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ABSTRACT

The dynamlcal consequences of the endogeneization of the supply of labour within the basic
neoclassical Solow’s model in continuous time are investigated. The rate of change of the supply
of labour is modelled via a malthusian relation between fertility and income, whereas the process
of entry into the labour market is modelled via a suitable time-delay representation. Strongly
persistent oscillations appears via the mechanism of the Hopf bifurcation which suggest a simple
alternative explanation of the demoeconomic fluctuation. Hence the present work shows that the
basic neoclassical growth paradigm, once endowed with a “realistic” formulation of the labour
“supply, becomes capable to endogenously explain the main stylised fact of economic growth,

namely the generation of globally stable oscillations around a path of balanced growth.

1 Introduction

The aim of the present paper is to investigate the effects of endogenous labour supply dy-
namics within the standard neoclassical Solow’s growth model (Solow 1956) in continuous time.
This endogeneisation is based on a simple coupling of an age structure argument {absent in the



original Solow’s) plus a ”classical” i‘elation between fertility and income, which was well recog-

nised by Solow itself. A realistic formulation of the process of labour supply recruitment must

take into account past demographic behaviours in that the new entries into the labour force at
time £ are the outcome of the fertility behaviour of past generations. This process is "filtered”
by the age structure mechanism, which is embedded in our Solow-type model by resorting to

time-lags. As largely recognised, tlme-delays represent a simple and clever way to embed age

structure within complex models (see for instance the classical work by McDonald (1978,1989)).

Moreover fertility is assumed to poéltlvely depend on the stage of economic growth, synthetlsed‘

by an index of the level of perca.pﬂ;a. income. This dates back to the classical malthusian view
(Malthus 1798'). Positive relations between fertility and income, although often confuted in the
_rich countries, still keep relevance in the developing world. Moreover very recent modelling ef-

forts are based on such assumptmm For instance Prskawetz and Feichtinger (1995, p. 61) notice -

: "... the wealth of the industrial countries may distract attention from malthusian fo'rces that
nevertheless are quile visible in ma.hy developing countries.”

Other early works on the mteractlons between population growth and the economy are for
instance Day (1983), Day and Walther (1989), Day et al. (1989), Feichtinger and Sorger (1990),
Feichtinger and Dockner (1990), Prskawetz and Feichtinger (1995). In particular Day {1983),
Day and Walther (1989) and Prskawetz and Feichtinger (1995) postulate a nonlinear interaction
between: population growth and thb economy in a discrete-time framework. Although all these
contributions are capable to obtain complex behaviours, they pay sometimes the price to resort to
ad-hoc or complicated assumptxons Moreover they exploit the ”complex behaviours potential”
‘embedded within discrete nonlinear maps. The aim of the present paper is somewhat different: we
aim to verify whether highly general assumptions are nonetheless capable to preserve nontrivial
dynamical behawours, .e., first of hll persistent oscillations.

- For this purpose we adopt the mmpl%t posmble relation between fertility and income (i.e.: a .

linear relation), and resort to a continuous time-framework. -As the present investigation demon-
strates, stable oscillatory behaviours may be generated within the Solow’s model of balanced
growth, in a fully endogenous manner (contrary to other neoclassical models such as the Real
Business Cycle scheme, where oscillations are induced by a stochastic forcing), by resorting even

to fairly simple assumptions. More precisely, persistent oscillations may occur in the Solow’s

model when the rate of change of the labour supply is correctly assumed to depend (even in the
simplest manner) on past demographic behaviours. From this point of view our results appear
of some interest in the area of the neoclassical theory of growth. As well known, a main con-
tribution of the 1956 paper by Solow has been to prove that in one-good economies, provided
the production function satisfies the standard neoclassical conditions, then it always exists a
long term globally stable balanced growth. This central result has permitted to overtake the
"unhappy” view of the Harrod and Domar’s knife-edge, by showing that growth can be a rule
for the economy. The present world;,shows that the basic neoclassical growth paradigm not only

explains the stylised fact of balanced growth, but, once endowed with a correctly demograph-

ically founded formulation of the labour supply, becomes capable to endogenously explain the

1As known Malthus was first to develop, in the Essay, a general scheme of demo-economic dynamics with fully:
endogenous population depending on economic growth .

