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1 Introduction

In this paper we characterize the hedging strategy for an European contingent claim in
an incomplete Markovian market.

The paper is related to the analysis developed in [Ocone and Karatzas, 1991, Colwell et al., 1991,
Bensoussan, Elliott, 1995], where a hedging strategy for an European contingent claim is
obtained in a general setting in a complete markets economy. In this paper, specializing
the market model to be Markovian, we extend their analysis to an incomplete markets
setting. A hedging strategy of an European contingent claim associated with a risk neutral
martingale measure is cornputed by means of some techniques developed in the stochastic
calculus of variations literature.

Our approach is different from the classical one. In a Markovian market model (either
complete or incomplete), assuming that the contingent claim final payoff is written as a
function of the underlying state variables (stock prices and other factors), the hedging
strategy of a contingent claim is provided by means of the partial derivatives of its no
arbitrage price which is given by the solution of a second order partial differential equation.
This approach allows us to write the hedging strategy in terms of the partial derivatives
of a function which is unknown and therefore we rely upon numerical methods to solve
the partial differential equation and to compute the associated partial derivatives. Our
aproach is different, it defines the hedging strategy as the conditional expectation of the
Malliavin derivative of the final payoff. '

Our analysis has also some feedbacks for the complete markets case. In a general
setting the hedging strategy for an European contingent claim has been obtained through
Malliavin calculus in [Ocone and Karatzas, 1991], the authors stress that their hedging
formulae can be handled only in case of deterministic coeflicients and they say that “it
woild be interesting to try to extract more useful information from these formulae in
situations with random, possibly Markovian, coefficients”, see [Ocone and Karatzas, 1991,
pag.188]. In [Colwell et al., 1991] the task is accomplished. In what follows we refine the
[Colwell et al., 1991] by allowing for lower regularity in the coefficients of the stochastic
differential equations for the asset prices.

The paper is organized as follows. In Section 2 we introduce the Markovian model. In
Section 3, given a generic risk neutral martingale measure, we provide a hedging strategy
for a contingent claim together with the associated cost process.

2 A Markovian Model

We consider the following Stochastic Differential Equation (SDE) in ™

AX'(t) = X (t)[b'(t, X (¢ df+Za t, X (£))dW;(8)], X*(0) € (0,4c0); i=0,...,n, (1)

F=1

where W = (W;,...,W,,)7 is a standard Brownian motion in R defined on a complete
probability space (£2, F,P). We shall denote by {;} the P-augmentation of the filtration
F¥ = o(W(s);0 < s < t) generated by W. The coefficients b = (Bt,...,0") and ¢ =

2



{e, i=1,...n, j=1,...n} are progressively measurable functions [0, 7] x ®**+! — .
X represents the price of the riskless asset (@9 =0, j =1,...,n) and 6°(¢, X(t)) =
r{t, X (¢)) (the risk-free rate).

The coefficients b’ and o} satisfy appropriate growth and Lipschitz conditions so that
the solution of (1) is a Markov process. [0, T is a fixed finite time horizon, T will denote the
expiration date of the European contingent claims. We assume that fg |r(s, X (8))|ds <
L < co a.s. for some L > 0. Assume T = 1 for simplicity.

We observe that under suitable continuity conditions on the coefficients ensuring that
the system of SDE has a pathwise unique, strong solution, then the filtration F coincides
with the P-augmentation of the filtration generated by X (see [Hofmann et al., 1992]).

Differently from other incomplete markets models, see e.g. [Bensoussan, Elliott, 1995,
El Karoui and Quenez, 1995], where the state variables only represent the prices of the
securities traded in the market and the number of Wiener processes is larger than the
security prices, in our setting we have extended the state variables to include not only
security prices, but also other factors, e.g., volatility factors, ete.. The first £+ 1, (1 <
k < n) variables X* (i = 0,..., k) denote the prices of the assets traded in the economy
(including the risk-free asset). Instead, X* (i = k+1,...,n) denote the risk factors which
are not traded in the markets.

