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1 Introduction

The valuation of path dependent (Asian) European contingent claims, i.e., claims
whose final payoff depends on the history of the underlying asset price, is a difficult
task in mathematical finance. Only in some simple cases the no-arbitrage price of
a path dependent contingent claim computed as the expected final payoff under
the risk neutral probability measure is obtained in closed form, for some results see
[26]. Tor example, considering a lognormal stochastic process for the underlying
asset price, we have that its geometric average is still characterized by a lognormal
probability density, but things change dramatically considering the arithmetic average,
only recently its moments have been determined in [14]. In some cases, introducing
path dependent variables the state space can be augmented in such a way that the
no-arbitrage price of the claim is obtained as the solution of a Cauchy problem.

When a closed form solution for the price of the contingent claim is not available,
we have to rely upon numerical methods. Different methodologies have been applied
in the literature to address the problem. The approaches can be split in two groups:
methods aiming at estimating the conditional expectation of the final payoff and
methods aiming at solving numerically the Cauchy problem associated with the
no-arbitrage Partial Differential Equation (PDE). |

Looking at the methods focusing on the estimation of the expectation of the
final payoff, we have the following: Monte Carlo simulations ([18, 27]), fast Fourier
transform to calculate the density of the sum of random variables as the convolution
of the density functions ([8]). In [14] a closed form solution of the no-arbitrage price
of the Arithmetic average fixed strike price is obtained through the inversion of a
Laplace transform. Considering a lognormal diffusion process for the underlying
asset, the pricing density can be approximated by substituting the arithmetic
average of the price with the geometric average which preserves the lognormality for
the average. The approximation is obtained by equating the moments of the true
distribution and of the approximating distribution, see [19] for an approximation
up to the second moment and [29] for an approximation up to fourth moment,
or by adjusting the strike price to correct for the misspricing, see [30]. In [7] an
upper-bound to the approximation error occurred using this procedure is proposged.

The standard approximation methods based on partial differential equations
require some regularity conditions of the solution of the no arbitrage PDE. Considering
path dependent contingent claims in a general setting, the PDE is a strongly
degenerate parabolic equation in three dimensions (time, the underlying asset price
and the path dependent variable). In this setting, the needed regularity seemed out
of reach. To avoid this difficulty, many authors considered a two dimensional second
order partial differential equation which is obtained from the original one through
a change of variable (similarity reduction method) when the contingent claim final
payoff has a particular form (see [17, 1, 12, 31, 25]). This method covers a large
set of contingent claim contracts, including arithmetic Asian options, but not a
contingent claim characterised by a general final payoff.



A general payoff and therefore a PDE in three dimensions is considered in [5,
4, 3]. In [5] it is proposed a numerical method based on some analysis arguments
and on some probabilistic remarks. Convergence of the numerical scheme is proved
by means of the central limit theorem. In [4, 3] a method based on the notion
of viscosity solution is developed. Convergence of the numerical scheme is proved
through the Dini’s theorem. The advantage of these two methods, with respect to
the classical ones, is that they don’t need the regularity of the coefficients of the
PDE, on the other hand they don’t give any explicit convergence estimate.

This paper aims at showing that the solution of the no arbitrage partial differential
equation is in fact sufficiently regular and that the standard numerical methods can
be employed to approximate it. We first present theoretical results concerning
existence, uniqueness and regularity of the solution, then the theoretical results are
coupled with results about the capability of numerical methods to approximate the
no-arbitrage price of the contingent claim. Differently from the above mentioned
methods, a convergence estimate is explicitly given. The results obtained for the
geometric average are built on the results obtained in [24]. The numerical method
proposed in this paper is a classical finite-difference method. The main problem
encountered applying this method to the arithmetic average case is the lack of
suitable a-priori estimates near infinity for the partial derivatives of the solution.

We concentrate our attention on arithmetic and geometric average options, some
insights are given also for more general path dependent options and assuming a
stochastic process for the underlying asset price characterized by constant elasticity
variance.

The paper is organized as follows. In Section 2 we present the path dependent
contingent claims framework, then we consider in detail the arithmetic and the
geometric average options and the other examples discussed above. In Section 3 we
state the analytic and the numeric results for the Cauchy problem related to the
geometric average options, while in Section 4 the arithmetic average options are
considered. In both sections we first present the theoretical results and then in two
subsections we describe the numerical methods. Finally, Section 5 contains some
remarks about the general case.

2 Pricing Path Dependent Contingent Claims

We consider a standard complete markets economy. We take as given a complete
probability space (2, F, P) with a filtration (F;)o<;<r which is right continuous and
such that Fy contains all the P-null sets of F.