-



other main stylised fact of economic growth, namely the generation of globally stable oscilla-
tions around a path of balanced growth. Altough other modeling efforts {several among the
aforementioned authors) have found growth with cycle within the descriptive (i.e.: non optimal)
neoclassical growth model, the present work appears to be appealing in that it is based on a
minimal set of extra nonlinear ingredients. .

The present paper is organised as follows. In the second section a basic Solow-type model
with endogenous population depending on the current fertility is introduced and its properties
are studied. In the third section we introduce a more general model embedding a time-lag in the
reaction of rate of change of the supply of labour to past levels of income, and its properties are
investigated by means of local stability analysis plus Hopf bifurcation. In the fourth section we
complete the analysis of the model by investigating its global properties via numerical simulations
and we discuss the economic meaning of its main results. The core of our results is summarised

in the conclusions.

2 A basic model with énddgenous population

The standard textbook form of the classical Solow growth model is defined by the ordma.ry
differential equatlon (ODE):
=sf(k)—(5+n)k | 1)

where k = K/L denotﬁ the ca.pltal-labour ratio, f(k) the production per unit of labour s the

saving rate (0 < s < 1), § > 0 the rate of capital depreciation and n > 0 the rate of growth
- of the supply of labour, which is assumed fully exogenous. In particular, when a Cobb-Douglas
_ production function is chosen, the model collapses in the following Bernoulli ODE:

b=sk®—(+n)k - @)
where o denotes the elasticity of substitution of the capital (0 < a < 1).

The problem of the endogeneisation of the supply of labour was already .b‘roadly considered
by Solow (1956) itself, who specified the rate of change of the supply of labour n as a function
of the current level of percapita income f(k), by writing:

n=n(f(k)) =n(k%} @)

Solow made a quick quahtatlve analysis of the effects of a very genera.] (non monotonic) form for
the n function, and evidenced the conditions under which labour supply effects may gives rise to
1nstab111ty with respect to his ba.lanced path of economic growth

As in this paper we are essentially mterested in the eﬁ'ects of forces of ”fundamenta.l” nature,
in what follows we will assume, for simplicity, that the map n be linear. We therefore have the

model: ) . _
k = sk* — 6k — nk'*® - (4)



or: _ |
| k=k*(s— 6k —nk) (5)
where n. > 0 now is a parameter tuning the reaction of the rate of change of supply of labour (and
hence of the employment) to changes in percapita income. The system (5) always admits, as in
the basic Solow model, the zero equilibrium (E;) and a unique positive equilibrium (F;) which
is globally asymptotically stable for every positive initial condition. The positive equilibrium is
found as the solution k; of the equation: '

s —nk = 6k _ ()

It is easy to see that k, is a smooth function of the structural pa.rameters ky = ki(s,n,8,a)

. satisfying: ‘ .
O o, O o Ok G
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>0 3% =" Ba

Bs 0 on

We notice that the previous conclusions are unhaltered if we replace the assumption of lin-
earity of the n(.) with a general increasing function, saturating or not.

The model (4) is unrealistic: the assumption that the rate of change of the supply of labour is
a function of the current income (i.e. possibly due to an underlying participation effect) is hardly
defendable in the neoclassical framework. Despite this lack of realism it represents an adequate
modelling frame within which to cast the investigation of the consequences of fully endogenous
population dynamics, as will be done in the next section by resorting to time-lags. As the
introduction of time delays does not modify the equilibria of a previously unlagged model, this
makes it of some interest to compare the main steady-state properties at the positive equilibrium
' B of model (4) with the corresponding features of the basic Solow’s model. This comparison is
made in Table 1 below which reports the equilibrium level of the percapita income Y/L = k°,
and the long term rate of growth of the absolute level of the output Y /Y. For simplicity in ta.ble
1 we have assumed § = 0 in both models. The assumption § = 0 will be mantained in all the
subsequent sections of the present paper, as it permits more clearcut results while preserving ail-
the dynamical features of the more general model with nonzero capital depreciation rate. We
notice that the assumption of no capital depreciation was systematlcally employed by Solow in
his 1956 paper.

