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Abstract

This paper considers, via a Monte-Carlo experiment, the effects of
using sampled discrete data. Maximurm likelihood, conditional least
squares and indirect estimation procedures are considered. The strong
relationship between the estimates of the drift and the diffusion coef-
ficients is evidenced.The Monte-Carlo experiments are conducted on
the well known Square Root and Ornstein-Uhlenbecdk processes, both
of which admit an “exact” solution in the distribution domain. The
“exact” solutions may he exploited for correctly generating the under-
lying processes,

Some key words: diffusion processes, discrete maximum likelihood estima-
tor, exact solution, Monte-Carlo Methods, stochastic differential equations.

1 Introduction

Of late, diffusion models expressed in the form of a Stochastic Differential
Equation (SDE) have increasmgly been considered and their estimation using
data observed at discrete time points is currently attracting much attention.
The application of simulation based inference in the estimation of such models
has been particularly explored in the financial literature (see, for ex., Broze
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et al. (1995), Bianchi and Cleur (1996), Calzolari et al. (1998)), but much
has yet to be done in terms of the computational problems involved in such
a procedure.

Thus consider the estimation of the following class of one-dimensional
SDE models :

dX, = k(9 — X;)dt + o X dW, (1)

(1) implies a mean reversion towards the long-term mean, 1, with speed of
adjustment given by k. ¢ is a scale parameter and 3 is the variance elasticity
parameter which measures the sensitivity of relative changes to the level of
the stochastic process X. &, ¥ and ¢ are strictly positive and ¢t € [0,7]. The
parameter k also establishes the degree of convexily of the mean solution of
the process.

Model (1) is of course a continuous time model. However, the best one
can achieve on a digital computer is a representation of that process at dis-
crete points in time. Such a representation may be achieved either through
the exact analytical solution, when it is available, or through a numerical
approximation. In Cleur and Manfredi (1999), this problem was analysed
to some detail when the whole process is observed, rather than being sam-
pled, and the importance of a higher order approximation scheme, such as
the order 1.5 strong Taylor scheme, rather than the commonly used Euler
approximation, was evidenced.

This paper addresses the problem of estimating a SDE process from a
discrete approximation which is subsequently sampled. Such a problem arises
from the widely used practice (see for ex. Bianchi and Cleur (1996), Ball
and Torous {1996), Shoji and Ozaki (1997) and Calzolari et al (1998)) of
approximating a SDE model by the Euler scheme approximation given by

Xy, =Xy, + RO — X, )6+ 0oVEXE W, (2)

where §; = t;— t;_y is the discretization step which, for simplicity, is assumed
constant. However, since the Fuler scheme gives a very poor approximation
to the underlying continuous process when § is not sufficiently small, it is
argued that many observations must be generated on a very fine grid of time
points in order to obfain an acceptable approximation to the underlying
process at a much larger grid of values; for ex., in Ball and Torous (1996)
interest rate data are generated from the Square Root process by setting &



to 1/360, corresponding to daily data, which are then sampled every 30 ob-
servations in order to obtain so-called monthly data, i.e. data corresponding
to time points with step 1/12, or in Calzolari et al. (1998), who consider
the estimation of the Square Root and Ornstein-Uhelnbeck processes, the
approximation is generated with § = 1/20 which is then sampled every 20
observations to obtain data at time points t = 1, 2, ... , T. The correctness
of such an approach could be evaluated in those cases for which the exact
solution 1s available; infact, in this paper data are generated using the exact
solutions of the two processes considered and the results thereby obtained are
compared with those obtained from data generated using the Euler scheme
approximation. The discrete maximum likelihood estimator defined in Cleur
and Manfredi (1999) is used for the comparison.

Results from a Monte Carlo experiment conducted on the estimation
of the Square Root (SR henceforth) process, for which 3 = 0.5, and the
Ornstein-Ulhenbeck (O-U henceforth) process, for which 8 = {, are reported
below.