There are two assets traded in two markets: a risk-free asset and a, risky asset.
The risky asset price follows the [t6 stochastic differential equation:

dS, = p,(t, S)dt + o,(t, S)AW,, S, >0, (2.1)



where W, is a Brownian motion in ®, F; is the natural fittration of W,. Let the
classical conditions ensuring existence and uniqueness of (2.1) be satisfied. The
risk-free asset is a bond whose price evolves as follows:

dB; = r(t)Bidt, By > 0. (2.2)

r(f) is the risk-free rate at time £. Note that if we directly refer to the risk-neutral
probability measure associated with the Brownian motion W then p, = r. The
analysis can be extended to a Brownian motion in R™ still with complete markets,
for simplicity we concentrate our attention to the scalar case.

Following [31, 5] we consider the class of European path dependent contingent
claims defined by the path dependent variable A4, = W([S;],<;) which is assumed to
follow the stochastic differential equation

dAy = palt, S, A)dt + ou(t, Sy, A)dW, (2.3)

and by final payoff function (S, Ar).

The no-arbitrage price of the contingent claim is given by the expected value of
the final payoff under the risk neutral probability measure. The price can also be
obtained as the solution V' (t, Sy, A;) of the following Cauchy problem:

—v+?—K+ SQK+1 OV + 8V+1 62V+ ___BQV
ARV 85 T 275952 T Hega T 2% 542 -

with
V(T, Sy, Ar) = QSr, Ar). (2.5)

In what follows we restrict our attention to the class of path dependent options
characterized by a payoff which is a function of the entire history of the underlying
asset price (S, 0 <t <T'). We do not consider forward start options.

Many path dependent contingent claims are traded in financial markets, for a
survey see [26]. Among them we remember the following:

o Arithmetic average floating strike call option:

Ar

Q(ST, AT) = max(.S’T — T

0 At /Sd'f #'a.""'S O-a.—:
o Arithmetic average fized strike call option:
Ar ¢
Q(ST, AT) ES max(—ﬁr - E,O), At == Sq-d".", o — S, o, =0
0
o Geometric average floating strike call option:

t
QSr, Ar) = max (S — ei-’rt,O), Ay ——-/ log(Sy)dr, s =log(8), o, =0;
0



o Geomelric average fixed strike call option:
t

Q(Sr, Ar) = max(eff:n — B0}, A = / log(S;)d7, pe =log(S), o, = 0.
0

In the first two contracts the path dependent variable is given by the arithmetic
average of the underlying asset price, in the last two contracts the path dependent
variable is given by the geometric average of the underlying asset price. In practice
only contracts written on the arithmetic average are exchanged in financial markets.
However, it is useful to evaluate contracts written on the geometric average for
two main reasons: the problem is easier and it provides, under some conditions,
an approximation to the no arbitrage price of a claim written on the arithmetic
average.

3 Geometric Average Options

First of all we consider a lognormal stochastic process for the underlying asset price,
i.e., us = uS and o, = ¢S, where y and ¢ are two non zero constants. Then the
Cauchy problems for the price of the Geometric average floating strike call option
and of the Geometric average fixed strike call option become

—rV + %g + TSZ—E + %a%ﬁ% + Iog(S)g-% =0 (3.1)
with
V(T, S, A) == max(S — e%, 0), (3.2)
or
V(T, S, A) = max(e% — E,0}). (3.3)

Lettlng Tr = lg log(S)’ Y = jo_éA and
g ror? 2 oz
u(zr,y,t) = 622\_/20' w+(22_-l\/_§) v (T —t,eV5, %) :

we see that the differential equation (3.1) is equivalent to

&%y Ju  Ou
@ + I@ = a, (34)

and that the final conditions (3.2) and (3.3) become the initial conditions

'r'—crz [ o
u(x,y,0) = e 3V " max {975 — 8721’?,0} (3.5)



and

T—U’g (=2
ulz,y,0) = A" max {67'599—" — E, 0} . (3.6)

Equation (3.4) has been extensively studied in the literature. Let’s recall some
known results. Equation (3.4) was first considered by Kolmogorov (see [28, p.167]),
then in the introduction of [16] concerning hypoelliptic operators. See [20] and its
bibliography for an exhaustive survey of results about equations like (3.4).

In 28] it is shown that the function I" defined by

_ W3 (z — £)? 3 t—T1 2
F(wgy:tafﬁ:”')—meﬂ) (—4(ﬁ——-7“)_(t—7')3(y_n‘ 2 ($+€)) )
(37)

if t > 7,0z, y,t;6,m,7) = 0 if t < 7, is a fundamental solution of (3.4). We
stress that I' has some important properties that are distinctive of the heat kernel:
for every fixed ({,7,7) € R3 T is a C* function in the variables (z,y,t) €
(R3\{(£,n,7)}) and, for every ¢ > 7, it is a Gauss kernel in the variables (z,y).