We consider an agent who can trade all the £ + 1 assets in the economy, we denote
by =*(t) the amount he invests in the i-th stock at time ¢ (i = 0,...,%). The agent’s
wealth at time ¢ is denoted by V(t). The resulting portfolio of risky assets {m(t) =
(7' (t),..., 7 (#))T,0 < t < 1} is assumed. to be predictable with respect to F;, to take
values in R*, and to satisfy the integrability conditions [ ||o*7 (¢, X (£))7(¢)||?dt < oo, a.s.
and [ |7()T(b(t, X (£)) — r(t, X () 1)|dt < o0 a.s. Given 7, the wealth invested in the
riskless asset (7°) is determined by the budget constraint and the wealth process V(t)
satisfies the following equation

AV (t) = r(t, X)WV (1)t + 7T (B)[(B(t, X (&) — r(t, X () 1)dt + 7, XE)AW (@) (2)

where 1 is an R* vector with entries all equal to 1, b(#, X ()) and (¢, X (¢)) represent the
first k& elements of b and the first k rows of o . Let X denote the prices of the k traded
securities. We assume that the £ x n matrix (¢, X(2)) has full rank for any ¢, so that the
matrix 7 (¢, X (t))7" (t, X (t)) is invertible.

An FEuropean contingent claim is defined as follows.

Definition 2.1 An European contingent claim is a non-negative Fy-measurable random
variable H such that E[3{1)H] < co.

E[] denotes the expectation operator under the measure P and 8(t) = e~ Jo o X (5))ds

Below we will often specialize the contingent claim to be of the form H = g(X(1)) for
a “regular” function g. Note that the contingent claim payoff is allowed to be a function
not only of the prices of the traded factors but also of the non traded factors.

A portfolio strategy «(¢) provides perfect hedging of the contingent claim H if given
an initial wealth > 0 we have V(1) = H almost surely. Perfect hedging of a contingent
claim H is obtained through a self-financed portfolio, i.e., given the initial wealth z > 0
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the contingent claim H is replicated running in continuous time the portfolio strategy
#(t) withont adding-withdrawing money for any ¢. Perfect hedging with a self-financed
strategy for every contingent claim is a peculiarity of complete markets, in incomplete
markets it is not allowed.

In an incomplete markets setting, given the original probability measure P there is
a continuum of probability measures equivalent to the original one such that the asset
prices are martingale under this new measure (equivalent martingale measures). The set
of the equivalent martingale measures can be characterized as follows. Let P one of such
meastires, then we have that

15(A)=LZ(1)dP, VA e F,

where Z(1) is defined as the exponential martingale

2(6) = con{— [ XT(o, X()dW(s) — 5 [ N3, X () ds).
and A(t, X(t)) is an n dimensional relotive risk process such that
Tt X E)AE, X () =b(¢, X () —r(t, X (1)1, 0<t< 1. (3)

Being k < n, equation (3) gives us multiple solutions. Given A(t, X (¢)) solution of (3),
then define the process

. t
W(t) = W) +/ As)ds, 0<t<1,
_ 0
which is an R”-Brownian motion under P. The SDE (1) becomes

X () = X (8, X (0)d+> ot (1, X(0)dW; ()], X'(0) € (0,400); i=1,....n, (4)
Jj=1

where b(t, X (t)) is an n dimensional process, B, X (1) =r(t, X (1)) for i =1,...,k, Le.,
the drift of the traded assets is the risk free rate under the equivalent measure. The drift
of the other stochastic differential equations representing non traded factors are not the
risk-free rate.

Given the initial wealth z > 0, the resulting wealth V at time # satisfies the following
equations:

BV =2+ [ w()8(6)7(s, X ()i (1) @
BEVE =0+ [ w(o) (BT () 8T 0. (©

Note that we restrict our attention to Markovian risk premia and therefore the X (#) turns
out to be Markovian under the eguivalent measures.

An equivalent, martingale measure of particular interest is the minimal equivalent
martingale measure defined by the relative risk process

Mt X () =7 (4 XE) @ X (07T (4 X (6) 76, X(4) — r(t, X(#)1).



3 Hedging in an incomplete markets setting

In an incomplete markets setting, in general, we can not perform perfect hedging of an
European contingent claim through a self-financed strategy. However, some contingent
claims can be replicated through a self-financed strategy. In a Markovian setting, assum-
ing that X only represents the prices of the assets {and therefore they are martingales
under an equivalent martingale measure) and that there are more Brownian motions than
traded assets then it has been shown that every contingent claim of the form g(X(1))
can be perfectly hedged yielding a unique no-arbitrage price for the contingent claim (the
wealth process associated with the hedging strategy), see [Bensoussan, Elliott, 1995]. In
this setting the expectation of a contingent claim is constant for every equivalent martin-
gale measure, see [El Karoui and Quenez, 1995, Proposition 1.7.1]. This is not the case of
our setting. Denoting by X both security prices and non traded factors, then in general
we do not have perfect hedging through a self-financed strategy and we have a contimmm
of equivalent martingale measures yielding a continuum of no arbitrage prices defined as
the expectations of the contingent claim payoff under an equivalent martingale measure.

