 <...— 400 and

T +9%0 1

kn o
— < <
f SR ses

| —

Yds < +oc.

=

i3
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Therefore, even if e might be not bounded away from zero, this condition still implies
that E(]DT [v/(e5)?ds) < 400 and that £ € L2

Thanks to Assumption 5.1, as proven in Proposition 3.6, we know that U is concave in
C and also that the inverse of the marginal utility is well defined for every value, therefore
we can apply a procedure similar to the one employed for the AEU to prove existence of the
optimal solution. Given y and fixed a positive Lagrange multiplier p, the consumption policy
parametrized by p is obtained through the inverse of the marginal utility, then the Lagrange
multiplier p is determined through the budget constraint. A unique positive solution for p
is obtained thanks to the Inada conditions on the utility function.

Assuming market equilibrium, the optimal consumption must coincide with the endow-
ment, e, = ¢i, Vs € [0,7, so we obtain the following characterization of the Arrow-Debreu

price process for the one consumer economy:
(31) e~ Jo reduy — o=Pog, = Ha'(e,) + nK,,

where we set the Lagrange multiplier equal to 1, by rescaling the price process. The equi-
librium price is made up of two components. The first one is related to the istantancous
marginal utility, the second one to . The equilibrium price process obtained in this setting
can be compared to the one obtained with an AEU. Being H,e?* < 1land K, < 0Vs € [0,77,
we have that ceteris paribus, i.e. for a given the istantaneous utility function » and en-
dowment process, the equilibrium prices process with a linear BFSDU is smaller than the
equilibrium price process with the AEU.
Differentiating both sides of (31) we obtain the following

Proposition 5.2 Let Assumptions 3.1 and 5.1 be satisfied then the interest rate of equilib-

rium has the following expression:

re = —(e72&) " he' () + Hol pgu (e2) + %(C’f)zum(et) ) + ks
the market prices of risk is the following:
(32) pe— il = —-«U;(emmft)“llHtu”(et)af.

We observe that this procedure can be applied also when the matrix A is time varying,
but still deterministic. We would like to remark the similarity of these results with those for
the standard AEU, which is in fact included by our model when we take v = v = 0.
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A (single factor) Consumption CAPM similar to the one associated with the AEU is

obtained
pe — il = —3;Cov(dG,/8S,, de;),
where [§f = %",—;’-%)-.

Given the istantaneous utility function, the right hand side in (32) and therefore the risk
premium results higher than for the AEU. This is easily seen, since for a given endowment
process e, and istantaneous utility function u we have

Ha'(es) < u’(es)
Ho'(e,) +nK, — u'(es)’

being K, < 0. So we have shown that if we replace the time additivity with a linear

Vs € [0,T],

backward-forward habit, then the risk premium goes up providing us with a solution for the

equity premium puzzle.

Let us analyze the interest rate of equilibrium. As for the AEU, this consists of three com-
ponents. The first one comes from the agent discount factor, which is simply 3 in the AEU

h k
framework and —e?*(~24/(e;) +7—) assuming the presence of the habit. The second compo-
t

t
nent is related to the expected growth rate in consumption (the interest rate is positively re-
HS 1

> .
Hou'(es) + 1Ky~ u'(es)
'The last component is related to the expected variance of consumption growth (the interest

lated to it), the introduction of the habit amplifies this term, since

rate is negatively related to it if «"'(e;) > 0). Again the habit formation has a magnifying
effect on this term. '

6 The V,=0(t,c,Y;) case

In this section we solve the optimal consumption problem and we develop the equilibrium
analysis when u(c,y) is not linear in y. To simplify the analysis we assume again «, 3,6
and p to be constant. Let Assumption 3.7 hold in this section. Under this Assumption,
the system (7)-(8) has a solution such that V; = 6(t, ¢, Y;) and 8 has bounded first order
partials, thus the Gateaux derivative of V is

(33) VVA{(C; C) = 0,(t,%, Y2 (C))e, + 8, (t, &, Yi(T)) VY, (T; ©).

To give a complete characterization of the utility gradient we need to identify VY;. Since ¥,
is the solution of ,
(34) Y=o +/0 [0(s, cs, YVs) + neg — aY,]ds
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we obtain that VY; has to verify
t — —
VY, = jo [V8a(5,25, Vs )y + 10, (5,20, V) VY, + ey — aVY,]ds.