" Table 1. Long-term per-capita income and rate of growth bf the output in the Solow’s Model
(SM) and in our extended Solow Model with Population dynamics (SMP)

SM SMP
v I/(1-a) | |
() :
_]l_:_ n:t ‘Sanl—a

As known the normative implication of the Solow’s model is that there is a trade-off in the
society’s choice between a higher per capita income with a lower population growth and a higher



population growth with a lower per capita income (a feature actually observed in developing
countries). In the SMP model high levels of growth of the output are joined with relatively high
(relatively low) level of population growth depending on whether is high (respectively low) the

“elasticity of capital when is high (respectively low) the saving ratio and is low (resp. high)
the income reaction of the fertility. In other words the undesirable trade-off between economic
growth and population growth of the Solow’s model is strongly mitigated in the SMP model
when, the fertility behaviour being equal, the households are far-sighted (in the sense that they
are high saving ratios) in the case of low elasticity of capital, or, the saving ratio being fixed, the
households have an intense ” malthusian” behaviour when there is a high elasticity of capital. In
sum: the trade-off is mitigated if in an economy characterised by low a, the households are very
far-sighted and scarcely malthusian (and the converse in an economy with a high a).

3 The effects of time del‘“ays

3.1 Time delays as a synthetic representation of the overall demo-
graphic process

As already pointed out the representation of the overall demographic mechanism of age
structure is quite involved (see the discussion in Manfredi and Fanti 1999). As pointed out in
the literature time-delays represent good approximations in that they permit & more economical,-
or more simple, representation while often preserving, at the same time, the same richness of

results.

The intuitive idea is simply that the rate of change of the supply of labour is related to
past fertility following a prescribed pattern of time-delay. There are two main alternatives:
fixed delays and distributed delays. The former is better suited when there is no variability in
the process of transmission of the past into the future: for instance when we assume that all
individuals are recruited in the labour force more or less at the same fixed age. Viceversa when
recruitment may occur at different ages, i.e. with different delays (for instance because the time
“needed to complete formal education is heterogeneous within the population) distributed delays
appear more suited’. ‘The introduction of a distributed delay in the population term leads to
the integro-differential equation (IDE for simplicity): _

i = sk® — 6k — ( i ‘m n (k%(7)) Gt — T')dr) k | (®)

where the term n (k*(7)) may be interpreted as the past (rather than current), income-related
fertility, and G(t — 7) is the corresponding delaying kernel, usually taken as a probability density
function. Still for simplicity, and coherently with the past section we still assume that the .
map 7 is linear. In this case n may be interpreted, without ambiguity, as a.”malthusian”

280 Invernizzi and Medio (1992) for an economically oriented discussion on the role played by distributed
delays as models for heterogeneous behaviours, ‘ ' :



parameter relating (past) fertility to past income.Of ceuree a positive relationship between
fertility and income is fully compatible with the standard neoclassical household model (Becker
1981), postulatmg a trade«off between the size of the family and the level of consumption. '

In what follows we will treat (8) by reducing it to a dynamical system of higher order. This is
possible if we postulate that G be a reducible kernel belonging to the so-called erlangian family
(McDonald 1989). We say that a density function f(z) is erlanglan with parameters ('r £) when
it has the form: F

f(m-r,ﬁ) Gy zle=fe 250 r=1,2,. ;ﬂ>0 | (9)

As well known (McDonald 1989) in presence of erlangian kernels, IDE as (8) may be reduced to
higher order systems of ordinary differential equations.

3.2 The case of the exponentially fading memory

Undef the simplest assumption on the delayihg kernel, that of an exponentially fading memory
(‘thJS amounts to put r =1 in (9)) with mean delay T = 1/8, the IDE (8) may be reduced, by -
posing: :

| X = / K(DG(E - T)dr o)
to the 2-dimensional ODE system: - | |
k= sk® — nkX |
E 11)
X = (k= - X) th

Obviously (8), arid hence (11) as well, preserve the equilibria of the basic unlagged system (4).
It is convenient to make the change of variable: k% = Z which gives to the second equation the
classical adaptive form. In fact:
Z=0ok*%k=0aZ (.ermTﬂJl - nX)
Definitively, under the assumption of an exponentially fading memory, the system takes the form:
; 2ol

Z= a(sZ = —nZX) - (12)

X ﬁ(Z X) :
It is easy to show that the main qualitative features of the basic Solow’s model are preserved by

the delayed versions (11) or (12). The system has again the zero equilibrium F; = (0,0) and the
nonzero equilibrium E; = (Z;, X;) with coordinates:

(@ W

implying:

ky = (14)

St



The local stability analysis about £ leads to the jacobian matrix:

(49 )

It holds: ' .
Tr{J(E)) == (~nZ;(1—a)+B) <0

-and:

Det(J(Ey)) = B(nZi(1 —a)+ anZy) = fnZ; >0 -
The last relations show that the system (12) is always locally stable, independently on the size
of the delay. Moreover a.straightforward analysis of the directions of motion in the (Z, X)
plane shows that E; is globally asymptotically stable’: E;, may be embedded in a sequence of
rectangular regxons in all of whlch the directions of motion point inward entering next rectangle.

