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~Abstract

We analyze an economy with inside financial assets and outside. -
money. Households have different access on both types of assets and -
money. The paper does not try to explain why outside money exists,
but, using a well known approach in terms of needs of money to pay
taxes. it studies the basic properties of the model. We provide a proof
of existence of equilibrium in this economy which is based on Degree
Theorem. Since households’ demand functions are not differentiable
everywhere standard techniques of differential topology cannot be ap-
plied. Due to this, we show that there exists an open and dense set of
economies where households’ demand functions arc C1.

1 Introduction

In a standard general equilibrium framework with incomplete markets, con-
sumers face the same opportunities to transfer wealth across spot markets.
In real life, we can find many cases where the participation constraints on
financial markets varies from a class of consumers to another. For example,
we can think of collateral securities in American real estate market or of a
credit line which is secured by financial assets. '

In the recent literature we can find several models (see for example [
Balasko. Y.. D. Cass and P.Siconolfi (1990)], [ Cass, D. P.Siconolfi, and
A.Villanacci (1992)], [ Polemarchakis, H. M. and P. Siconolfi (1997)], [ Siconolfi.
P. (1989)}) which present a wide range of diverse restriction on financial
market participation. These kind of general equilibrium models are called



"restricted participation model” and they can be seen as generalization of
the incomplete market case. While [ Cass, D. P.Siconolfi, and A.Villanacci
(1992)] propose a model where the individual participation constraint is de-
scribed by a differentiable strictly quasi-concave function of consumer’s assets
an, our model in enriched by the presence of the outside money whose ex-
change is restricted too. We assume aj, is a function of both consumer’s
‘assets and outside money demands ,i.e. ay (by,m)) > 0.

We recall that by the term Outside money we refer to money which is
a direct debt of the public sector, e.g. circulating currency, or is based
on such debt, e.g. commercial bank deposits matched by bank holdings
of public sector debt. Examples are fiat money, gold and foreign exchange
reserves. On the other hand, Inside money is a form of money which is based
on private sector debt: the prime modern example being commercial bank
deposits to the extent that they are matched by bank lending to private
sector borrowers [ Pearce, D. W. (1992)].

From now on, uniess it otherwise specified, money means outside money.

We can find many contributions in order to understand why money exists
in a General Equilibrium Model. (The reader can see for example | Lerner, A.
(1947)], [ Starr, R.M. (1974)] and [ Starr, R.M. (1989)]). Even when money
exists in a general equilibrium context that does not imply the existence
of a positive price for money. [ Hahn, F. (1965)]. For that reason, there
are several additional assumptions in order to overcome the well-known hot
potato problem [ Cass D. and K Shell (1980)], [ Dubey, P. and J. Geanakoplos
(1992) |, [ Grandmont, J.M. and Y. Younes (1990)], . [ Magill, M. and M.
Quinzii (1988)], [ Magill, M. and M. Quinzii (1996)], [ Starr, R.M. (1974)],
Starr, R.M. (1989)].

We do not try to explain why money exists, but. using a well known
approach in terms of needs of money to pay taxes, we first study the basic
properties of the model. ' ' '

We assume that households have to use money to pay taxes at the end
of the second period. This idea was first introduced by Lerner | Lerner,
A. (1947)] and then developed by other economists | Starr, R.M. (1974)], |
Starr, R.M. (1989)], [ Villanacci, A. (1991)], [ Villanacci, A. (1993)]. Asin |
Villanacci, A. (1993)], in our case, taxes are linear function of households’
wealths. .

We present the set up of the model in section two while section three
deals with Household demand function. Due to participations constraints
and money constraint, demand function is not differentiable everywhere.
Consequently we prove that differentiability is a generic property of demand

function. That allows us to get the existence result which is proved in section
five. :



2 Set up of the model

We consider an exchange economy with two periods; today and tomorrow.
The state of the world today is known, and it is called state 0. Tomorrow
is called period 1 and S states of the world are possible. The set of possible
states of the world is {0, 1, ..., §} with generic element s. The time structure
is the following: in state 0, households receive endowments of goods and
money, they exchange goods and assets and consume the goods they acquired.
Households are not allowed to buy and sell assets freely, but they must take
into account their own participation constraints. '

Tomorrow uncertainty is resolved, one of the S states occurs and house-
holds receive their endowments of goods and money. They exchange goods
and fulfill the obligations underwritten in state 0. Finally households con-
sume the goods they acquired and they use money to pay taxes.

We will use the following notations:

e ¢;° and zj° are respectively, the endowment and demand of good ¢ in
sta,te 8, of household h. '

o ch=(E)Lss e = (D)o, €= (e)ils-

o o} = (z), xh (z3)0 x= (@h ey -

e ey is the endowment of money in state s, owned by household h.. '
® e = (eﬁm)f_o , e = (Eh )fﬂ

¢ b} is the demand of agset 1, of household h. b, = (b} )1__1

e ¢°™ is the price of money in state s.

o g" = (q"m)fzﬂ is money price vector.

e mj is the demand of money in state s of household 4.

o mp=(mg)ly , m=(ma)i_; -

Households’ utility functions have the following properties.

Assumption 1 i) u is @ smooth function, i.e., a C* function.
i) up, is differentiably strictly increasing, i.e., Duy (z;) > 0.
i43) the Hessian matriz D*u, is negatwe deﬁmte
w) For anyu € R, Cl{z € RS, :uy (z) > u} CRY,

We assume consumers cannot issue outside money.
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Assumption 2 m} > 0 for all s and all h.

Prices of goods, money and assets are expressed in units of account. We
assume that prices of goods are strictly positive.