In order to simplify the notations, in the following we shall denote by L the
differential operator

& 0 0
and by Sy the set R x Rx]0, T[. For a given function ¢, that is continuous on R?,
we shall say that u is a solution to the Cauchy problem

{ Lu=10 in (z,y,t) € Sy,

u(z,y,0) = ¢(z,y) in(z,y) € R?,

if the equation Lu = 0 is satisfied in every point of Sy and u(x,y,t) — @(2,y0) as
(z,y,t) = (x0,90,0), for every (zg,yo)} € R%. The following result holds true (see
[23]).

THEOREM 3.1 Let ¢ € C(R?), such that

(3.8)

/R-z e (2, ) dr dy < 0o (3.9)
for some positive constant c. Then the function u defined as
wat) = | Tloytion O)elé,n) de dy (310)

is a solution to the Cauchy problem (5.8). Moreover, if u and v are two solutions
of (8.8) and satisfy the following condition

/ e—c(mﬁ—i—yz)ru(m}y)t) _ 'U(Q?, y’t)f dﬁ'} dy dt < o0,
S

for some constant ¢, then u = v.



REMARK 3.2 Note that the condition (3.9) is satisfied whenever the payoff is a
continuous function such that 0 < V(T,S,A) < S. Theorem 3.1 ensures that,
among ol the solutions of (3.8), the function defined by (3.10) is the unique solution
corresponding to a price V such that 0 < V (¢, S, A) < 8. This condition is satisfied
by most of the conlingent claim contracts.

REMARK 3.3 The results stated above can be generalised to the equation

&u u  Ou  Ou
a(x,y,t) g +b(@, 4, ) 5 = e = B (3.11)

where a and b are bounded and Hélder continuous functions and a(z,y,t) > ag > 0
for every (z,y,t) (see [22]; of course in (3.10) the function I has to be replaced by
the fundamental solution of (3.11)). Thus we may consider equations (3.1) with
coefficients r and o depending ont and S.

3.1 Numerical approximation

In order to provide a numerical approximation of the solution of (3.8), we will adapt
some results in [24|, where a boundary value problem for a bounded subset of R?
was considered. Let’s define the “discrete” operator

) — e,y + 6z, t—6
LGu(x'ayat):_U(m y’) U((:;y—l_ T )+

u(z — h,y+ 6x,t — 8) — 2u(z,y + bz, t — 8) +u(z + h,y + 6x,t — §)
h? ’

that is an approximation of the operator I in the sense that

Leu = Lu + (h? + 6)O(h, 6)
(here O(h,§) denotes a bounded function). The operator Lg is well defined in the
grid
G = {(jAm,kAy,nAt) eR:jkne Z},
with Ay = h, Ay = § and A, = 1§ and the following approximation result holds.

TurorREM 3.4 Let u be a solution of (8.8), ug be a solution of Laug = 0 in
GNSr,ug = ¢ in GN{t = 0}. Then, for every e, &2 > 0 and for every H compact
subset of St there exists a grid G, verifying the following stability condition

Ay
(Ag)?

< (3.12)

l\.')lb—l

such that

- <
(w,yfggémﬂlu(x’y’f) ua(z y, )| < &,



du, ’U.G(l' + Amayat) - UG(.’E, Y, t)

max -z ) — < g
(z,,t)EGNH 63;( 20 A, < &

Moreover £, = O((/_\m)z) and £ = O(Am).

REMARX 3.5 The techniques employed in the proof can be easily adapted to the
study of equation (3.11). In that case the stability condition becomes

A < _1_}
(Aw)2 - 2(1.0

(where ao = sup a(x, y,t)).

It is convenient to assume that the coefficients a and b are d?lﬁerenﬁable functions
and that their derivatives are locally Hélder continuous.

Proof of Theorem 3.4. We basically repeat the proof of Theorem 3.3 in [24]. The
new difficulties are due to the fact that the domain of the solution is unbounded,
so we shall briefly indicate the needed changes. The proof is divided in three Steps:
we first show that it is sufficient to approximate the solution of a Cauchy problem
corresponding to an initial datum @ with compact support, then we will prove the
convergence result assuming some further regularity on the solution, finally we shall
remove that additional conditions.