2 Estimation Methods

2.1 A Discrete Maximum Likelihood Estimator

Consider the following general representation of equation (1)

dXt = (I(Xt, @)dt + b(Xt, O')th . (3)

In continuous time, the following log likelihood ratio function defined
as the Radon-Nikodym derivative dPy/dPy, of the ratio of the probability
measures Py and Py, corresponding to the processes X and W, is used for
deriving maximum likelihood estimates (see, for ex., Kloeden et al (1994)):

a(X,8) . 1 [{a(X,0))
J (Xe0) (X)) “

Maximizing (4) leads to the so-called Continuous Time Maximum Likelihood
Estimator (see Liptser and Shiryayev (1981) and Kloeden et al. (1994)). In
particular, if the SDE is defined as in (1), estimates of ¥ and ¥ may be
obtained condifional on given values of o and 5.
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On the other hand, when the continuous signal is observed at equidistant
time points tg , t1 = tg+6 , tg+ 26 , ... , T, various approaches are available
for obtaining Discrete Maximum Likelihood Estimators (DMLE henceforth)
of k and ¥ for given values of ¢ and (3; it is not possible to obtain masximum
likelihood estimates of all the parameters simultaneously. One such approach,
applied in Cleur and Manfredi (1999), consists in the derivation, for a given
value of # and known &, of explicit expressions for the estimators of k& and ¥
in {4), which inevitably involve stochastic integrals.

In the two processes considered, 3 is fixed and hence does not have to
be estimated. As for o, the effect of substituting the following quadratic
variation estimate as the initial value in the maximization of the likelihood
18 evaluated

Xy, — Xe, )
6_2 — ( t; ti1

ti-1

(5)

This estimate has often been proposed in the literature on SDEs (see, for ex.,
. Polson and Roberts (1994), Shoji and Ozaki (1996)) when the discretization
step 1s sufliciently small.

The expressions for the estimates of & and ? are given in Cleur and
Manfredi (1999).

The final estimate of o is obtained, as for ex. in Shoji and Ogzaki (1996),
from the residuals calculated from the following reparametrization of (2)

Ky — Xy kD8 o T B
Vy, = : C - + kX . 6
155 Xf:,l Xf;,l ti-1 Y ( )

2.2 A Conditional Least Squares Estimator

The conditional least squares estimator (CLSE henceforth) considered in this
paper is that presented in Overbeck and Ryden (1997). In their paper, Over-
beck and Ryden (1997) consider the estimation of the Square Root process
and results from a Monte-Carlo experiment are reported for data reproduced
by the exact solution, i.e. the non-central chi-square conditional distribution,
and a step size equal to § = A = 1.0. They did not consider the problem of a
sampled process and despite the (large) discretiszation step their simulation



results indicate in the CLSE a potentially good estimator. The expressions
for the estimates of & and ¥, which do not depend from o, are given by

F=—b  O=—afb (7)

where the expressions for a and b are given in Overbeck and Ryden (1997)
and & is obtained through the pseudo-likelihood method defined by equation
(10) for the Square Root process in the same paper.

For the Ornstein-Uhlenbeck process the same definitions hold except for
the conditional variance which is given by equation (9) of this paper.

2.3 An Indirect Estimator

The indirect estimator used in this paper was presented in Gourieroux et al.
(1994) and has been widely experimented (see, for ex., Bianchi and Cleur
(1996), Broze et al. (1995), Cleur and Manfredi (1999), Calzolari et al.
(1998)). Roughly speaking, given an observed series from which a certain
model has to be estimated, the indirect estimator consists in simulating a
series of data from that model such that the difference between the real data
and the simulated data is as small as possible according to some statistical
criterion.

3 Simulation Experiments

The SR and O-U processes are part of a class of SDE processes which admit
an exact solution. In particular, the conditional distribution, p(X(t}/X(s)),
of the SR, process has a closed form solution which is given by the stationary
non-central chi-square distribution (for its generation on the computer see, for
€X., Johnson and Kotz (1992)) with 2¢ degrees of freedom and noncentrality

parameter u, where

% 24
c(s) = o2(1 — e-kE-9) 1= 2

u(s) = 2c(s}X (s)e =),

The O-U process too has a conditional distribution which is a stationary
Gaussian distribution with

E{X(t) /X (8)} = {9+ (z, — 9)e*E=2] ®)
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and
Var {X(t)/ X(s)} = 0>(1 — %) / (2k) )

It should be mentioned that the O-U process also has an exact sclution
in the trajectory domain which was used in Cleur and Manfredi (1999).