Assumption 3 p** € R, for oll s and all c,where p*° is the price of good
¢ in state s. '

11 1r

Y Y

We denote the matrix of assets yields by ¥ = ;Y is a
ySI ySI
3 x I matrix . Moreover Y¥ =[ Y 1 ]isa S x (I +1) matrix.

It greatly stmplifies our analysis to assume that

Assumption 4 We assume S .> I+ 1 and RankY = I. Moreover YM s
such that rankY™ = I +1 '

Remark 5 The previous Assumption means there are no redundant assets
in the economy. As D.Cass, P. Siconolfi and A. Villanacci [ Cass, D.
P.Siconolfi, and A.Villanacci (1992)] say, ”..In this context, Assumption
is not at all innocuous. When their portfolio holdings are constrained, house-
holds may very well benefit from the opportunity afforded by the availability
of additional bonds whose yields are not linearly independent”.

Households deal with two different kinds of constraints in the assets mar-
ket. On one hand they must take into account the incompleteness of the asset
market (i.e. rankY = I < §) and on the other hand, they must consider
their own participation constraint. The latter is expressed by the following
function:

o RI x R — R#H ' (1)
ai_ : (bh, mg) — a.";; (bh,mg) j = 1, ...,#Jh
where af * = [a] (b, mg)]j:fl" , Jy is a set of indexes such that J, C I.

a“,’; verifies the following Assumption.

Assumption 6 o is'a O, differentiably strictly quasi-concave function, i.e.
for every (b, mY) € R™! and every A € R/

Dal (br,m3) A =0 => ATD?a] (bn,m) A < 0.



If the set J;, is clearly specified and there is no possibility of misunder-
standing about it. we can drop J;, from a;. Moreover this function a, verifies
the following further conditions:

Assumption 7 i) a, (0,0) > 0.

ii) For every (by,m)) € R“‘l such that ah (bp,m$) = 0,

rank (Dah (bh,mh)) = #J,, for every index subset J, C Jp.

i43) For every asset i, there exists ot least one consumer h' such that for
every (by, md) € R the following condition holds :

Db' Qpr (bhr mh,) =10

w) there exists at teast one consumer h' such that :

Dmg,ah' (bh’ mh‘) =

Remark 8 Assumption 7 has important economic meanings.

i) people are not obliged to operate in the assets and/or money markets.
Moreover, there is a small neighborhood of (0,0) where every consumer can
freely operate.

iti) for every asset there exists at least one household who is unrestricted
on that asset market. ,

w) there exists at least one consumer who can arbitrary vary his money
demand.

‘Remark 9 Assumption 7i} are used in order to prove the existence of the
competitive equilibrium. They allow to show that the test economy belongs
to a full measure and open set in which consumers’ demand functions are
differentiable.

Households are not able to create wealth by acting on the assets and
money markets. Hence we obtain the following NO ARBITRAGE Condition
that allows us to define the set of no arbitrage assets and money prices

Deﬁmtlon 10 Let us define the no-arbitrage asset and money price set as:
Qh ={¢= q, ¢™) € R x RS+, /H(bh,mh), such that ay (bpm?) > 0 and
—-q —q™ bn '
Y qml ] l:mh :l > 0 }
where g™t is the vector ™ = (q"“)f=1 = (g™...,gn%) of dimension
S x 1. R '
= ] ) : ] .
Q hEHQh is the set of no arbitrage

In period 1, Mr. A pays taxes nsing money; taxes are proportional to the
value of his endowments.



o 75 € [0,1] € R is the percentage of taxes that Mr. h has to pay for
good c¢, in state s.

H
T, = (Thc)c——l Th = (Th)s—l T = (Th)h» .

An economy is described by a vector w = (e,e™,7) of endowments of
goods and money and tax parameters.

Assumption 11 we 0= Rff X X™ x T where
i)X’“E{ € RE+LH Ze’"°>0 and for s > 1, Z(e 04 em )>0}
h= h=1 _
T € [0, I]SCH )Vs >1,
W) T=4¢ Ghanddc: >0
b)3h" such tha,t Vs>13c i1t #1
m)w ceQ={wel: E]pGR ¢ such thach %) + ¢"™e) > 0 and for

s=1,...,5 p'ej + e’ E'r“p"ce“ > 0}
e==]

Remark 12 As Villanacci [ Villanocci, A. (1993)] observes, condition i)
implies that in each states of the world there ezxists o positive amount of
money; moreover part a) of it) means that tares are a nontrivial function of
wealth, while part b) says there exists at least one consumer, who, in every
states, does not use all his wealth to pay taves. Condition iii) says in. every
state of the world, households are able to pay their tazes using their initial
endowments.

Remark 13 Assumption 11 is uséd in order to prove the existence of equi-
libria for the test economy (see Lemma 25)

3 Household’s Demand Function.

Each household maximizes his utility function subject to his budget con-
straints which depends on his endowments and taxes and on participation
constraints in both assets and money market.