Step 1 For every R > 0 we consider a function & € C(R?) such that @(z,y) =
w(z,y) when |(z,y)| < R, &(x,y} = 0 when |(z,y)| = 2R. Let H be a compact
subset of R*x]0,c0[. Then, for every € > 0, there exists R > 0 such that, if &
denotes the solution to the problem

Lu=0 in {t>0}
u=¢ on{t=0]},
then we find

max |u{z) — u(z)| < /4. (3.13)

zeH

The proof of this assertion follows from the fact that |p(€,n)| < edlEl, while
T'(2;€,7,0) < coe Il

for every z € H and for (£,7) € R% |(&,1)| > R, (where ¢g,¢; and R are suitable
positive constants. For a detailed proof of the last inequality see Lemma 3.1 in
[24]).

Step 2 Suppose that

dxt

sup
{t>0}

< M, sup
{t>0}

<M (3.14)

w—QL-Q- 2'&'
dy Ot




for some M € R and denote by g the solution to the discrete problem

{LGu=o inGﬂ?>O%

v={ nGNit=0
Then, since
~ JUA W 3 0 2~ 2 A4y A2 9%
Leu=1L — | == — = Ll t i # e Ty
gu=Li+~ (1 5 Bt) w(w1,y1,t1) + 74 am4(m2,y2, 2) + 24 ax4(a~3,y3,t3),

for every (z,y,t) € GN {t > 0} and for suitable (z1, y1,%1), (2, Y2, 82), (3, ys, 83) €

{t > O}, we have
~ A, Al
| < —4+ == .
JLG'U|_(2 +12)M

From this inequality, by standard techniques, we find that, if A, and A; satisfy the
stability condition (3.12), then

_~ _~ f
[ua(z,y,t) — Uz, y,t)| < TMAE, (3.15)

for any (z,y,t) € G N H. As a consequence, if we choose A, and A, small enough,
we obtain
sup |ug — ul < e/4.
Gn{t=0}

Step 3 We next remove the additional hypothesis (3.14). First of all, we note that,
as a consequence of the representation formula (3.10), the function @ is uniformly
continuous; then there exists g > 0 such that

sup |u{z,y, t) — u(z,y,t + )| < e/4. (3.16)
{t=0}

Moreover, again by (3.10), we get the following estimates

9 _9V;
x@y at)

Consider now the function v(z, y,t) = @(x, y,t -+ t): it is a solution to the problem

A~

aai < ¢oftp) max |p].

< e(tp) max|@|, sup
{tzto}

up
{t=to}

Lv =1 in {t > 0}
v(z,y,0) =u(z,y,t0) for (z,y) € R?,
its derivatives are bounded, then, by Step 2,

sup |vg —v| < g/4, (3.17)
an{t>0}
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where (obviously) v denotes the solution of the problem

Lev =20 inGﬂ{t>U},
?J(.’L‘,‘y, 0) == ﬁ(ﬁ,’y,to) for (11313/, 0) €G.

Again by (3.16) we have

~ €
Sup |UG(:B1 Y, 0) _UG(LE,‘y,O)I < Za
(z,4,0)eG

hence

sup |?Jg(3$',y,0) "H'EG(‘T: y)0)| <

(=) eGN{¢20}

From this inequality, from (3.13), (3.17) and from (3.16) we obtain the first claim.
The second claim can be proved in the same manner. From (3.13) and from the
representation formula (3.10) we readily obtain

=~ m

Ou Ou

or Oz

sup
HN{t>t}

while from (3.15) it follows that

E(SS + Am:y:t) B a(ma yat) _ :"«‘TG(x + Amryu t) _ EG(J‘?’ yﬂt) <
Ag A, B
ﬁ(xayat)_aG(mayvt) E(QZ-FAw,y,t)—ﬁG(&?-l—Am,y,t) 2Mt¢
_,}_ S Aa}_.
A, A, 3
Arguing as above, we get from this inequality
ou Az, y,t)— TN g o~
sup o wy,t) - Nl + Cantel) —glty )‘ < -+ MA,,
(z,yty e HN{t=ta} dz Ay

with M depending on M and on H and this completes the proof of Theorem 3.4.