(for simplicity we wrote ¥ = Y'(C) and we omitted the argument (C; C)). Because of the
boundedness of the derivatives of 8, this equation is well defined and has solution

i t —_ —
VY, = [0 exp{/ (V0y(r,Cr, Y r) — @)dr} (10, (8,Ts, Y s) + n)cads.
On the other hand, from (7) we have that the Gateaux derivative of V; satisfies

— — T —_ —
v‘/t = E(QT(ET, YT)CT + gy(ETa YT)VYT + l (um(ﬁsa Ys)cs + uy(Eaa Ys)vif.s - 6svm)d3|ft)a
whose solution is given by

VV,=E (e—ﬁ B9, (Cr, Yr)er + gy (T, Y ) VY]

T 5 d — —
e B e, T VTV
t
In ¢ = 0 we have

VWe=E (e Ji "y (cr, T e, Y
0= & e Jo [gm(cT,YT)CT +gy(cT,YT)VYT]

T 2 ——— —
+/o e o P [u(z,, ¥ e, + uy(Es,Ys)VY;]ds)
and substituting (34) in the previous expression, we obtain
T J—
Vo = E (¢ b ¥, (or, Vr)er
‘“fT,BrdT' - . T T _— =
e o P00, (20, Vr) [Cexp{ [ (0y(r,7, V) — @)dr}(v6als, 2, V) + m)cads
T r T r — — [
+ f o~ Jo Puav f exp{ / (8, (v,2,, ) — ) dv}(18,(5,2,, V) + n)esdsuy (B, Vo )dr
0 0 ]
T e —
+f e Jo 3”drum(ﬁ,,Ys)csds) )
0

Applying Fubini’s theorem, we can conclude that the Gateaux derivative of U/(C) at the

reference consumption process C is

VU(@, O) = E’(e_ ﬁlT Brdrgm(ET,?T)CT
T _ T o= _
el ot (er, T [ ol CACET i g (5,2, F,) + )e, ds
T pT pr r P _— —
[ [ el e L es T ey, 6 7 dr(vd, (5,2, V) + n)eads

T e —
—l—fo efo _’@”drum(ﬁs,ys)csds) i

28



When g = 0 and 3 is constant, the Riesz representation of VU(C; C) is therefore

v T T B —
Yo =¢ —Bs U:r(cs; ) (]’/9 (8 Cs, Y ) -+ n)E(/. e—ﬁre—a('r‘—s)efs u@y(ﬂ,cm)’v)dvuy(ﬁnYr)dﬂj_'-‘g)_

8

It remains to prove existence of the optimal consumption. To this end we apply the
two steps procedure illustrated above and adapted to habit formation utility functions in
[Detemple and Zapatero, 1992]. Being 7,, Y, generic, we denote them simply by ¢, Y. From
Proposition 3.6, we know that U = Vj is concave in C, therefore it is enough to prove that
a consumption plan exists satisfying the first order necessary conditions and the budget
constraint.

We denote by (,, the monetary cost of marginal consumptlon augmented by the expected
incremental impact on future utilities

T r
Cs = pys — (ng(s, 031}/3) + n)E(f e—ﬁr-l-f; (ng(v’cv'yv)_a)dvuy(cr,K.)d’f'|.¢_g)

where p is a positive constant. We define I(s, z,y) the inverse of e=*u,(z, y) with respect to
the first argument,, that is to say e=u, (I(s, z,¥),y) = 2, and I*(s, z,5) = max{0, I(s, z,y)}.
By the concavity of u, we say that ¢} = I7((,,Y,) is optimal if ({, Y;) is the solution of

(35) G = pYs— (V82(5,17(5,(:,Y2), Vo) + 1) x
B[ e O X e (141, . ;) Y, )b )
(36) Yo = we o [ e IO I (1,6, ), Vo) + 0T, G Yo e

and the budget constraint (24) is satisfied.
The system. (35)-(36) is again a BFSDE and we have to prove existence and unigqueness

of the solution for any given p > 0. We first state

Lemma 6.1 Let f,g,h,b(t,z,2) be uniformly Lipschitz functions with constant k, f and g
are uniformly bounded by a constant M and h(s,0,0), b(s,0,0) are in L?([0,T]). Let J; be a
process in L.