For (w,5,8,7™) € A x RS, x 0 ,we have -

(P1) max  u(xp) s.t.
(mhvbhtmh) .
P2 + @ m) + s < B0+ e
md 20
(s=1,..,5) Pz +q"m; < @Y™ + T (e + mp)
: i=1
c _
(s=1,.,8) LoTiFefs < gm;
=1
(s=1,..,8) m} >0
ap, (bh,, mg) 2 0

| 3 (2)
Remark 14 For a given economy (w,D,q,q™) the set of solution of (P1")
does not change if we divide the budget constraint of each state s by a pos-
itive number, for example if we normalize prices state by state. In order to
eliminate technical complication, we normalize prices using the price of good
C in state 0, while in the other states we normalize prices using the price
" of money. From now on we will always refer to the normalized prices. We
have: '

Let us denote i - . :
Q= {3 (4,9™) € @ such that ¢ = p—?ﬁ, q'm = QPD—T, g™ =1, for s = 1.;8}

Remark 15 Since in every state of period 1 households use money only to
pay tazes, no one wants to hold an amount of money greater than the one
required to meet his taz obligations. This implies that there is no loss of gen-
. c
erality if we substitutes @™m;, with >, 7:°p*°e;%in the s following constraints
e=1
I ‘
(8> 0) —P* (2}, — &]) + T™ (m} — ef —mf) + ZT™y"b}, > 0.
i=1
Taking into account the prices normalizations and the previous Remark,
we can rewrite household’s maximization problem in the following way:

max wu,(xs) s.t.
—® (zn, — en) +q™mld + Uel — U (14, p) en + Rby, >0 (3)
mj >0
ap (bh, mg) Z 0

where



e ®isa (S+1)x G matrix,

o

with p%,pt,...,p° € RY,,
....qom

1 }, andlz(l,...,l)T.

e g™ is an (S + 1) vector, g™ = [
e Uis an (S+1) x (S + 1) diagonal matrix,

Om
o q
U= [ “ISxS ]

where Isyg is the identy matrix whose dimension is S

e Risan (8+1)xImatrix_,R='[;q].

e ¥ (7,,p) is an (S + 1) x G matrix,

0
.Tll

10,.1C
h P

11
W TRP

‘I_’(Tmp) =

C ,5C

st .8
..T%p

P
We define § = S+ 1

Each consumer is price taker and demands goods, money and assets in
the market, solving 3. Let us define the demand map of household. A. Given
w € (), it associates with every vector prices, a vector of demand of goods,
money and assets. : :

(mh,bh,mg) : Rf+ X Q — ]RE+ X RI x R+ (4)

(20 bn,m}) : (p,q,q™) > argmax (3). (5)
Theorem 16 i)For every consumer h the demand map is a function.

Theorem 17 ii) (xy, bj,,, m3) is the solution to the problem 3 if and only if



(h, b, M, A, Yn, n) 18 the solution of the following system of equations

Dy up (zp) — Ap@ =0 (F1) (6)
—~® (x5, — ) + q™mo + Uel" = U (4, p) en + Rb =0 (F2)
AnR + pn Dy, an (by, mg) =0 (F3)
pnDmaan (br, m3) + Mg™ +m =0 (F4)
(Vi€ dp) min [pﬁ’;,af; (bh, mg)] =0 (F5)
min [yp, mp] =0 (F6)

where (Ah = ()\i)fgo yUh = (ﬂf;)iihl ,’Yh) € R% x R#*» x R are the Lagrange
multipliers.

. -Proof. i) As a first step we prove the existence (Step a) and then the
uniqueness of the solution for problem (3) (Step b).
(Step a) Existence.
We can easily show that for any (p,q,q™) € ]Rf + X @, the set
By, (p,q,q™) = {(zn,br,m)) € (RS, x R x R) : ay (bn,mp) > 0,
—® (2, — en) + g™ml + UeP® — U (13, p) e + Rby, = 0,
up (zh) = up (en), md > 0} is compact.
Then, the maximization problem

max uy, (1) 8.t : @
(:L‘h, bh_, mg) e Bh

admits solution since B}, is compact and non empty and U, is a continuous
function. _

Since the consumer problem is equivalent to (7) it admits a solution.

(Step b) Uniqueness. ' _

" Suppose to the contrary, that (5:;,, by, mg) : (:i':h, b, mg) are both solution

to (7)

From Assumption 6 and the strict concavity of uy, it follows &), = &,

Taking into account the Assumption 4 we can easily prove that (5;” ﬁzg) =

(5;,,, mg) and then we have the wanted result.

ii) From Assumption 7.ii) on ap, (by, mY) the indepedence constraint qual-
ification is verified { | Bazaraa, M.S., H. D. Sheraly and C.M.Shetty 1993)).
Hence the thesis follows directly from K.T. conditions =

9



Now, we want.to find out if (zp, bh, mh) is a C! function. In order to do
this we consider the function

Fr:Bn xR, xQx Q- RS, xR, xR xRxRY xR

where Z, = RS, x RY, x R’ x R x R¥x R,

/ Dmhuh (:L‘h) )\h‘I’ \
‘I’(h“wh)‘*'q mn“f‘UGh— (Th,p) €n + Rby,
AR + pn Dy, ay, (by, mf)

B+ (6 0,0™9) = | 1D o (bn,m) + Mg™ + 74
J
(min [thah(bhvmh)]) o ' )

\ min [y, m;]

where &, = (2n, An, br, MY, ttn, Yh) -

If F, were differentiable in every points of its domain, then we would be
able to get the differentiability of demand function as an easy application
of Implicit Function Theorem to the function F. Unfortunately, it easy to -
verify that F} is not differentiable in every points of its domain. When
= md = 0 or yj = a} (by,ml) =0 with j € Ji, F}, is not differentiable.
Therefore, we show that these cases are rare, i.e. the set of parameters such
that the corresponding F}, is not differentiable is closed and it has measure
zero. Then we claim that the demand function (zs,bs,m)) is continuous
and C! on an open and full measure set. In order to prove this result we
need some Lemmas. The first one shows that if we eliminate the cases where
either v, = mQ = 0 or pl = af (by, mY) =0, the Jacobian of F}, has full rank. -
Lemma 19 shows that the subset of F, * (0) where F}, is not differentiable has
zero measure and it is closed. Then, there is an open and full measure set of
RY, x Q x Q where the consumer’s demand function is C? (see Lemma 20).