3.3 The case of the humped delay

The assumption of an exponentially fading memory, although often used as the basic mem-
ory model for a very wide spectrum of phenomena, is not a satisfactory representation of the
demographic process of fertility plus aging with transition into the labour force. From this point
of view a "humped” distribution is a more faithful and consistent distribution. Let us therefore
make the assumption that the memory "mechanism” be of the * humped” type, by choosmg as
the delaying kernel the second member of the erlangian family (r = 2):

G(u) = SPueP* | (15)

The density (15) is the simplest type of humped erlangian density. Under (15) the basic IDE (8)
may be reduced to the form: ‘
Z=aZ(sZEE‘L—nX) ,
X=BR-X) . (16)
R=p(Z - R)
Notice that in this case the delay has been reprasented via a pair of adaptive mechamsms As
before we have the zero equilibrium Fp and the positive equilibrium E; = (2}, Xh, R;) where:

Zy=X1=HR = (E)a , : : (17)
The local stability analysis gives the jacobian: | |
' - ~(1-a)nZ; . —anZ; 0 '
HB) = o g 8 (18)
o ' B -8/

$This actually holds for all initial conditions belonging to the interior of the first orthant.
4Notice that the system inherits the lack of uniqueness typical of Solow’s model at the origin. This does not
modify the main results.



The characteristic polyhomial: .
PX)=X34+a; X* +ap X + a3
has the coefficients: -
. a1 =28+ (l—-a)nZi;a=28(1-« a)nZy + 5 a3 = ;527?31
which are strictly positive. Hence, by applying the usual Routh-Hurwicz stability test, £, w1ll
be locally stable provided:
Ay =aja9 —ag >0

This leads to the stablhty condition: . : :

2 +nZi (4= 50) f+2((1-a)nZ)* >0 (19)

The parabola f{f3) defined by (19) is convex and it has a strictly positive intercept. The abscissa
-of its vertex is positive or negative depending on whether its second coefficient is negative or
positive. This happens when: 4 — 5a > 0 i.e. for a < — = o, f(B) is always greater than zero.
Viceversa, when a > § the abscissa of the vertex w111 be positive. In this case as long as the
discriminant D is negative f(8) will remain strictly positive and no loss of stablhty is possible

in this case as well. As:

D = [nZ; (4 (1 - a)— a)] —16((1 — @) 'nZl) —
this happens for a < 8/9 = a3 (where oy > al). In sum, for & < @3 no loss of stability is possible
(o is not relevant as a stability threshold). Viceversa, for a > a3, f(5) always has two strictly

positive real roots, let us denote them again as 8;,8,, 81 < B, implying that losses of stability
may occurs. In particular both the values 3,, 3, represent feasible Hopf bifurcation values for

the B parameter. They are given by:

bua="2 42 yBa— g o @0)

Hence (fig. 1) for a > a5 the B equilibrium is locally stable for * very large” (in relative terms)
values of 3, i.e. for § > B,, or else for very sma.ll values of B, ie. for B < ﬁl



Fig. 1 Form of the "stability” parabola f(0).