In case of a continuum of no arbitrage prices, an additional criterinm is employed to
select the price of a contingent claim (e.g., risk minimizing hedging, mean variance hedg-
ing, etc.). As a first step, before discussing some of these criteria, we want to characterize
a generalized hedging stralegy for an European contingent claim associated with a given
martingale measure.

To build a hedging strategy for an Furopean contingent claim we relax the self-
financing requirement by considering a portfolio strategy (£} in R* and a cost process
C(t) in R, which is supposed to be progressively measurable with respect to F;. Given the
injtial wealth = > 0 then the wealth at time ¢ (/(t)) associated with the portfolio process
7(t) and the cost process C(t) is

U(0) = V(0) + Clt) = 55 +C(0) + ﬂ/’ (s, X(s)dW(s).  (T)
where C(0) = 0. V(t) is the wealth associated with the amount of money = at time ¢t = 0.
Considering a self-financing portfolio we have that C(t) = 0, V ¢ > 0: given the initial
amount of money z, then the wealth process /() is obtained by running in continuous
time the portfolio strategy 7 (t) without inserting or withdrawing money at any time ¢.
C(t) describes the amount of money which is required to have the wealth process U{t), in
particular dC(t) denotes the amount of money that the investor should add or withdraw
in order to implement the portfolio 7(t) and to obtain the wealth U(#). Note that the
discounted wealth satisfies the following cquatlon

BV =+ BECE) + [ () B, X())di(s). )

Note that if (¢, X(t)) = 0, Y0 <t < 1,then 8(t) = 1V0 <t < 1, dX* = X' Y0, Fi(t, X(#))dW; i =
1,..., k, and therefore

Ut) =2+ C(1) +[ (s, X(3))dW (s) = 2 + C(£) +[ X (H)dX (). (9)
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Let a martingale measure P and the associated relative risk process A(t, X(¢)) be
fixed. The couple (7(t), C(£)} is a generalized hedging strategy for the contingent claim
H under the equivalent martingale measure P if U/ (1) = H and

BU®E) = EB)H|F), 0<t<1. (10)

E] denotes the expectation operator under the equivalent martingale measure P.U®)
defines the price of the contingent claim according to p.

In what follows we briefly recall the stochastic analysis tools that are needed. Our
analysis builds on the results obtained in a complete markets setting in [Ocone and Karatzas, 1991],
where the hedging strategy is given by the conditional expectation of the Malliavin deriva-
tive of the final payoff through the Clark-Ocone formula. In the general case these for-
mulae are obscure unless the coefficients of the SDE (1) are deterministic, in a Marko-
vian setting more explicit formulae have been obtained in [Colwell et al., 1991]. In what
follows we extend their analysis in three directions. First, we consider the incomplete
markets setting. Second, we require less regularity on the coefficients of the SDE than in
{Colwell et al., 1991].

We begin by developing the representation of the hedging strategy through Clark-
Ocone formula in the incomplete market setting.

First of all let us introduce the Malliavin derivative on the Wiener space. Let S be
the class of smooth functionals of the Brownian motion W, i.e., the random variables
F(w) of the form

Fw) = fW(t,0), ... Wits,w)),

where f : R%*" — R is bounded with bounded derivatives, i.e., f € C(R*™). Observe
~ that § is a subspace of L?(Q2, F, P). The gradient DF' of F is defined as follows

d ‘
a :
w)(E) =" axijf(W(tl’w)’ o Wtg, o) (t), i=1,...,n.
j=1 0
For each p > 1 we introduce the norm

1Fllip = (EA|FP + ZHDFII 7. (11)

“\i

The closure of § under the norm | - |1, is the Banach space of the random variables for
which the Malliavin derivative is defined, we denote it by Dj.

The first tool used below is the Clark-Ocone representation formula of a square inte-
grable random variable (see [?]). Let F € D7 then we have

FIF+ [ B(DFY [ Faw ().

We observe that in our Markovian setting, thanks to the hypothesis of strong solution
and pathwise uniqueness for the stochastic system (4}, the augmentation of the filiration
generated by W coincides with F (and also with the augmentation of the filtration gener-
ated by the process (X% X7, ..., X"), see [Hofmann et al., 1992]). This fact enables us to
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refer directly to the P-augmentation of the filiration generated by X in the Clark-Ocone
formula withont going back to the original probability measure P.