Let us ,consider the following partition of J, = [J}, J?, Ji] with

Jh= {5 € Ju: > 0, (brm3) = 0}
7= 1{j € Jn:pl =0, a (bymi) =0} .
JE={j€n: ,uh—()ah(bhmh > 0}

According to the partltlon we consider uy, = [u}, 12, p3] and ap (bymi) =
[a, (b, m3) , @ (bn,m3) , @, (br,m3)] where
Mh, >0 aj (bpmy) =0
P'h =0 af(bpmp) =0 .
p=0 aj(bymi) >0

10



Lemma 18 If there is no j € Jj such that i} = a}, (by, m}) = 0 and if either
Ap >0 orm® > 0 then the Jacobian matriz DFy, has full rank.

Proof. According to the partition of J, we have : J? = 0. Moreover we
have to distinguish the following cases: :

Case A: Ji # 0 and Jj # 0.

Case B: J} # 0 and J} =0

Case C: J} =0 and Jj # 0.

Since the strategy of the proof is very similar, we limit our analysis to
the case A.

CASE A.

Taking into account the pa.rt1t10n, the Jacobian of F}, can be written in
the following way

¢ 3 I 1 B §.73 1
Zh A b my A Yo

G |[Di | -9

1 RT : ﬁbh ‘ T Bbh,m‘z (Dbhafln)r '1'. (Dbaai)ur .

1 (qm)T (ﬁbh,mg') ﬂm?! (Dmg a,}l) (Dm?l ai’?;) 1 | 1

B4 Dy, 0 Djpay -

ng “ B

1 ' Xn[m =] | Xhbva=0] -

where: D? is the Hessian matrix of the utility function tp,
By, is the following I x I symmetric matrix

ho . bf
i 13 m2 17
bi | 22 pin Db}‘a'h e | 2 b1 Iah.
jeJdi jeJt
' L¥] T7
by | 2t Dbrbl ay | .. Z Hy Db, ay
Jjeg} yEJ
2
ﬁmﬂ € R, ﬁm“ = EJ"" D Oah,
) JEJh
1j
Z Hy Db1m° Gh,
‘ jeJdi
Ixi —
ﬁbh,mg = R ¥ /Bbh,mh - 1
: J
PIFT Dbrmo a’h
Jed;

M 1 if m)=0 d 1 if /=
oreover Xh[mg=o] =910 if mﬂ%O and Xply,=0 = 0 if 72750
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In this case we have Xn[mg=d] = 0« Xa[x2=0] # 0 and Xn[mg =o] # 0

Xn[yp=0] = 0. '

CASE Al v, = 0,m} > 0) We first consider the submatrix JF}, ob-
tained by erasing the last row and the last column. We claim that JF, has
full rank, then the desired conclusion follows. _

Suppose to the contrary JF; does not have full rank. Then there exists
a vector A = (Azy, ANy, Aby, AmQ, Apl, Aud) such that A £ 0 and [JFy)
A=0,ie., o

D2Azy — STAN, | - =

~®Azx, + RAb, + qumg _ =0

BT AXp + By, Dby, + Ebh,mg Am + (Dy,al)" Ayl +T(D;,h a3)" Apd i =
quA,\h + (ﬁbh,mﬁ") Aby, + ﬁmgAmg + (Dmga,lz) A,u,ll + (Dmgai) A,u,?l == ()

Dbh ﬂkAbh -+ DmgahAmg ‘ _ = (
AP’?@I fiJ2 =0
| (8)

From (6) of system (8), we get Ay = 0. We claim that Axy, # 0. If Az, =
0, then from (1) of system (8) we would have AX, = 0 and from (2) RAby, +
g™Amj) = 0. By the full rankness of [R,q™] we would get (Aby, Am)) = 0.
Hence Ay} = 0 and that cannot be true, because A # 0.
Now we show that Azf DAz, = 0. Since D} is negative definite we have
a contradiction and the result follows immediately. Premultiplying equation
(1) of system (8) by Az] ; we obtain

Az} DiAzy, = AzTdTAN, = (AN @A) .

Premultiplying (2) by AL | we have
(AA{CPA:L:;L)T = (AN RADy, + A)\,rfqumg)T = AbTRTAN, + AmYT g™ T AN,

Using equations (F3) and (F'4) of system (6) we get

AMBRAb, = — M};Dbh arAby, |
and |
Ag™ Amy, = ~ i Dpoaj, Amy

From the last two conditions the following equation holds:

M (ABTRT + AmdTq™T) Ay, = — (p;pbha;Abh + Do a}LAmg) A,

12
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From (5) of system (8), we get
- (#;Db,, 3Aby + p Dgah Amd) =0.
Hence J;, (A:BT@TA)\h) An (AbTRT + AmOTq"‘T) A)\h =0.
Since A, > 0, AmhfbA)\h =0, and so Azt D?Ax;, = 0.
CASE A2 v, > 0,m) =0)
The proof is similar to the case Al. ]
Let us define the set
= {(w p!qv ) (w$€h?pa q,4q ) € F}:l (0)1 Ej € {11 reny (ﬂ']h + 1)}
such tha.t ¢f = 0,8 (by,mQ) = 0}, where :

B (bn,md) =af (bp,m) =101
I {bp,m)) =m if j=H#Jn+1

and.

{c;";=uf; if j=1,.., 1

The following Lemoma shows B}, is a zero measure set of {2 x Rf L X Q.

Lemma 19 i) B}, is a zero measure set of @ x RS, x Q.
i) B}, is a closed subset of Q X RS, x Q.