4 Arithmetic Average Options

Assuming that the underlying asset price follows a lognormal stochastic process, i.e.,
ps = @S and o, = 8, then the Cauchy problems for the price of the Arithmetic
average floating strike call option and of the Arithmetic average fixed strike call
option become

oV oV 1 , 0 ov
—-TV+"(%+T‘SE§+§US@+55;{—O (4.1)
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with
A
V{T, S, A) = max (S — 5;,0) , (4.2)
or
A
V(T, 5, A) = max (T - E, 0) ) (4.3)

Before starting the study of the above Cauchy problem, we observe that the
change of variable & = log(5}, performed in the previous Section, transforms the
differential equation (4.1} into a PDE like

52u+ Ou  Ou
dz2 " ¢ dy ot

that looks more difficult than (3.4). Indeed, many “local” properties of the Kolmogorov
equation (3.4) also hold for the equation (4.4), such as the C™ regularity of the
solutions (since (4.4) satisfies the Hérmander’s condition). Due to the exponential
growth of the coefficient of the derivative 52, we cannot hope to get, for the solutions

of (4.4), the same “global” properties proved for the solutions of (3.4). In the sequel
we shall consider the differential equation in its original form (4.1) rather than in
the form (4.4). We will follow the approach proposed by Gleit in [15] which makes
use of the results by [2].

(44)

Letting

. 2
LRSI m=—=,4=1m +m,
[2) 22 T

u(z,y, t) = z™e?V (T _2 %) , r

we see that the differential equation (4.1) is equivalent to

5y Ju _ Ou

B By " Bt
and the Cauchy problem (4.1) with final condition (4.2} or (4.3) becomes

3:2

$2%+m%§:% for (z,y,t) € Qr (4.5)
u(e,y,0) = p(z,y) for (z,y) € R* xR, '
where Qr = R* x Rx]0, £-77 and
=g _ 2y
w(z,y) = 2™ max (:c 02T’0) (4.6)

in the case (4.2) (we are interested in positive values for y),

2
¢(z,y) = £™ max (;% — kB, 0) (4.7)
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in the case (4.3).
We next state an existence result for solutions to problem (4.5), by using the

notion of super- and sub-solution. We shall say that u is supersolution to the
problem (4.5} if

(#B5ekcl o) o (49

ulw,y,0) > ¢(z,y) for (z,y) € RT x R

and that v is subsolution to (4.5) if the condition (4.8) holds with the reverse
inequalities.

e supersolution and subsolution, respectively,

THEOREM 4.1 Letyp € C(RTxR),w,u b
tu < uin Qr. Then there exists a solution u to

to problem (4.5) and suppose tha
the problem. ({.5) such that

u<u<y in Q. (4.9)

The proof of the Theorem is postponed in Subsection 4.1, while some results
about the numerical approximation of the solution of (4.5) are presented in Subsection

4.2,

REMARK 4.2 Choosingu =0 and E(w, y,t) = mm“e‘ﬁ' for the p'mblem corresponding
to the initial condition (4.6), u = 0 and w(z,y,t) = m—e te™y/a? 2, k=

m? + 2m + 2 for the problem comaspondmg to (4.7), we readziy obtain the existence
of a solulion to prodblem (4.5).

In both cases we have u(0,y,t) = u(0,y,t) = 0, then we implicitly assumed that
u(0,y,t) = 0 for every y,t; thus, by Theorem B in [2], u is the unique solution that
satisfies (4.9). Indeed, the hypothesis w(0,y,%t) = 0 is not necessary, as shown in
Remark 4.6.

We conclude this Section with a remark due to Ingersoll [17], that in some cases
allows to reduce the Cauchy problem (4.5) in another form, where the PDE is a
nondegenerate parabolic equation in only one space variable.

Suppose that the final condition is a homogeneous function of degree 0 in the
variables S, A:

S

{this condition is satisfied, for example, when we consider the datum (4.2), but it’s
not by (4.3)). Denote by W the solution to the Cauchy problem

o+ (1= 0)8E + G =0 for (a,1) € R0, ],
W(T,z) = V(T,1,z), for x > 0,

V(T,S,A)=S-V(T,1,é)

then the function V (¢, S, A) = S-W (¢, £) is a solution to the problem corresponding
to the PDE (4.1).
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4.1 The Cauchy problem

In order to give the proof of Teorem 4.1 we first recall a result by ([21], Theorem
1.5), about the Dirichlet problem in bounded sets. In the sequel we will denote by
L the operator

2 b2 0 8

THEOREM 4.3 Let Q be a bounded open subset of R® such that Q C {x # 0} and
let f € C(O). Then the problem

{ Lu=0 inf (4‘11)

u=f indf,
has a generalized solution, in the sense of Perron-Wiener.

Note that the hypothesis @ C {z # 0} does not explicitly appear in [21], but
it is assumed the condition (that actually is equivalent) that the coefficient of the
derivative 6 7.7 18 bigger than some positive constant.

Some remarks on the above generalized solution are in order. The solution u
given by the Perron-Wiener method turns out to be a €°°(£2) function, that solves

Lu =0 in the classical sense. Moreover the following interior regularity result holds
(see Theorem 1.4 in [21]).