If T' is small enough, depending on M and k, then there exists o unique adapted solution
in L2 x L? of the BFSDE

T s
o = Jo— [tz 2) E [ el swmemdug o oo Vds|F)

¢
Z zo—l—/ b(s, zs, 2,)ds
1]
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Proof: The proof of this Lemma is similar to that of Proposition 3.2, based on Doob’s
inequality and the smallness of the time interval, so to guarantee that the operator induced
by the system will be a contraction on £2 x £2. O

If we assume

Assumption 6.2 u(c,y) is such that lix% ug{e,y) < oo Vy >0 and lim us(c,y) =0 Yy > 0.
Let I (s, z,y) and uy(I™(s, 2,9),y) be bounded and uniformly Lipschitz in z and y, uniformly
fory>ge ™, 2>0 and s> 0,

Then we can set (z;,2:) = (, Y:) and

Joo= p& FOGY) = W 1(GY),y) +0), 9t,Cy) = vby(t 1Y) — @),
ZO = yoe_ats h(tr Ca y) = e—ﬁtuy(f(c:y)? y)7 b(t1 Ca y) = Vg(t‘.\ I(Cay)vy) + WI(C, y) - Ofg,

and apply the Lemma. The regularity conditions required in the Lemma are guaranteed by
Assumptions 3.7, 6.2 and by the results proved in [Citti, Pascucci, Polidoro, 1998].

For each positive Lagrange multiplier p we find the corresponding triple consumption,
monetary cost, habit ¢ {p),(.(p),Y.(p). As in [Detemple and Zapatero, 1992, Assuption 3.5]
we assume that the composition map I{s,(,(p), Ys(p)) is continuous in p, a.e. w and all s,
and satisfies the condition 1{%1 I(s,(s(p),Ys(p)) = oc a.e. w and all s. This guarantees that

the equation obtained from the budget constraint (24)

E*[/Ot exp(— /Ot rsds)(ci(p) — e;)dt] =0

admits a positive solution for p yielding the optimal solution c*.
In equilibrium {¢; = ¢;, ¥t € [0,T]), we have that 4, becomes the Arrow-Debreu price
process:
T . .
6= alln V7)o (W05, 00, Y5)  m) B( | o0l s e, )| ),

where Y'¢ is the habit corresponding to e. Let the following Assumption hold.

Assumption 6.3 : For all s € [0,T)
T - .
uz(es, Yse) + (1/99,(8, ee, YE) + W)E(f e_(‘ﬂ+“)(r_s)e.l; vl (v,e0, Y M”Uy(er,y;e)d?"lfs) > 0.
8
This hypothesis ensures that the Arrow-Debren price process is strictly positive and
guarantees the uniform properness of preferences. The boundedness of the derivatives implies
that this process is certainly in £2.
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As for the utility functional proposed in [Detemple and Zapatero, 1991], the process &, is
made up of two components. The first one (positive) is connected to the marginal utility from
instantaneous consumption, the second one (negative being u, < 0 and #, > 0) is related
to the future disutility of consumption due to an increase today in the agent’s habit. This
means that an increase in consumption determines a positive increase in the instantaneous

utility u,(e;,Y,) and a decrease in all future utilities given by

— r r - = _
(v8,(5,85,Y,) + n) B( [ o~ (B+a)(r—s) o f, ¥y (¥ u)du Uy (T, Y 7) drlFy).

s

We point out two main differences with respect to the pure backward habit analyzed in
[Detemple and Zapatero, 1991]. First, the effect on the habit caused by a marginal increase
in consumption is not ¢ as in [Detemple and Zapatero, 1991], but it is given by this factor
multiplied by a convex combination of 1 and of ;. A convex combination that takes into
account the backward-forward feature of the utility function. Second, the discount factor for
future disutility is no longer e~(#+o}r=9) there is also the integral of 6,. Therefore the effect
of owr characterization of the habit process instead of the classical habit on the equilibrium
price process depends on the sign of , and of 6, — 1. As stressed above, at least for small
T we have that 6, < 0 and therefore this component leads to a higher equilibrium price
than in the case of a pure backward habit. Nothing can be said about 6, — 1. If 8, > 1
then all the future utilities will be affected negatively with a magnitude higher than in the
pure backward case, if 8, < 1 the opposite effect is obtained. However, ceteris paribus, the
equilibrium price process for a BFSDU is smaller than the one obtained with an AEU.