Proof. i} Since the proof is long and not very easy to read we first present
the sketch of the proof. We construct a particular set BJ"2 (we will define it
later at step a)), whose elements depend on the set of indexes Jhe C J, where

={1,2,...,{§J» + 1)}. In step a) we prove that the set ma , corresponding
to the set Jhg, has zero measure, Then by varying all the possible subsets

of Jj, we can consider the set U B‘Ihz where *:ph is the set of all possible
the‘ﬁh

subsets of Jj,. Of course U BJ"2 has zero measure since is the finite union
Jna€Ps,
of zero measure sets. Hence it has measure zero and we get the Wanted

result since By € U BJ""’
Tha €Ph

Step a) B;** has measure zero.

Let us consider the correspondences Jy1, Jua, Jrs : QxRExRIxR —rJh,where
Jp = {1,2,...,(tJn + 1)} and
Jhl : (wap: q, qm)H{j € jh : C}i > OalJ (bh?mh) = 0 &h-ap:Q7q w) € F 1(0)}
Jrz : (@, 2,9,4™ {5 € Ju: & = 0,1 (bn,m))) = 0, (¢4, 1,4,¢™,w) € F1(0)}
Jh3 : (w,p,q,qm)l—){j S Jh : Ci?; == OJJ (bh-:mh) > 0 (é.hsp, Q-.'q w) < F— (0)}

13



Observe that from Theorem 16, given (w,p,q,q™) there always exists a
unique (€, p, q,¢™, w, ) belonging to F~* (0). Then for every (w,p, q,q™) ,the

images of the functions Jy;, Jue and Jyg form a partition over the set J, =

{,2,...,(fJn + 1)}.

Moreover we consider an arbitrary subset Jhg of Jh and we define the
followmg set:

By = {(n,p,¢,q™w) € F™' (0) : if j € Jag C Ju, then ¢f = 0, (bn, m?) =0}

Let us consider the following auxiliary maximization problem:-

max uh(wh) s.t.
(-’Eh,bh mh) .
® (en — zn) + q™mf + Uel?® = ¥ (s, p) e + Rbp =0 (An)
(4 €Jdn) & (br, mg) =0 : _ (gg,)ge.'fh

(9)

where J,, is a subset of J, such that Ja € Tn G Jn, and A,,,,(gh)JE 5
are the Lagrange multipliers associated with the maximization probiem.
With respect .to Lagrange conditions associated with problem (9) we have
to distinguish two different cases: we consider the Lagrange conditions when
4J 41 ¢ Jn and we left to the reader the case §J+1 €. Jh, since the strategy
of the proof is similar. '

CASE A: ﬂJ+1¢Jh : :

The Lagrange conditions associated with the ‘maximization problem (9)
are the following : '

D,,;huh ( ) /\h‘b =0
~®(zn—en) + g™ mh+Ueh — ¥ (73, )eh—l-Rbh . =0

MR+ E ¢ szha (bhamh) + Z Ch Dbha'h (br, M) =0

jeey *EJH\Jz
Z Q‘: mg an (bh’ m{)) + Z Ch. m“a"}? (bhv_ m?n) +-Ahqm =0
R joE€Jds i*eTi\Jz
]26Jh2 l” (f)h, mh) =10
h€I\Tna & (bn,m) =0
(10)

where j* € J} = Jh\th Let us define J! = {Jh\Jh} U {#Jn + 1}; hence
we have a new partition on J,; that is

Jo = {0, J¢, Jna, } - (11)
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Let us define ¢? = (Q{Q)ﬁe@ and {} = (C’{')j*e.]‘ ; in the same way we
. h

; : e o2 — (a2 v g3
introduce the following notations af = (af’) . _; and a} = (ah )J_*EJ; . Now

let us consider again the real consumer’s maximization problem (3) with the
associate First Order Conditions (6). According to the partition on Jj, (11},
we write uf = (k) jepg 2 = (WF)jes, 20 i = (ud) - Given
(Pyg,¢°™,w), if (T, A, bp,md, ud, 2, ut, vn) is the solution of the problem
(3),(ie. it solves system (6)), then (24, An, bn,m3, (7, Gi) is the solution of
(10) with J} = Jus, Jhg = Jugy Jif = Jni, and pf = G, pr = G. It is
worthy to note that the opposite implication does not hold true, that is, if
(Zh, An, bny D, C2,¢}) is the solution of the auxiliary maximization problem,
we cannot say that it is also the solution of the real consumer’s problem.
Now consider the following system of equations

Dz, up (z) — @ ) =0 (1)
~® (zn ~ en) + ¢"mj + Uep* — ¥ (mh,p) en + Rby =0 (2)
MR+ T Doy (,ml)+ X ] Dyl (baymf) =0 (3)
hek | AV |
2 G Dmeart (bnymp) + X G Dmgay, (bnmi) + Aag™ =0 (4)
. .’f'zIE-f'.z jredu\J2
J2€Jn2 U (bn,m3) | =0 (5)
In€JIr\In2 li: (bn, m}) =0 (6)
G | | =0 (7)
(12)

with j' is an arbitrary element of Jps. By a Transversality argument we can
prove that the set of vectors (w,&n,p, q,¢4°",) which solves system (12) has
measre zero (The interested reader can see also | Villanacci, A. (1991)] and |
Villanacci, A. (1993)] ).Then we can conclude that B;** has zero meastire,
becanse B2 is contained in this set.

ii) :
The set B coincides with the following set : B, = {(w,p, ¢, q™) € Q x
RY, xQ:3j € {1,..., (#Jn + 1)} such that ¢} (b (w,p, ¢, ™) , M}y (w, P, ¢, 4™)) =
0,8, (bn (w,p,q,9™) ,m}) (w,p,q,q™)) = 0},where :