PROPOSITION 4.4 Let Q be a bounded open set such that Q C {x £ 0} and let u
be a solution of Lu = 0 in . Then, for every open set € such that 0 Q there
exist two positive constants ¢ and o, that do not depend on u, such that

[u() = u(t)| < ez = wl*sup u,

Jor every z,w € Q).

Concerning the boundary condition u = f on 6, it may happens in general
that it is not satisfied. We shall say that a point 2z, € 8Q is a regular point if
the generalised solution u to the Dirichlet problem (4.11) satisfies u(2) — f(z) as
z — 2 (z € §2), for every given f € C(82).

Sufficient conditions for the regularity of a boundary point are given in [21]
(see Theorems 6.1 and 6.3). In the case of the operator (4.10) we can state such
conditions as follows. We shall say that the vector n. € R? is an outer normal vector
to the open set 1 at the point 2y € I if Binj(20 + n) C RO\Q (here B,(z) denates
the euclidean ball with center z and radius r).
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PROPOSITION 4.5 Let ) be an open subset of R® such that Q) C {x # 0} and let
(zo,y0,t0) € ). If there exists an outer normal vector n = (ng, ny,n;) such that
ng # 0, then (xo, 4y, %) 5 a reqular point.

Moreover, if n, = 0, but xon,y — ny > 0 and there exists a positive constant &
such that z36* < Ty — Ny and that

{(3:, y,t) € R%: 6% (w — 20)” + (y —yo — 6%ny)* + (t — tg — 6%ny)% < 64} c RM\Q,
then (o, yo,te) 45 a reqular point.

We can now use the above results, concerning the bounded open sets, to prove
Theorem 4.1.

Proof of Theorem 4.1. We shall define a sequence of bounded open sets that fills
{27 and we shall solve a suitable boundary value problem on every such domain.
We start by providing a continuous function ¢ that extends ¢ to the domain
Qp in such a way that u < & < @ (we may define the extension as @(z,y,t) =
max{u(z,y,1), p(z, y)}).

For every k € N we set {, =|1/k, k+ 1[x| — k, k[x]0, T[. By Theorem 4.3, there
exists a generalised solution u; to the boundary value problem

(4.12)

Lu=0 for (z,y,t) €
uw=@ for (z,y,t) € 0.

Moreover Proposition 4.5 ensures that every point in the following set

{(x,y,t) € 0Q:t =0} U {(z,y,t) € O x=1/k}U
{(:c,y, t) € Q- a:—Jc—I—l}U{a:y, t) € 90 : y—k}

is regular. From this fact and from the maximum principle for degenerate operators
([6, Proposition 3.1]) it follows that

u<u,<u in Q. (4.13)
We can now provide a solution to (4.5) by using the sequence (uy) ken: FOT every
k € N we let
A= {(z,y,t) € Qu : T/3k <t < T(1—1/3k)}
and we note that
Or = A (4.14)

keN

Trom (4.13) it follows that the sequence (ug),., is bounded in 4; and, from
Proposition 4.4, we see that it is also equicontinuous, thus there exists a subsequence
(ukm)] oy that uniformly converges to some function v, € C(A4;). We note that, as
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a consequence, vy 1s a weak solution to Lu = 0 in A, (then, by Hérmander’s results
[16], it is also a C*(A;) function and classical solution to Lu = 0) moreover

y<wvy<uw in Ay

We next apply the same argument to the sequence (ukl,j)j oy On the set Ay and

we obtain a subsequence (ukz,j)jeN that converges in C(A4;) to some function vy,
that is classical solution to Lu = 0 and such that u < vy < W in Ay. Note that,
since w9 18 the limit of a subsequence of (ukl, j)j N it musts coincide with v, in A;.

We next proceed by induction: for every m € N we consider the sequence
(Ukm_l,_,- )j oy O1 the set A, and we extract from it a subsequence (ukm,j)j N converging
in C{A,,) to some function v,, classical solution of Lu = 0, such that u < v, <%
in A, and that it equals v,,_; on the set A4,,_;.

We then define a function u in the following way: for every i (z,y,t} € Qr we
choose m € N such that (x,y,t) € A, and we set u(z,y,t) = vu(z,y,t). Note that
the definition is well posed, since, if (z,y,t) € Ay, then vy(z,y,t) = vmlz, y,1).
Moreover «u is classical solution to Lu = 0 in Oy and satisfies u < v < T in Q.