At the points 8 = B,, 8 = [, stability is lost. In the window 8; < § < 3, the E; equilibrium
is locally unstable. At the points 8 = f;,8 = (3, a Hopf bifurcation occurs. To formally prove
this fact we need to show that: i)purely imaginay eigenvalues exist for the linearised system
at 8 = f,,8 = B, due to a "continuous” movement of a pair of complex eigenvalues; ii)the
crossing of the imaginary axis by the involved complex pair occurs with nonzero speed. The
first part of the proof is evident, see for instance Liu (1994). To check that the crossing occurs
with nonzero speed, we have to consider (Asada and Semmler 1992, Liu 1994) the sign of the
derivative dA;/dB evaluated at the bifurcation point, which differs from the derivative of the
real part of the bifurcating complex pair only by a nonzero constant. It holds:

dA,

5 =08 + 22 (4-50) +2((1 - )nZ)’

At both the bifurcation points §, 5 it holds:

dA | - -
| (_‘E’E)ﬁm = 8 (406 + (4 — 5a) nZ)

Now we have to specifically consider the behaviour of dA;/df3 in the two distinct bifurcation
points. For instance at 3 = 8, we have: . :

(%)ﬁﬁz = B ([5&——4-{-1/[9&—8]1:!]nZ+(4~—5a)nZ)l=
. (1/[962-8]04) nZf, >0 : .

This confirm that crossing at (3, always occurs with nonzero speed. It’s similar to prove that
‘crossing at 3, always occurs with nonzer speed. This fully proves that the Hopf theorem {Guck-
enheimer and Holmes 1983) holds, confirming the existence of a Hopf bifurcation at both the
points 3,, 5. Hence, the smooth functions of the structural parameters: B, =8,(s,na); By=

85 (s,n, a) where:
n /s\*
Bi(sma) = % (H) [Sa ~4—/loa—8] a]
n {8\* ‘
ﬁg (3,?7.,&) =] Z (;) {50! -— 4 o \J[QOZ - 8] 0.']
respectivély represent bifurcation surfaces in the parameter space, for which it holds:

By (5,7,0) < By (8,n,0) R

We may summarise our main findings by the .followin_g:



PROPOSITION 1. When the profit share o is below a prescribed threshold (o < ag) the
system (16) replies the traditional Solow’s behaviour, with convergence to the unique globally
stable equilibrium Ey. When a > g then the system (16) continues to converge to the globally
stable equilibrium E, only when § is sufficiently large or sufficiently small, i.e. for 3 > 3, and
B < By. In the whole window B; < 8 < B, the equilibrium E, is. locally unstable. At the points

B = 81,8 = B, Hopf bifurcations occur.

4 Simulative evidence and working of the system

The fact to know that a Hopf bifurcation exists nothing says about the stability properties
of the involved periodic orbits, i.e. it does not say whether the bifurcation is supercritical
or subcritical (i.e. whether the periodic orbit is locally stable or unstable). Unfortunately
the investigation of the stability properties of periodic orbits emerged via Hopf bifurcation at
dimensions greater than dimension two is a quite hard task (Marsden and MacCracken 1976).
Moreover the predictions of the Hopf theorem are local in nature: they nothing say about global
behaviours. We therefore resorted to numerical simulation to clarify the stability nature of the
Hopf bifurcations occurred at the points 8 = 8,,8 = 8, , and more generally to investigate
-the global properties of our model. The simulative evidence shows two remarkable facts: i)both
the. points 8 = §;,8 = B, generate supercritical bifurcations (i.e. locally stable oscillations).
In particular the whole window 3, < 8 < (3, is a region of stable oscillations. ii)all the the
properties of the model seem® to hold globally: when the E; equilibrium is locally stable, then
this stability seems to be global and not only local; when E; looses its stablhty due to the switch
occurring at the bifurcation pomts then the emerging limit cycle seems not only locally stable

but also globally stable.

We can now sumimarise our main dynamics findings, by illustrating the working of the model.
There is a region defined by & < a3 = 0.88 in which the traditional behaviour of the Solow’s
model is confirmed and the economy converges to a long term (globally stable) steady state.
.Viceversa, for very large o i.e. a > a5y the economy may be destabilised by the action of the -
delay. More in detail, as long as B is very large (in relative terms), i.e. for § > B,, which
corresponds to very small” values of the mean delay T = 2/8, the E) equilibrium preserves its
stability. But as 3 is decreased (this happens for increasing mean delays) stability may be lost.
This happens for # = (3, where a first Hopf bifurcation occurs and E; exchanges its stability with
a stable limit cycle. The whole window 8; < 8 < 3, (characterised by intermediate values of the
mean delay) is characterised by (globally) stable oscillations. Finally, by furtherly decreasing 8,
a further bifurcation occurs at 8 = 3, where the E; equilibrium is restored: hence for very large
mean delays the Solow’s traditional behaviour is recovered once again.