{ l??r, (bh (w’p1 q, qm) 1 mg (va: 2, qm)) = a’i (bh (wv B.q, qm) 3 mg (wapa q, qm)) if J=1. ﬁ']h
I (bn (w,p, q,¢™) ,mY (w,p,q,q™)) = ml (w,p,q,¢™) . if j =y +1
and ' '

{ G =1 (w,pa,q™) if j=1,..1J
Cﬁ'=’m(w,p,q,q"‘) if jquh+1

15



We recall that the First order Conditions of the Consumer’s Maximiza-
tion problems define the following function (), (w,p,q,¢™), bs (w,p,¢,9™),
my (W, 1, ¢,4™) , Mn(w, 2, ¢, ™), 44, (@, 2,7, 4™), o (w, P, 0, 4™)) of (w,p, 0. q™) €
O xRE, x Q. We know that this function is continuous and so for every j =
1, ..., iJn,the function al (bn (w, p, q,q ™y, m (w,p,q, g™)) is also a continuous
function. Then ¢} (by (w,p, q,4™) ,mY (w,p,q,9™)) , & (bn (w, P, ¢, ™) , MY (w, P, q,q™))
are continuous and so we get the desired result. [
We are now able to state that the function F), is differeritiable on the
open and full measure set. D, = RS, x Q x O\ B;.

 Theorem 20 The demand function of Mr. h is
i) continuous on R x @ x Q,
i) C' on Dy, '

Proof. i) It follows from the Maximum Theorem( see for example Beavis
and Dobbs [ Beavis B. and I. Dobbs (1990)])

ii) From Lemma 18, given (p, ¢, ¢, w) € Dy, the Jacobian matrix of F},
has full row rank and by applying Implicit function Theorem on F}, , we- get
the desired result n

4 Definition of equilibrium

Definition 21 (Equilibrium) Given an economy w = (e,e™, 1) € £, the
vector (p,q,q™) i3 an equilibrium prices system if and only if there exists
(@h, ba ) such that

1) (mh, b, mY) solves consumer’s marimization problem (for every h );

2) E (zp° — “‘ = 0 for every s, c i.e. markets for goods clear;

3) Zb}1 =0 for every i i.e. markets for assets clear

h=1
4)

M=

(ml —e™) =0

. _
(«m?l — eyt + ngcp“eﬁc) =0 (s=1.9)
1 c=1

=1
—
p—
=

h

i.€. money markets clear.

Remark 22 Summmg up with respect to h = 1,..., H the constraints —® (x, — e )+
q mh+Ueh —\I/(Th, p)ey+ Rby, =0,

16



we get S Walras laws | |
If (13) holds and 2 (xpf — e5%) = 0 for every (s,¢) # (s,1), then even

the market of good 1 zs m eqmlzbrwm in every state s.

From now on we use the following notations :

o= @)= ()] = ()

and

= (= (), = (L),

h=1

We define the function F: 2 x  — RIME with
=ROH x RHS x RH/ x RE#h x RH x RH x RS7! x Q

( A Dmhuh (.’Eh) - /\hq) # \
B R R L L " R
: AnR A+ pn Dy, ap (bp, mj)
F . ' o
( Och) (Vj E Jh.) min . [[J:h, ah (bh.1mh)]
Ahq + ,U'h,Dma'h (bh.a mh) + Yh
min hha mh] h=1
- - Lorv_
S Ry
. . i '
(M12) Xk
(M3) Z (mf, — e?)
H
Lo B (e Srer) (5 0)
h=1
(14)

with { = ((mh, Ahs bm#mmg:’)fh)f:1 :P\m,q, q0m) .

Definition 23 The set of equilibria associated with the economy w=(€e™T7T)E
Q, is given by EQz = F5' (0) '
where Fy is the restriction of the function F to @, i.e. Fs: £ F(£,W)

17



5 Existence of equilibria

We want to prove that £Q, # @ for any given economy w and so we want to
verify that the Degree Theorem Assumptions hold. First, we define the so
called ”test economy”. _

We now consider an economy w* = {e*, e, 7*) with e* € P.0O. where
P.0O. is the set of Pareto Optimal allocations. .

It is known (see for example | Balasko, Y. (1988)]) that when markets are
complete, given a Pareto optimum e* € P.O., there exists a unique prices
vector that supports the equilibrium. We denote by p the prices vector
associated with e” while 8} is the Lagrange multiplier associated with the
budget constraints of the household’s maximization problem when market
are complete.

Definition 24 A test economy is an economy w* = (e*, "™, 7*) such that:

e* € P.O
eom — %mmp Lerl where n is such that
(O Irun;ps1 *’1) >0
ey’ %m;npﬂe*’l
{3 =05
0 otherwzse

The following Lemma states that when market are incomplete, given every
test economy, there exists a unique equilibrium allocation of goods, money
and assets.

Lemma 25 Given w* = (e*,e™™,7) :
i) &= ((2h, A b, 730, 1)1 2\, 0%, 0™ € F21(0) with

. 5
p\DI* — p\Dl q* — Zys q*l}m =5
=1
Tp=¢e, b= m;) = ;™"

M= (0, 6,65) pR=0  9=0

i4) F3 (0) = {6}

18



Proof. i) By computing the value of F,,, in £*, 1t is easy to verlfy that
Fo« (§*) = 0 and therefore i) holds.

ii) Suppose to the contrary there exists £ # &* such that Fw* (E) =0 |

. . R H
with E = ((:%ha /\hsbhv ﬂhamga;\yﬁ) _ 113\01: Q: Q‘,Om

From the strict concavity of the utility function , z} = &, for every A.
Since p®! = 1, A} = Dy, u} (£3) = Dy, u}, (z}); hence A) = A0 = 6.