For both the SR and O-U processes, a Monte-Carlo expertment is carried
out by first generating the data using their exact solutions as well ag the
corresponding Euler scheme approximations with the following constellation -
of parameter values: & = 0.8, ¥ = 0.10, ¢ = 0.06, and discretization step § =
0.01. These are subsequently sampled by taking every fifth, tenth, twenyfifth,
fiftieth and hundreth generated value; in other words, five different sample
steps are examined, i.e. A = 0.05, 0.10, 0.25, 0.50 and 1.00. Processes of
length T = 100 and T = 2000 are considered. Each combination between
the above constellation of parameter values, sample steps and generation
schemes is replicated 10000 tiroes.

The starting value for each replication, Xj, is always set to the long-term
mean of the process, i.e. Xo =9 = 0.1

The parameters are estimated using the procedures outlined in the pre-
vious Section.

3.1 Estimation of the SR process with known o

In this Section, the importance of having a good initial value for ¢ in the
DMLE is evidenced by considering the performance of this estimator in the
special case when ¢ is known.

- Tables 1 and 2 summarize the results when the generated process is sam-
pled at regular intervals, and & and # are calculated from the expressions in
Cleur and Manfredi (1999} with o taken as known. The standard errors refer
to the 10000 estimates, i.e. what is commonly known as the Monte Carlo
standard error.

The estimation of ¥ does not pose any problems, as will be observed in
the rest of this paper, and will therefore not be commented any further.



Table 1. DMLE of the Square Root process. T = 100
True Values: k = 0.8, ¢ = 0.10. o = 0.06 taken as known,
6 = 0.01 (standard errors in brackets)

A=om A=005 A=010 A=025 A=050 A =100

k .8408 .8403 8407 8406 8414 .8499
(-1318) (.1319) (.1339) (.1339) (.1377) (.1521)
) 1000 .1000 1000 .1000 1000 DO99E-1

(.2359E-2)  (.2360E-2) (.2392E-2) (.2380E-2) (.2385E-2)  (.2444E-2)

Table 2. DMLE of the Square Root process. T = 2000
True Values: k = 0.8, ¥ = 0.10. o = 0.06 taken as known,
¢ = 0.01 (standard errors in brackets)
A=o0o1 A=o0os A=o01c A=o02 A=050 A=10

k 8018 8019 8019 8019 8016 8022
(.2852F-1)  (.2856E-1) {.2862E-1) (.2820E-1) (.2910E-1) (.3168E-1)
0 .1000 1000 .1000 .1000 1000 .9090E-1

(5454F-3)  {5440F-3) (5428E-3)  (.6403E-3) (.5482F-3)  (.5HE20E-3)

The differences in the estimates of & for varying sample steps are very
limited thereby suggesting that, when ¢ is known, it does not matter whether
the whole process is observed or whether it is sampled, because the resulting
DMILE behaves in much the same way in both cases. Further, the estimate
of k is not significantly biased only if the observed process is sufficiently long
(T=2000}. In other words, for short series of data, whether they are sampled
or not, it will not be possible to obtain unbiased estimates of & even though
o i3 known.

3.2 Estimation of the SR process with unknown ¢«

As mentioned above, in the published literature the quadratic variation es-
timator (5) has often been used for estimating o. Before undertaking the
estimation of the parameters of the two models considered in this paper, a
preliminary simulation experiment, based on 10000 replications, is carried
out in order to evaluate the behaviour of this estimator for data sampled at
fixed time intervals. The results, for the SR process is reported in Table 3;
those for the O-U process are very similar and are therefore omitted.



Table 3. Quadratic Variation Fstimate of ¢ in the Square Root process
True values: k = 0.8, ¥ = 0.10, o = 0.06, § = 0.01
(standard errors in brackets)
' A=001 A=005 A=010 A=025 A=050 A=L100

100 5O8BE-1 5041E-1 .5885E-1 B5710E-1 54555-1 A994E-]
(.4230E-3) (.9802E-3) (.1351E-2) (.2129E-2) (-2869E-2) (4017E-2)

2000 5980F-1 B943E-1 588EE-1 5722E-1 54608-1 SOL0E-1
(0451E-4) {.2178E-3) (.9451B-4) (4687E-3) {6534 E-3) (9149E-3)

The length of the generated process does not appear to influence the
sample bias of the estimator which is not significant only when the sample
step A = 6 = 0.01. The results of a few experiments conducted with § =
0.001 confirmed the need for a sample step of at least 0.01 in order to have
a quadratic variation estimate of & which is not significantly biased.