There is an important remark to do concerning the degree of plausibility of our work. Persis-
tent oscillations seem to require an uuplausibly large value of the elasticity of the capital-labour

*We could not produce a formal proof of this fact.



ratio a. Although this is indisputable it is important to recall that the purpose of our work
. is simply that of evidencing the forces which may lead to persistent oscillations in the Solow
.model when a realistic distributed-delayed mechanism of formation of the supply of labour is
assumed jointly with endogeneous population according to a general malthusian view. Indeed,
by resorting to higher order distributions of the delaying kernel (such as gamma densities of
higher order, i.e. Gamma(n,) with n = 3,4,5...) which should more realistically capture the
. phenomenon of the delayed entry into the labour force, we are able to obtain the same type of
qualitative behaviour found, i.e.  persistent oscillations, with more and more realistic values of
the elasticity of the capital labour ratio. The obvious drawback of these more realistic variants
is that the power of the analytical treatment is lost (Manfredi and Fanti 1999), and the system
can only be analysed via simulation. ‘

Finally, of particular interest seems to be the process of switching and reswitching of stability
between the B, equilibrium and the limit cycle emerging via Hopf. At the points 8 = ,,8 = 3,
distinct Hopf bifurcations occurs giving rise to periodic behaviours in suitable neighborhood of

- these points. A predlctlon of Hopf theorem is that the ray of the emerging perlodlc orbit depends
linearly on the distance between the actual value of the bifurcation parameter and its value at the
bifurcation point. In simple words: let be given a dynamical system depending on a bifurcation
parameter y and undergoing a Hopf bifurcation at p,. Let us suppose that the bifurcation is
supercritical in a right neighborhood (ug, ity + o). This means that for every u € (ug, iy + o).
a stable limit cycle exists with ray proportiomal to [ — wol|. Now, as simulations show, in
our systems these neighborhoods are of the type (8,, 8, + 7),(8,,8: — p) . But simulations also
show that the ray of the periodic orbits emerging at 8 = £, is strictly increasing as 8 decreases
from S, to a threshold value 3" and then decreasing as [ is furtherly decreased from g* to B,
where the fluctuations are reabsorbed (and the ray converges to zero). This seems to denote
that the process of switching between the two regimes of bifurcation is a smooth one. This is
coherent with the fact that, although 8 = §,,8 = f, are distinct Hopf bifurcation point, the
whole bifurcation process is due to the "activity” of a unique complex pair of eigenvalues which
has negative real parts for large 8, crosses (with nonzero speed) the imaginary axis a first time at

- B = B,, keeps positive real part as long as 3, < 8 < 3,, and crosses anew (always with nonzero

- speed) the imaginary axis at # = ;. The conjectured form of this process is represented in fig.

2' . : .

Fig. 2. Schematic view of the conjectur_ed form of the process of stability switching and
reswilching between the E, equilibrium and the limit cycles appearing at the

Hopf bifurcation points 8=p8,0=0

_The economic interpretation of our findings is the following. When o > & increasing dela'.yé
may destabilise the traditional Solow’s behaviour, by generating persistent oscillations. These



fluctuations appear to be the outcome of the demographlc memory operatlng through the age
structure delay. :

Notalbly, these fluctuations persist in a very wide range of the mean delay. The fact that
periodic behaviours may persist also for very long time scales of the delay seems to suggest
the existence of possible "supergenerational” echoes, deriving from patterns ascribed to birth
generations different from the "last” ones, a fact which seems to be of a certain interest.

We illustrate the actual workixig of our model by resorting to a concrete example in which, just
to reduce complexity, we sterilize the effects of a, s and n and concentrate only on the dynamical
eﬂects of the delay parameter ﬁ In the following expenments we set a = 0. 92, 5 =03, n = 0.01.