In the following Proposition, whose proof is in Appendix A.2, we characterize the equi-
librium interest rate and the market price of risk when the endowment process is

(37) de; = e, (fijdt + 57dW;) e, =1

with deterministic coefficients zf and &¢. Paying a higher computational cost, the results
can be extended to the case of stochastic coefficients. In what follows we denote by u(t), §(%)
the functions evaluated along the endowment process e;, the same notation is employed for
their partial derivatives. The equilibrium analysis is summarized in the following

Proposition 6.4 Let Assumptions 3.7, 6.2, 6.3 hold and assume that u is three times con-
tinuously differentiable, then the market interest rate of equilibrium is given by

=3~ gt—l [éﬁg%gumm () + +iigeste, (t) + (VO(t) + ne, — oY uzy(t) — (v, () + muy ()
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T . ‘
¢ ([ et I (5)is\7 )

[~ 182 () B — (w02 (£) +1) 200y (£) — @) + 817 + 1 (ua(t) — €560 (1))}
—g M tyve o VB g 5e2 (B An - 4| F).

The market price of risk is

t

T 2
He rnl = _O-t(gt)—la.f [etumm(t) 4 ng;(t)etE (/ e—»@(s—t)e,ﬂ (Vﬂy(r)—a)druy(s)dsiﬂ)
HuB(e) + m)e BB D B4y )R]

Ap — A; is given by

T r u,
/ e P+l (r) f (Bzy(u)ey + Oy, (1) / " (18, (v) + n)e,dv)du + Uy (r)e,|dr
t 4 t
T r
* / e At [ty (T) _/ e (v, (u) + n)eudu)dr

L £

and §, = vy (u) — o, Jy = J§ judu.

Setting ¥ = 0 we obtain the formula obtained in [Detemple and Zapatero, 1991].

Some of the components of the equilibrium interest rate are similar to those obtained
with an AEU or with the classical habit, we refer to [Detemple and Zapatero, 1991] for the
general equilibrium interpretation. Ceteris paribus the equilibrium interest rate is positively
related to the expected growth in consumption and negatively related (when u.,, > 0)
to the variance in consumption. There is a component which associates marginal util-
ity from consumption to the habit, its effect depends on the sign of u,, and on the time
derivative of the habit. If the utility function exhibits strong complementarity (u., < 0)
and the habit is going up then we have an increase in the interest rate, on this point see
[Detemple and Zapatero, 1991]. The last two terms come from the disutility associated with
the marginal disutility of future standard of living. It is difficult to assess their sign and
their size, under reasonable parameters values the first one should be negative.

Being the coeflicients of the endowment process deterministic, we have that a single beta
consumption CAPM holds as in {Detemple and Zapatero, 1991]:

p — 11l = —[cov(dG,/ Sy, dey).

Assuming a more general Itd process then we will obtain a two Beta consumption CAPM as
pointed out in [Detemple and Zapatero, 1991]. The second Beta will be related to changes in
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marginal disutility of future standards of living induced by stochastic shifts in the coefficients
of the model.

Without further specifying the utility functional, no results can be stated about the mag-
nitude of the risk premium. However, as it is not possible to evalaute the partial derivatives
of 8, it seems to be difficult to establish a result about the resolution of the equity pre-
mium puzzle with a BFSDU as it is done with the classical habit formation process, see
[Detemple and Zapatero, 1991].

7 Conclusions

In this paper we have proposed a utility process obtained as the solution of a backward-
forward stochastic differential equation. The backward-forward feature is due to a habit
formation process which is given by the weighted average of past consumption and of past
conditional expected utility. The peculiarity of our utility function is that the habit of the
agent is influenced not only by past cosnumption but also by a smoothed average of the
conditional expected utility that the agent experienced in the past.