As could be envisaged, the substitution of a badly biased estimate of &
will, consequently, have notable repercussions on the estimates of k and 9.

Tables 4 and 5 report the estimates of & and ¥ caleulated from the ex-
pressions in Cleur and Manfredi (1999) with ¢ substituted by its quadratic
variation estimate reported in Table 3. The final estimate of ¢ based on the
residuals from the reparametrized Euler scheme defined in equation (6) is
reported in the same Tables. These results are very close to those in Tables
3 and 4 when the estimate of ¢ is close to the corresponding true value. An
increasing underestimation in # leads to an increasing underestimation in k.
The fact that the quadrature variation estimator of ¢ performs much better
than the final estimator reported in Table 4 and 5 should come as no SUrprise;
infact, a strongly biased initial value for ¢ should have a negative effect on
the estimates of & and +¥ which, in turn, leads to a poor final estimate of o.

Table 4. DMLE of the Scuare Root process. T = 100
True Values: k = 0.8, 9 = 0.10, o = 0.06, § = 0.01
(standard errors in brackets)
A-oo A-oos A-cio A=z A-os A=t

k 8371 3241 8080 T616 5034 570K
(.1314) (.1293) (.1289) (.1199) (.1090)  (.9328E-1)
Y 1000 1009 .1000 1000 1000 S908E.-]
(2860E-2)  (.2360E-2) (.2393B-2) (2383E-2) (.2301E-2) (.2459E-2)
O BOTERE-1  .5S8OE-1  ATE2E-1 543851  .4062E-1  .4100E-1
(A256E-8)  (9318E-3) (.1292E-2) (.19461-2) (.2537E-2) (A101E-2)
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able 5. DMLE of the Square Root process. T = 2000
"True Values: k = 0.8, ¥ = 0.10, ¢ = 0.06, § = 0.01
(standard errors in brackets)

A=oom A=oos A=o10 A—ozm A-0s50 A=10
k 7088 7868 7718 7207 6658 5588
(2844F-1) (2807B-1) (2719E-1) (2570B-1) (2373F-1) (.2056B-1)
?9 .1000 L1000 L1000 L1060 L1000 .1000
(BA41E-3)  (5440E-3) (B5429E-3) (B4BLE-3) (54S3E-3)  (.5B6EE-3)
F HOTEE-1 LBB3E-1 BTTOE-1 B54852%-1 AQ80E-1 A254B-1
(9388E-4) (.2081E-3) (Z2918E-3) (.4400F.3) (5648E-3) (.6800-3)

In Cleur and Manfredi (1999), it was observed that when the discretiza-
tion step is sufficiently small, a value of § = (.01 was used in that paper, the
Fuler scheme gives a satisfactory approximation to the underlying continuous
process observed at discrete time points in the sense that results obtained
from data generated by the exact solution and by the Fuler scheme substan-
tionally coincided. This is also confirmed in the context of the present paper
so that, for the sake of economy, the corresponding tables of results will be
omitted.

The results for the CLSE are presented in Tables 6 and 7 and, as can be
seen, are very different from those for the DMLE. Most importantly, there is
only a small and insignificant bias in the estimate of #. For a small T (i.e. T
= 100), the estimate of k increases slightly over the range of sampling steps
and does not drastically decrease as with the DMLE; in any case, the bias
in k cannot be ignored. For a large T (i. e. T = 2000) instead, the CLSE
converges to the true values.