The simulations show that by decreasmg the delay parameter § the phase portrazt of the sys-
tem undergoes the following transformations: convergence to a globally stable node—convergenge
to a (globally) stable focus—convergence to a (globally) stable limit cycle— reswitch with con-
vergenge to a (globa]ly) stable focus. More in detail: i)the equilibrium point E; is a stable
node as long 8 > f; = 0.1 (i.e. a mean delay about 20 years); ii) E, is a stable focus for
B3 > b > B, & 0.064 (a mean delay about 31 years) where f, is the largest bifurcation point;
it)at B, the first stable limit cycle appears. Fig. 3a and 3b report a two-dimensional view of the
involved cycle. The motion along the cycle is counterclockwise. The amplitude of these cycles
increase, by decreasing 3, up to the point 8* = 0.02 (a mean delay about 50 years); iv) by
furtherly decreasing G from £* 2 0.02 the amplitude of the limit cycle starts decrease, up to the
smaller bifurcation point 8, = 0.0056, where limit cycles dlsappear, v)in the range ﬁl >8>0
E1 is a stable focus again.

| Fig. 8. a)A stable limit cycle appeared at 8 = ﬂz ;

'b) a stable limit cycle appeared at 8 = 3,
‘Table 2 reports in a synoptical view the process of phase transition in our model when a > a.

Table 2. Windows of the delay parameter and
mlatz'v'e. behaviour of the SMP model

Windowsof 8| (0,4,). __(81:55) (B2, B3) (B4, 00)
. E, stable focus | Stable limit cycle | Stable focus | Stable node




The shape of the bifurcation curves helps in understanding the feature of the bifurcation
process. Although, as previously pointed out, the overall bifurcation loci are surfaces in the four-
. dimensional parameter space (vnth the restriction 0 < a < 1), i.e quite complex to represent,
some insight comes from the exploration of the 2-dimensional bifurcation relation between the
delay parameter 3 and the remaining parameters taken one at time. The figures 4,5 below report
the shape of the "restricted” (i.e. by keeping fixed the values of the remaining parameters) -
bifurcation functions in the planes (8,n) and (8, s).

~ Fig. 4. Form of .the bifurcation loci in the (B,n) plane



Fig. 5. Form of the bifurcation loci in the(3,s) plane

From the economic point of view, the curves represented in fig. 4,5 descrlbe the sensitivity
on the bifurcation values 3y, 8, of the delay parameter § to changes in, respectively: i)the n
parameter, embedding the rection of fertility to changes in income, and ii)the saving ratio.

As clear from the two figures, both the bifurcation values 8,, 8, of the delay parameter are
monotonically increasing functions of respectively n and s. This implies that the entire window of
periodic behaviours translates upward meaning that the mean delays causing the appearance of
periodic behaviours tend to decrease. In substantive economic terms this fact seems to suggest
that in societies where households are far-sighted and/or "strongly malthusian”, oscillations
appear when the average age of entry into the labour force is relatively anticipated compared to
the oppsite case of myopic and ”weakly malthusian” households.

5 Conclusions

This paper represents a contribution to the recent literature on endogenous economic cycles.
- Traditional explanations in continuous time are essentially based on the ”easterlinian” mechanism
~ (Samuelson (1976), Feichtinger and Dockner (1990), Feichtinger and Sorger (1989, 1990)). Some

of these efforts are based on clever modelling tricks, in that they avoid the direct use of economic
variables by collapsing in purely demographic models plus some nonlinearity embedding the
interaction with the economic subsystem (Samuelson (1976) and Feichtinger and Sorger (1989)),
or are based on somewhat ad hoc assumptions, such as Feichtinger and Sorger (1990).

In this paper an alternative explanation of the generation of demoeconomic fluctuations in
(continuous time) Solow’s type growth models is proposed, which is based on two very simple
but highly realistic assumptions, i.e. a malthusian relation between income and fertility, and the
existence of the (indisputable) delay of transition into the labour force, due to the age structure
process. The ensuing model exhibits a very simple and resilient mechanism for the genera.—
tion of persistent oscillations emerging from a full recognition of the demoeconomic interaction

* within the true core of the most traditional neoclassical growth theory, i.e. the So!ow s model in.

continuous time.

‘This fact seems to be of some interest in the area of the neoclassical theory of growth, as
it shows that the neoclassical growth paradigm not only explains the stylised fact of balanced
growth, but, once endowed with a correctly demographically founded formulation of the labour
supply, becomes capable to endogenously explain the other main stylised fact of economic growth,

- namely the generation of globally stable oscillations around a path of balanced growth.

A last point concerns economic po]icies. The present work provides clearcut results on the.
interaction between levels of production, rates of population growth and the generational lag in



~ the entry in the labor force which could be useful for a better design of the economic policy, for
~ instance for what concerns the labour market and its interaction with the eductional system.
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