In our analysis we have addressed some of the key points related to this utility function.
Existence of the utility process, existence of the optimal consumption plan, characterization
of the Arrow-Debreu price process, of the equilibrium interest rate and of the market prices
of risk. The results obtained with the classical habit formation process are confirmed only
in part. As a general result we have that ceteris paribus the price process is smaller than
the one obtained with an additive expected utility, the risk premium is higher than the
one obtained with an additive expected utility only when the system is linear (istantaneous
utility linear in the habit), considering the general nonlinear system it is difficult to state

conclusive results about the risk premium and the consumption process.
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A Appendix

A.1 The Linear BFSDU
~0

Given the matrix A == ( ” _J ) , there are two real eigenvalues:

Alza—ﬁ—\/(0;+ﬁ)2+4w

v 0By (et B+ Ay
2= .
2

Then we have the following:
(ﬁ+ /\2)6’\13 _ (5+ /\1)8’\28 ,Y(e)qs _ 6)\2.9)

eAs — AZ - Al /\2 o /\1
y(eAl,g _ e)\gs) (B + )\2)6‘\23 —(B+ )\1)6’\13
/\2 — )\1 )\2 - )\1

Given the assumptions done in our model we have two real eigenvalues with A\ < 0 < Aa.
About the sign of the elements of e it is easy to show that:

ey <0, eff <0, e >0, eff >0, Vse[0,T]

We observe that As AT AT As

H, = €11 €3 ;Telz €21

€55 .

[(/3 + )\2)6)\1‘? _ (5 + Al)ez\za][(ﬁ 1 /\2)62\2’1‘ - (ﬁ+ )\1)6’\1T] _ ’yv(e)‘lT — eAgT)(e)\ls _ e)\gs)
(A2 = A)((B + Ag)ed” — (B -+ Ag)eMT)

(B4 X2)® +yv)er sl 4 (B4 A)? + yr)ehTHhas

Do = A)((B+ e — (B+oent) 7"
wnd o _ il — el
’ egs
(T = (B + M) (34 D)) — (M0 = (B4 A)NT — (34 M)enT)
(A2 = A)((B + Ag)erT — (B + M) T)
eMTodes _ phaThis

BT — (Gt et <

About the time derivatives of K, and Hj, k, and h, respectively we have the following:
_ 2B+ 20)? +yw)e T 4 Ao((B 4+ M)? + qu)etT e
(A2 = A)((B + Aa)er2T — (B + Ap)eMT)
A26A1T6A23 - /\16A2T8A13
ks = v N > 0.
(B + Agere? — (B4 Ay )eMT

hs <0

34



A.2 Proof of Proposition 6.4

With the notation employed in Section 6, the Arrow-Debreu price process &, is characterized
as follows

T I3
& = ux(t) + (v0x(t) + n)E(l e~ Bla=t)+[; Why(uj=edduy, (5Y ds|F,).

To prove our statement we have to differentiate both sides.
Assuming market equilibrium ¢; = ¢;, the consumption process and the habit formation

satisfy
(38) de; = e(fgdt + d7dW;) ep =1
(39) dY, = (V8(t) +ne —aYdt,  yo >0

Since fi%, 7 are bounded and deterministic and 8 with its first partial derivatives are bounded
and continuous, e,Y; € ILY? and we can compute explicitly their Malliavin derivatives.

Denoting by D the Malliavin derivative for » < ¢ we have

T 1 1
Drer = Dilexpd [ (55— 5o0)ds + [ o2dW}) = eust,
1

DY, = D, (v0(s) + ne, — aY;)ds
= [[8a(s) + m)Dyes + (v0,(5) — a)D,Y:]ds
= [108206) + mote. + v8,(5) ~ @)D Yilds,

the latter can be solved explicitly obtaining

t ]
DY, — a-ﬁf ef:(yﬂy(u)—a)du(ygm (s) + n)eqds.

r

Let us rename
t
Ju = v0,(u) — o, Jp = /0 Judu

T ¢
M, = E(/D e Py (e, Ys) ds|F), G, =f0 e~Pstley, () ds

: T 8
then E(/ e=Bls—1) exp{/t (18, (u) — a)du} uy(s) ds|F,) = e~ * P M, — G,) and we can write
the Arrow Debreu price as