Actually we will use in our analysis a generalization of Clark-Ocone formula (see
[Airault, Malliavin 1995]) which is well suited for the Markovian case. We remark that
the following result also answers the [Colwell et al., 1991] claim about the possibility of
deriving their result as a corollary of the general result of [Ocone, 1984].

Theorem 3.1 Let w:[0,1] x R* — R be a differentiable function such that

du 1
u(l,z) = f(z)

du(l, z) = df (x)
where f is a Cl-function on R*, A is the Laplace operator. Then, for any 0 <t <s<1

u(t, Y (1)) = Elu(s, Y ()|

and

u(s, Y (5)) = Bluls, Y ()l F] + [t " Bldu(s, Y ()| F]T - dY(7) (12)

where - denotes Ito’s contraction. In particular, from (12) with s = 1 and from the fwo
boundary conditions, for any Ct-function f, we have, for 0 <t <1

FOCW) = B OIE] + [ Bl (v 0)IFT - ar (). (13)

In order to get an explicit formula for the hedging strategy using the formula (13) we have
to explicitly write the first Malliavin derivative. Since our process is Markovian, then we
can employ the chain rule and the Malliavin derivative can be written in terms of the
derivative of the underlying process.

The second basic tool is a result concerning the existence, uniqueness and smooth-
ness (in the sense of Malliavin derivative) of solutions of stochastic differential equations.
With very little hypothesis (Lipschitz and growth conditions) on the coefficients of the
equation of X(t) it is shown that there exists a unique continuous solution to the equa-
tion and for any fixed ¢ the random variable X (¢) belongs to the space DY for any p, see
[Malliavin, 1997, Nualart, 1995]. Moreover, the linear stochastic differential equation for
the derivative process DX is explicitly written. We observe that this result generalizes
the diffeomorphism theorem (see [Kunita, Malliavin]) where the coefficients are supposed
more regular, a result implicitly used in [Colwell et al., 1991].

We state now the two results.

Theorem 3.2 Consider the SIME in ™

o,

aY(t) = 32 AT Y (£)dWi{t) + ALY (O)dt, Y(0) = yo (14)
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Let the coefficients A®, A7:[0,1] x R™ — R™ be measurable functions, globally Lipschitz
with linear growth. Then there exists a unigue continuous solution Y to (14) such that for
any.t Y'(t) (i = 1,...,m) belongs to D® where DS° = Ny»1DY. Moreover the derivative
DiY (t) satisfies the following linear equation

, . t — ‘ t__ .
DIY(t) = A (r, Y (r) + f Y Aro(s) DUY ()W (s) + f Aw(8)DI(YF(s))ds  (15)
forr <1 and _
DIY (t) = 0
Jor v > t, and where Ay (s) and Eok,(s) are uniformily bounded adapted m-dimensional

PTroCcesses.

Remark 3.3 If the coefficients of the equation (14) are continuously differentiable then

we have that . _
A(s) = (B A (s, Y (s))

A(s) = (04)(s. Y (5))
A similar result, with stronger hypothesis, (which is also used in [Colwell et al., 1991])

can be obtained when the coefficients of equation (14) are of class C'**, & > 0. This is
refered as the Diffeomorphism Theorem.

Theorem 3.4 Consider (d+ 1) vector fields Aq, ..., Ag on R™ and the following system
of stochastic differential equations:

dY () = fj A6, Y ()W + Aglt, Y (£))dt Y (0) = 1o (16)

where W = (Wh, ..., Wy) is a Brownian motion on R. Fix the starting point at Y (to)
“and denote by U, the stochastic flow of diffeomorphisms of R® associated to (16), that

18
Uieso (VL)) =Y () > 4

where Y satisfies (16) and the initial condition Y (t). Then the map Y (to) — Uss, (Y (t0))
is C1 and its Jacobian Jy._s, satisfies the following (d x d) matriz SDE

d(Joto) = [ S My dW9 + My dt | Ty, (17)

g=1
where (My)2 = BaAg Jork=1,....n and (M)? = 8,A5.

Remark 3.5 The Jacobian process J, (where for brevity we write Jyo = .J;) is connected
to the Malliavin derivative of Y in the following way

DIY'(t) = J(#)J 7 (), A (r, Y (1)) (18)

To show this fact it is enough to verify that this process satisfies (15).
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Let us go back to our problem. Consider the solution X = (X!,... X"} of (4). To
simplify the notation we assume in the following that r = 0, see Remark 3.6 for the case
r # 0. Given an equivalent martingale measure P we have that X evolves according to
the following equations:

AX(8) = Xi(1) i%(t,xm)dm(w =1k

dXi(t) = X6, X (1) dt + Za” (t, X(E)dW,;()] i=k+1,...,n
j=t
Under P we have that (X%, ..., X*) is a martingale and (X*t1, ... X™) is a semimartin-
gale.