Table 6. CLSE of the Square Root process. T = 100
True Values: k = 0.8, ¥ = 0.10, 0 = 0.06, § = 0.01
(standard errors in brackets)

A=o00t A=o0s A=010 A=02 A-0s0 A =100
k 8236 8409 8437 8472 8536 8815
(.1365) (.1389) (.1409) (.1503) {1730} (.2410)
¥ 9907E-1  9997E-1  .0099E-1 1000 1000 1090
(-2352E-2) (.2353F-2) (.2378E-2) (.2348E-2) (.2368E-2) (.2431E-2)
a2 B000E-1 B002E-1 .B003E-1 BOL4E-1 BO32E-1 B092F-1
(A437E-8)  (A010E-2) (.1436E-2) (2417B-2) (3783E-2) (.6B7RE-2)
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Table 7.CLSE of the Square Root process. T = 2000
True Values: k = 0.8, ¥ = 0.10, 0 = 0.06, § = 0.01
(standard errors in brackets)

Azonm A=o00s A=010 A=02 A=05 OA =100

k 8020 8020 8021 .8020 8024 2035
(2006E-1)  (.2954E-1) (.3002E-1) (.3192E-1) (.3569E-1) (.4561E-1)

’19 G000E-1 .9999E-1 9999F.-1 1060 J9999E-1 0909E-1
(:5285E-3)  (5285E-3) (.6287TE-3) (.5288L-3) (.6851E-3)  (.5414E-3)

O B000E-L  BOODE-1  .BOO0E-1  .6000E-1  .GO0TE-1 BO0BE-1.

(.9858K-4)  (.2236E-3) (.2018E-3) (5404B-3) (.8285E-3) (.1386E-2)

The fact that the CLSE provides a very good estimate of o for the whole
range of sampling steps suggests that this estimator and not the quadratic
variation estimator applied above could be used for obtaining the initial value
of o in the DMLE. If this is followed, for a small T the resulting estimates
will, in any case, be biased as is evident from Table 1, but for a large T
results similar to those in Table 8 will be obtained.

Table 8. DMLE of the Square Root process. T = 2000
True Values: k = 0.8, 9 = 0.10, ¢ = 0.06, § = 0.01
initial value of 7= CLSE of o(standard errors in brackets)

A=o0os A=010 A=03 A=0s0 A=1Lw

k  sos 8020 8019 8017 8034
{2064F-1)  (3011E-1) (,3149E-1) (.3440E-1) (.4380E-1)

94 9997E1 1000 1000 007E-1 1000
(B3L7E-3)  (5429E-3) (.5327E-3) (.5306B-3) (.B371E-3)

0 .6000E-l  .6600B-1  .5999E-1  .5O08E-1  .5007B-1

(:R234E-3)  (3240B-3)  (.5520E-3) (.8186E-3) (.1390F-2)

No apparent gain can be seen in Table 8 with respect to Table 7 so that
the CLSE might probably be the best, choise when T is large.

3.3 An Indirect Estimate of the SR process

In recent years, indirect estimation procedures via simulation have been in-
creasingly applied. Such procedures, based on repeated approximations to
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the underlying model to be estimated, are computationally intensive, but
have provided very promising results in the estimation of SDE processes
(see, for example, Bianchi and Cleur (1996), Broze et al. (1995), Calzolari
et al. (1998), Cleur and Manfredi (1999) and Gourieroux et al (1994)). In
the rest of this paper, the capability of the indirect estimation procedure
defined in Gourieroux et al. (1994) in correcting for the heavy bias, due to
the sampling of the underlying process, will be examined; it was observed
above that as the sampling step increased, so to did the bias in the estimates
of k and ¢. Table 8 summarizes the results for the SR. process when T=100.
Calibration, which is an integral part of the procedure, was carried out on
the DMLE analyzed above.

Table 9. Indirect Estimates of the Square Root process. T = 100
True Values: k = 0.8, 9 = 0.10, o0 = 0.06, § == 0.01.
(standard errors in brackets)

Ao A=oiw0 Azozs A=os0 A =100

k L2038 8046 8062 2078 3072
(.1874) (.1938) (.2619) (.2294) (.2616)
) .1000 .1000 .1000 21060 1000

(3585E-2) (358RE-2) (.3596E-2) (.B3G35E-2) (.3648F-2)
0  6006F-1 601281 .60L7E-1  .6026F-1  .6061E-1
(336E-2) (2015E-2) (.3362E-2) (5199F-2)  (.8336E-2)

The overall capability of the indirect estimate to correct for bias is clearly
evidenced in Table 6. It may be noted that, as the sampling step increases,
so to does the bias in the estimates of & and o which however remains very
small and msignificant; the bias in the estimates of o is present only at the
fourth decimal point. The corresponding standard errors of the estimates,
which are notably higher than their counterparts in Tables 4 and 6, increase
more markedly than the bias in the estimates themselves and this, perhaps,
constitutes the only observable defect in the indirect estimation procedure.