To conclude the proof of Theorem 4.1 we have to verify that, for any (xo,v) €
Rt x R, we have

(m,y,t)—il(lzlo,yg,o) U(CI:, Yyt) = (o, Yo)- (4'15)
We already observed that, if &£ € N is such that (zg, yo,0) € 3%, then Proposition
4.5 ensures that every solution uy assumes the boundary datum ¢ in (xg, yo,0). This
fact is not sufficient to guarantee that also the function w has the same property,
nevertheless.the proof of Proposition 4.5 is based on the use of “barriers”, that give
an estimate of the rate of convergence as (z,y,t) goes to (xg, yo,0), that is uniform
with respect to k. From that uniform estimates we can get (4.15). See [21] and [9]
for a more complete treatment of the regularity of the boundary.

We next state a comparison result for the problem (4.5) that improves Theorem

B in [2] (in the sense that the assumption on the behaviour of the solution near the

boundary is weaker than the one made in [2]). We first define the following function
in Rt xR

Pz, y) = log (:132 + oy + 1) — log(x) (4.16)

and we note that

z,Y) ——— 00, Ylz,y) ——— 00,
w( 2 I(z3)]l—00 1/( y) (#4)—(0,50)

for every 4o € R.
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REMARK 4.6 Let u € C(Qr), such that Lu < 0 in O, that w(z,y,0) > 0 for every
(z,y) € RY x R and assume that there exist two positive constants M and k such
that '

u(:II, Y, t) = AMGM#(EW);

for every (z,y,t) € Qp () denotes the function defined in (4.16)). Then u > 0 in
Or.

We do not give the proof of the above statement since it follows the same lines as
the proof of Theorem B in [2], making use of the function defined in (4.16) instead
of the one proposed in [2].

4.2 Numerical approximation

In this Section we shall consider an approximation method for the Cauchy problem
(4.5). The main technical difficulties are due to the lack of suitable a priori estimates
“near infinity” for the derivatives of the solution.

In order to avoid such difficulties, it is convenient to approximate one of the
functions . defined in (4.12), by using the same technique employed in the study
of geometric average options.

In the proof of Theorem 4.1 we proved that, for every compact H C  and for
any £ > 0, there exists £ € N such that

max g — u] < =, (4.17)

N

Moreover, by Theorem 2.1 in [24], there exists a grid G and a function (uy),,,
defined on £ N &, such that

, (4.18)

D] M

—(u <
S CORIE
thus

— < e.
max [u — (ug)o| < €

(actually, Theorem 2.1 in [24] applies to the differential equation with constant
coefficients but, as already observed in Remark 3.5, it can be easily adapted to any
differential equation with Hélder continuous coefficients. )

We stress that the above idea is not completely satisfactory, since the inequality
(4.17) relies on some compactness argument and does not give an explicit dependence
of the approximation error ¢, in terms of & (while inequality (4.18) actually does).

To avoid this problem, instead of approximating a function uy, we approximate
a supersolution and a subsolution of the problem (4.12). To this end we consider a
function x € C§°|1/k, k+ 1[x] —k, k[, such that x = 1 in |2/k, k[x] — (k- 1),k - 1]
and we set
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Let u, and 74 be the solutions of the following Cauchy problems in Oy (=]1/k, k +
1] - &, k[x]0, 7])

Lu =0 per (z,y,t) € O, Lu=0 per(z,y,1t) € Qy, (4.19)
w= per (z,y,t) € o, u=7 per(z,y,t) € . '

Being u < u <7 in §2, we have
P<u<? mdUN{t<T}

and therefore u;, < u <7 in (. Thanks to these facts we can state the following
result.

THEOREM 4.7 Let u be a solution of (4.5), w, and uy solutions of (4.19). Then
for every e > 0 there exists a grid G, satisfying the stability condition

A 1
(A:)2 < g’ (where ap = supa(z, y,t)},
such that
(w)p—e S <u< < (W) +e inGNQ.

Note that, given the numerical solutions (), and (W), Theorem 4.7 allows
us to estimate the approximation error £ with respect to to the grid G, &k and to
the data ¢ and .

5 The General Case

Let us consider now the Cauchy problem associated with the partial differential
equation (2.4) in its general form. In this context there is no hope to prove the
regularity properties of the solution that allow us to demonstrate the approximation
results obtained above. In fact, being the matrix of the coeflicients of the second

derivatives in {2.4)
1 ol 0.0,
2\ 0.0 o?

positive semidefinite with an eigenvalue equal to zero, it may be possible to convert
the PDI in another nondegenerate PDE in a submanifold. In that case the Cauchy
problem should be studied with different techniques. As observed in [5], it is possible
to characterize such equation through Lie Algebra. To this end we rewrite equation
(2.4) as follows

1
Ly = EXZU + Yu, (5.1)
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where X and Y are the following directional derivatives:

0 5} .0 _ 8 0
X_aa’—c%_‘_%@—y’ Y—lia%‘l‘#sg:;—a,

(#1a € [is are cocflicients that depend on o, o, ftg € f1).