In order to write the equation as in Theorem 3.4, we consider the coefficients E(¢, X (¢))
which is the n X n-matrix obtained as the product between the n X n maitrix having the
diagonal equal to the X*’s and the n X n matrix ¢ and B(t, X(t)) which is the vector
whose components are Xb¢(¢, X (t)). With this notation we can rewrite the above system

of SDE as:

AX(t) = S St XE)AW,() i=1,...,k

g=1

dX'(t) = [B?(tXf)dt—I—ZE”(t X(t)dW;] i=k+1,...,n

Let £ the infinitesimal generator associated to X

1 62 n L d
L= R i )
3 2 g 2, P,

Let us consider the function g{(X (1)) and apply Theorem 3.1, then we get the following
representation

E@wumm:ﬁwxmna[m@mnmarﬂw>

= Blg(X (0] + [ BIZL(X () HOIELI (5) Ss)dW (5),

The no arbitrage price of the contingent claim at time ¢ is given by

U(t) = Elg(X(1)|F]

= Blg(x +z:/m22@% T (DIEN T ()X ($)rna ()l *(5) +

h=hk+1"

> [0 IR FEDEANEATAEERE

where J~1 indicates the inverse matrix of .J.



When the coefficients are not smooth then we can still obtain a representation result
using Theorem 3.2. Consider the n X n-matrices valued process

; ; b —
Vi) =8+ [ ()Y ()W (5) + Apg(s) ¥} (s)ds] 19)
then the Malliavin derivative of the process X(t) can be written
DIX(t) = Y/ (1)Y T (r) A (r, X (r)).

Therefore with the same notation as above the following representation holds:

EMXMNM:EMXMH+£EWmMUmﬂWW@

= Blg(X ]+§:[ Zz Yoy (DIFY0 (6) X (8)n{s) AW *(5)+

=f+1

+Z/ﬂ22%2 (DI ()X ()

where Y1 indicates the inverse matrix of Y. ,

In both cases we have three components. The first component, represents z, the initial
amount of money needed to develop the generalized hedging strategy. The second compo-
nent comes from the traded assets, the third component comes from non traded factors.
Considering the case of a smooth payoff function, then the generalized hedging strat-
egy (w(t), C(t)) associated with the contingent claim g(X) and the equivalent martingale
measure P is as follows

« = Blg(X (1)),
0@=Z/¢ZZM T DI () X" (s)one ()W (),

h=k+1

HZEZ X W)ADIFNT ) =1,k

Both the cost process and the portfoho providing the generalized hedging strategy are
experessed through the Malliavin derivative of the final payoff. Note that without the
tools we have used in our anlysis it would not be possible to explictly determine the two
cornponents.

Remark 3.6 When the risk free rate is not zero r(t, X(t)) # 0, the above analysis can be
developed in terms of the deflated process B(t) X (1) where 3(t) = exp{— fir(s, X (s))ds]}.

Remark 3.7 In the case of complete markets then the results established in this section
gives us the results established in [Colwell et al., 1991].
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4 Risk minimizing Hedging Strategy

We consider the couple (7(t), C(t)) replicating the contingent claim g(X (1)), i.e., U(1) =
g(X(1)). We define the remaining risk at time ¢ associated with the portfolio strategy
replicating the contingent claim as R(m), = E[{C(1)—C(¢)}?|F]. In [Follmer and Schweizer, 1990
the hedging strategy minimizing the risk is determined assuming that the stochastic pro-
cess for the asset price is already a martingale; in [Follmer and Schweizer, 1990} the risk
minimizing hedging strategy is extended for a general asset price stochastic process min-
imizing the risk in a local sense. It has been shown that if a hedging strategy (7 (¢), C(¢))
is locally risk-minimizing then C(t) is ortoghonal to W (t).

A martingale measure particularly important in an incomplete markets setting is the
mianimal martingale measure P which is defined by the following risk process:

M) = o (t, X(0) (o (t, X () o (t, X (1)) 8L, X (1) — rt, X (£)15).

Under this martingale measure, performing the analysis developed above, we can
verify the orthogonality of C(t) and W(¢).
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