From the First Order Conditions and the money market clearing ¢ condltlon
we get: :

H

H
=0 __ *m0 ___
> m}, “Zh:eh =
[8)
— #3090 % 8C s | —
= (ZT ey ey )—

o=]

= 55 (S (D eh) Vi) e - i)

and therefore

e '
3 (L (Do i) o)
s

‘H (15)
> (e + ™)

From equation (15) and again from the First Order Conditions it follows
PAOL = oL,
Adding up the budget constraints of states s = 1, ..., S we have that

(mﬁ—mﬁ+y(q~&)=o

From Rank Condition on matrix [ 1Y ] we can conclude that m;® = M

and by = .
Hence m{ > 0 for every h and from Assumption 7 iv) there exists a h’
such that ay (0,mfe) > 0 . From the First Order Conditions of Mr. h°> we

S

. obtain ppe = 0, ApeR =0, and so § = ¥ y* = g*. Since s > 0, pe = 0,
s=1

Moreover Apsg™ = 0, and so '™ = S g™, : |

We now prove that w* = (e*, e*™ *) is a regular economies i.e., 0 is a

regular value of F-. Let us denote the set of all regular economy w1th R,

where ”in” stands for incomplete markets.
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Lemma 26 w* = (e*,e*™, ") is a regular economy, i.e., w* € R",

Proof. Let us consider £* = ((a:,’;, bk, mi0 A p\ol q*,q*“’").
By previous Lemma, F is differentiable ai £* because there is no consumer
h, such that v; = m@* = 0 or " = al (by,m}) = 0 (for some j). Moreover
HF:! (0) = 1. We are left to show the Jacobian matrix of F' J*F = [De. 0]
has full row rank. In order to make the proof more readable, we drop the
superscript (x) from all variables

Let us assume that JF has not full row rank. Then there exists a vector

A £

A = ((Azn, Arn, Aby, A, Aun Av)™ AP\, Ag, Ag™, Ap')

such that JFA =0 i.e

D2Az), — 9TAN, — AyAp\ — ALAp! =0 (hl)

—®Azy, + RAby, + g™Aml + B1 Ap! =0 (h2)

h_1g BNt Dian(bumd) A+ -NIAg =0 (3)
" qT™ ANy + Ay + M A . =0 (h4)

Apn, =0 (h5)

Ay =0 (h6)

ZhZAmh | =0 (M)

> Abn =0 (M2)

2 am; . =0 (M3)

s=1.5 5 (-Aml+elriiopT) =0 (M4)

| (16)

Where G\ =G - 5,
A}L is a block diagonal matrix G x G\ ,

c v C
_ . P e PN
1 Dmgluh (.-I‘h) - Agpm 0

C-1 sz\uh' (zn) — /\?1;00\ Agfc_l

1 B Dxfl'u.l (.’El) - )\1})31 0
C -1 Dmi\'u,l (.’1}'1) -— )\Ips\ ’\EIC—I

20



A is a G x S matrix such that

pll pSI

C Do up (zn) — Ap°

1 D,;}lmh ((L'h) - )\}EPU" Ai

C—1 D_wuy(zs)—Ap™ [0
h

1 D muh( ) /\S 51 /\S

h
C - ]. D svuh( ) /\ S\ 0
6! is a § x S matrix such that .
pll pSI

Zc—p“c(:cﬂc—e?c)+.... _

c€

I Rl e e i

ccC ‘

T - pSe ( Se Sc) o iy S g
eaC .

0f is a G\ x G matrix such that

1 -1 .. 1 C-1
201 20 v 251 25\
c-1 > (1’2\ - ég\) e
he i
c-1 3 (m,f\ - eﬁ\) _ _ Io,
heH _

and finally ©! is a S x S diagonal matrix

p!1 .. PPl

S - mf — el zru T

heHd

T - mi- e S
heH h

Since ©! is a strictly positive diagonal matrix and ZAmg =0, Ap! =0.

Take into account the first order conditions and the rank condition on

[R,q™], we have Az, 5 0.
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Performing some appropna‘re computations on equations (hl) and (h2)

of system (16) we can claim ZAmh Az, = 0. Since Azl DzA:::;1 < 0 and
h=

f, > 0 for every h , ZA.’Bh A;ch <0 and that contradicts the previous

claim. Hence the theaus follows ]
The following Lemmas show that Assumptlons of the Degree Theorem
are satisfied in our model.

Lemma 27 i) E = RZ x R7(5) x RHI x RE#% x RH x R x RS} x Q
s an open set.

i) R™ with n = dimZ is an open set.

iii) the set Q is path connected.

Proof. i) We first prove ) is open and then the thes1s follows dlrectly _
from the properties of the n-dimensional real numbers spaces.

We prove that the complement set of Q,, is closed and then the rhe51s
follows from Q = ﬂ Qh,
Conmder an m‘b]trary sequence (g%, (¢"™)") ¢ Qj such that {(¢", (¢"™)")} — .

Smce {(g°,(¢"™)") } ¢ Q then for every v there exists a vector {(by)", (m})")
such that B o

[ _131; (——q;m)” :I ((bh)p?.(mg)V)T >0 (17)
on((bn)” . (m})") 2 0

* Then we can have a sequence {((54)" , (m)") } such that (17) holds for every
v and it is easy to show (17) implies Y™ ((b4)", (m2)") > 0.
If {{(bn)",(m2)")} is an unbounded sequence, i.e. || {(81)" (m?,)")” -

((bny”.(m3)" . -
oo we can take the sequence {Wm_ﬂ%r%ﬂ . It-admits a converging sub-

sequence (W.l.o.g. the sequence itself), such that ay (“ (Ezh;:( 3% )|) 2
h

-0 and {#E—::-;—(L—)rﬁ} ~ (by,mY) . From contlmuty of ap{.,.) we have

_ _ —g" _
ap (by,M)) > 0 and therefore { Yq ( (:Ilm) J (bh,'r?z?,)TZ 0.