These resulis enforce the conclusion in Cleur and Manfredi (1999) where
the indirect estimation procedure was proposed as a general strategy in its
own rights every time the data does not satisfy the optimal conditions, among
which a small sample step, necessary for obtaining good estimates of the
parameters of the underlying continuous process.
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3.4 Estimation of The O-U process

Estimates of the Ornstein-Uhlenbeck process have much the same properties
of the estimates of the SR process reported above. Results for T = 100 are
summarized in Tables 9-12.

Table 10. DMLE of the Ornstein-Uhlenbeck process. T = 100
True Values: k = 0.8, 9 =0.10. & = 0.06 taken as known, § = 0.01
(standard errors in brackets)

A=o01 A=oes A=o010 A-o2s A-o0s A =100

k .8407 5396 8418 8410 8401 8487
(.1324) (.1332) (.1347) (.1337) (.1853) (.1503)
¥ 0000E-L .B999E-1 L0095E-1 .1000 .00001-1 1000

(T478E-2)  (.TA61E-2) (.7523E-2) (.7B17E-2)  (.7582E-2)  (.7738E-2)

Table 11. DMLE of the Ornstein-Uhlenbeck process. T = 100
True Values: k = 0.8, 9 = 0.10, ¢ = 0.06, § = 0.01
(standard errors in brackets)

A-onn A-oes A-zoio A=ozs A-os A =100

k 8373 8224 8077 7590 BBT5 5719
(.1319) (.1304) (.1289) (.1200) (1078)  (.9162E-1)
¥ 0009E-1  9000F-1  .0OG5E-1 1000 990GE-1 1000

(.7478B-2)  (\14628.2) (.7627E-2) (7527E-2)  (.T605E-2)  (.TTO0E-2)
0 B9TSE-1  587T9F-1  BTE0E-1  5429E-1  A951E-1  4183E-1
(4200E-3)  (.9296E-3) (.1208B-2) (1916E-2) (2477H-2) (.2097E-2)

Table 11. CLSE of the Square Root process. T = 100
True Values: k = 0.8, ¥ = 0.10, ¢ = 0.06, § = 0.01
(standard errors in brackets)
A-oo A=oos Awow A=o0z A-o0s0 A =100

k 8409 8405 8437 8456 8522 8822
(.1331) (.1363) (.1408) (.1495) (.1690) (.2419)
¥ 9000E-1  9990E-1  .9995E-1 1000 9998E-1 .1000

(7AI6E-2)  (.7305E-2) (.7465E-2) (.7447E-2) (.7525B-2) (.7688E-2)
O .6000E-1  .6002B-1  .600SE-1  .6012E-1  .B036E-1  .G00SE-1
(4237E-8) (9690E-3) (1410E-2) (2360E-2) (3605E-2) {6651E-2)
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Table 12. Indirect Estimates of the Ornstein-Uhlenbeck process. T = 100
True Values: k = 0.8, 9 = 0.10, ¢ = 0.06, § = 0.01.
(standard errors in brackets)
A=o005 A=o10 A=02 A=050 A=100

k 8045 8044 8044 8045 8048
(.1869) {.1938) (.2009) (-2224) (.2616)
¥ 9967TE-L 9069E-1 . .0061E-1  .0957E-l  .0062F.1
(1122B-1)  (1127B-1)  (1137E-1)  (1154B-1)  (.1168E-1)
O 6006E-1  .6012E-1  .60L7TE-1  .6028H-1  .GOS5E-1

(1335E-2) (2021E-2) (.3352E-2) (.5187E-2) (.8345E-2)

4 Conclusions

The estimates of diffusion models from discrete data using standard methods
when T is small are significantly biased even when the diffusion coeflicient,
0, 18 known. All maximum likelihood estimators tend to behave like the
DMLE considered in this paper so that the possibility of obtaining & good
mitial value for o becomes crucial. Simulation based estimators like the one
defined Gourieroux et al (1994) instead appear to resolve this problem very
well. For a large T, instead, a conditional least squares estimator defined in
Overbeck and Ryden (1997) should be preferred to the maxirmum likelihood
estimators of the type considered in this paper.
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