We are now able to recognise equations which admit regular solutions. In fact,
when the commutator [X, Y](= XY ~Y X) is zero at every point of some open subset
of R?, then it follows from the Frobenuis theorem that, up to a change of coordinates,
the operator only acts on two variables, while the last one may be considered as a
constraint. In that case the solutions of (5.1) are not necessarily smooth; on the
other hand, when the change of variables is performed, the differential equation
becomes nondegenerate and the classical numerical methods can be applied.

If otherwise the commutator [ X, Y] never vanishes, by the results in [16], every
solution of (5.1) is a C* function. In that case it seems possible to employ the
numerical techniques used above. Among operators of this kind there are the
ones corresponding to Path Dependent Options in a Constant Elasticity Variance
Environment which will be considered in next subsection.

5.1 Path Dependent Options in a Constant Elasticity Variance
Environment

In the above sections we have considered a geometrical brownian motion for the
underlying asset price. This type of diffusion process is heavily employed in mathematical
finance because it allows for a great tractability. The main drawback is that
observed data are not well described by this process. Starting from this observation
in [10, 11] the following diffusion process for the underlying asset price was proposed:

dS = pSdt + 05%dz,
with 0 < ¢ < 1. In this setting the Cauchy problem (2.4)-(2.5) becomes

ov av 1, 0%V v
—FV+—8?+?"S(_9§+§O'S 53?_;_#&8_121-_07 (5.2)

with
V(T: ST: AT) = Q(STa AT)1 (53)

where o = 29 and p, = § (arithmetic average) or y, = log(S) (geometrc average).

The technique used in the study of the problem corresponding to the arithmetic
average options can be employed in the study of the Cauchy problem (5.2)-(5.3).
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TrneoreM 5.1 Letp € C(RY xR),a,b and ¢ be locally Hélder continuous functions
in Qp(= RTxRx]0,T(), witha > 0. Moreover, let U, u be, respectively, supersolution
and subsolution to the problem

{ a%‘-—l—b%—km%—l—cu:% for (z,y,t) € O, (5.4)

u(z,y,0) = ¢(z,y) for (z,y) € RT x R,
such that u <u in Qp. Then there erists a solution u to (5.4) such that
u<u<u in Q.

Consider Qr(=[1/k, k + 1[x] — k, k[x]0,T]), let x € C°J1/k, k + 1[x] — k, k[ be
a function such that x = 1in |2/k, k[x] — (k — 1),k — 1[, pus

elz,y,t) = x(z, ), y) + (1 - x(z,v))ulz, y,1),
@(.’E, Y, t) = X(g": y)(p(a‘,‘, y) + (1 - X(.',C, y))ﬁ(ma Y, t)

and denote by u;, and 7 the solutions to the boundary value problem

{ o+ b2+ o2+ ou=2 for (z,y,1) € U, (5.5)

U= for (z,y,t) € Oy,
corresponding to 1 = ¢ and ¥ == i, respectively.

THEOREM 5.2 Let u be a solution to (4.5), w, and Wy, be the solutions to (5.5)
corresponding to ¢ = ¢ and Y =, respectively. Then, for every € > 0 there exists
a grid G, satisfying the stability condition

AW 1

AL < 20 (where ag = sup a(:c,y,t)),

such that
() — & <uy Su<h < (W) +e inGNQ.

REMARK 5.3 When u,(S) = S, we can write the Cauchy problem corresponding
to Path Dependent Options in o Constant Elasticity Variance Environment in the
Jorm (5.4) by choosing the coefficients a = 20°2%b = zr,c = —r. In the case
pia(S) = log(S), in order lo rewrite equation (5.2) in the form (5.4), it is convenient
to perform the chenge of variables T = log(9).

We do not give the proof of Theorems 5.1 and 5.2, since it is essentially the
same as the proof of Theorems 4.1 and 4.7, respectively.
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6 Conclusions

In this paper we have analyzed the Cauchy problem associated with the no arbitrage
price of an Asian option. We have shown that the solution of the Cauchy problem
and therefore the no arbitrage price of an Asian contingent claim has enough
regularity so that classical finite difference methods can be applied to approximate
the solution. An estimate of the approximation error is obtained.

These results are useful in an applied perspective because a closed form solution
for the no arbitrage price of Asian options is not available in general. Numerical
methods aiming at approximating the Cauchy problem solution have been employed
in the mathematical finance literature without an adequate analysis of their convergence
and of their approximation error. This is the void filled in our paper.
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