(40) & = ux(t) + (V05 (t) +n)e TP M, — G).
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Differentiating the left side we have
dfs = —&,((rs — B)ds + A dW,),
while the right side gives

du, (1) + (V0. (t) + n)d(e™ P (M — Gy)) + ve " M, — G db,(t) + d]ib,, e~ P (M- G)],
= dug(t) ~ (v6:(t) + 1) (ji — B)e™ P (M, —G;)dt
+(0:(t) + n)e P A(M, — G,) + ve TP M, — Gy b, (£F veIitPtd[e,, M),

being G continuous and of finite variation. By using 1t6’s Lemma and (38)-(39) we have
dug(t) = [etﬁfum(t) + (Ot} + ner — oY} )ug,(t) + %ef&fzumm (1‘)} dt + 107 Upr (L) dWs.

Similarly we may compute

A02(0) =|Bua(t) + exPBuel?) + (¥0(2) + e, ~ AYo)ou (1) + %ef&fﬂem(t)] dt + €520, (t) AW,

The last expression can be simplified, recalling that @ is the solution of the PDE (20) and

that 1° and ¢ do not depend on z. Differentiating with respect to z we have

1
O10(t) + €500 (t) + (LO(E) + ney — a¥y)bp, (t) + ief&fzf)ﬂ,m ()

= —(B+0D0(E) — W0a(t) +mBy(t) + us(t) — 17020 (t).
So we obtain
A0,() = [~ (B + B)0:(8) — (0a(8) + 1)0,(t) + Ualt) — €200 (£)]dt + 05200 (£) WV,

Clearly d(3, = e~ Pttty (t)dt, so it remains to evaluate dM,. By the Clark Ocone formula

we have .
M, = E[F] + jﬂ E[D,F|F.JdW,,

T
where F' = e Py, (r)dr. Our hypotheses still guarantees that F € D2, so from

Malliavin calculus we have

T T
D, F = f e PrDy(e"ru,(r)) dr:/ e_ﬁ’"+J’[uy(T)Der+'Dsuy(7")]dr

8

- [ " e Bt h (YD, ( /0 "0, () — @)du)) + Dyuy (r)]dr

- f 7 B (1) / " uD,0, () dus) + Dy ()] dr

8
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where we used the definition of J,.. Applying the chain rule and the expressions of the
Malliavin derivatives of e and Y, we obtain

T T
DF = / g=Prtdr [’Uay("")f V(0ay (1) Dyey, + Oy () DY) du + gy (1) Dse, + Uyy (r)D, Y, ]dr
T L
o () [t e
. 5 . T. 3
+ f e Py (r) /; Wyy (u)DsYodu + wy, (r)D,Y, Jdr

g

which becomes
D = &° { fs ’ e[y, (r) l ’ By (w)eudu, + Uy (7)€,
+ jf e=Frttr [uy(r) fﬂ 10, (1) /su e’ 7 (18, (v) + n)eydudu
Aty (1) /: er e (18, (u) -+ n)eudu] } dr
Summarizing dM; = 67 E( Ap — Ay|F)dW;, where Ap — A, is given by
[P &= [y (r) ftr(emy(u)eu + Gy (w) /t“ eI (L0,(v) + n)eydv)du + ugy(r)e;|dr
N [T & [y (1) f: e (1 () + n)eyduldr.
Putting everything together we conclude that

&(ry— 08) = “[%652'9?“9:9:32(75) + efiguzs (t) + (0(t) + ne, — O‘Yt)uwy(t) - (ng(t) + n)u,(t)]

~E( f’e_ﬁ(s_t)nh A s(uay(r)—a)druy(s]dslﬂ)[—:/Gm(t)(ﬁ-l— fig) — (V6 () +1) (208, (t) — o ~ )

(s (t) — 5520, (1))] — ve~Jo Wylr)—o—fldr g 5620 (D E(Ar — AdlF).

With analogous considerations observing that —£\ = o we may conclude

T e
Hy — Ttl = —0y (é‘t)_la‘-f etumm(t) -+ ngw(t)etE (/t eft (ng(r)—a—,@)dﬂ"uy(s)dslﬂ)

(0, (8) -+ e Jo WO r)~a=Bdr gy 4 Aﬂﬂ)] .
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