Sj T, om0 = A | T4 (__chm). z T
ince ( ' mh) # (0,0) and Y'* has full rank, we obtain y 1 (bh, mh) >
0 and that implies (g,q%") ¢ Qp, i.e. the complement set of Q,, is closed.
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CaseB.{((b;)", (m)") } is a bounded sequence. Observe that Vv ((Ba)”, (
0

If {((bx)",(m)")} is a bounded sequence then it admits 2 converging
subsequence in itself. Without any loss of generality we can consider the same
sequence. Hence {((b)", (m})*)} — (bx,™m3) . From the continuity of func-

tion ay, we have that ay, (b, M) > 0 and moreover { —;/q (= q ] (B, )

-~ __ ~A0m _ '
If [ Yq ( (i ) ] (bh,ﬁzg)T > (0 we have the desired result, otherwise

we can easily prove that there always exists a vector (f)h, r‘ng) such that such
that | 2 (=¢"") b > 0 and a (5 ml) > 0. In this way we
Y 1 mz ap | Op, g ) = U Y
obtain (g,¢"™) ¢ Q.
ii) Obvious .
iii) Let us consider the set L = {w = (e,e™, 7) € R¢H x R{EH « RSCH .

ms 1 ifh=1,820

e —

h 0 ifh#1,5>0 |
T,f“={1 1fh==¥,c=l }

0 otherwise

The set L C € is convex and any point of 2 can be connected trough a
segment to a point in L. Hence 2 is path connected. |

Lemma 28 The function F,, verifies the following properties:

i) F,, is continuous for every w € (0.

i) F.. is a C* function in a neighborhood of ;. (0) 0 is a regular value
of Fiyx and deg F,, = 1.

Proof. i)-ii} The result follows from the previous Lemmas n

Lemma 29 Let us consider o : [0,1] — Q, a(t) — (1 — t)w* + tw and the
homotopy From : 2 x [0,1] = R® Fuom : (£,8) — F (& a(t)). Let F, be a
function such that Fy : 2 — R", F, : £ — F (€, a{t)).

The following conditions hold:

i) & is continuous.

i1) Fuom 18 continuous.

i) Fyr (0) is compact.

) F;* (0) is compact for every w € Q.

23
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Proof. i) Obvious. _

ii) Since Fom is the composition of continuous functions, Fhom is contin-
uous. '

iii) We claim F,_L (0) is sequentially compact. In order to show that re-
sult, we take a sequence {(t",£")} such that (o (t"),&") € F_L (0), where

Eh = ((whv b, (md)" ,Nﬁ,’ﬁ)heg,(ﬁ\m)n,q“, (qom)ﬂ) and o (t*) = (e ("),

H

em(t"),

0. Clertye (") = (e (s = ((CF D)) om0 = (e @i =

h=1

(( ms (f“))s—o)f and 7 (%) = (7, ("ot = ((( (tn))““l)s 0)

Since {t"} C [0,1] it admits a converging subsequence {t"‘} — .

Hence w™ = « (t") @a(ﬂ =wef

Note that Fyom : (7, &7) = F (€™, a (t™))

We get the wanted result by proving that every component of the se-
avence {£7} = {(zk, 3, 8%, (m8)", 1}, 1), P\ 0%, (@)} such. th
(™ a(t™) € F, hom (0) admits a converging subsequence in Z. _

Then £" — £ = ((Eh, X, On, ﬁh’%’)heﬁ POl g, Fjﬂm) and from the conti-

H

h_

nuity of F we get £ e F hom (0). |
Since Fom is continuous, Fom (1%, £") — Fhom (?,5) and so Fiom (EE) =
0. | o

The following steps 1-10 show that every component of the sequence {£™}
admits a converging subsequence in Z.

Step 1. {z}} has a converging subsequence in R%¥.

By definition we have z} >> 0, for every A and therefore {z}} is bounded

below.
Since Z (33}1” —e (t“)) = () we get ;33}:3 < Zh:e}; (t") and so (z})" <

Ze“ (). By noting e}l (t™) is continuous and {t"} is a conver-ging sequence,

we obtain {z}} is bounded above and hence it admits a converging snbse-
quence {z}} — T, We are left to show that Z, € R$%. Since {e}} — &
there exists a compact set [z such that €, € I, and for any n which is
sufficiently big, we have e} € Ir,. Let be & = " min up, (en) . For a well

epEls,
chosen 7/, since (Eu,a( ™)) € Fol {0), un (z}) > @ for every n > n'. hence
zph € Ly = {m € RE, : uy(2]) > 4}. From Assumptlon on the utility
function clLy C RY_, hence T, > 0.
- Step 2.{m{"} has a converging subsequence in R, .

By using equation M3 of 14 and the non negativity constraint we obtain
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[md*} is a bounded sequence ‘and then we get m%™ — m? with m§ > 0.
- Step 3. {p{"} has a converglng subsequence in R, for every
s>10

. P D:r:’cuh(:nh)
From the First Order Conditions we have p*™ = —ET?:;—— for every
heH.
. . Dz""cuh'( )
Taking into account that p™* = —h-Tm— for s > 0 and Zm =

h==1

i
3" et we get
h=1

=1

H -C“h‘(""'hr) .
Z _egmn . smn + Z _b._,_____ icn =0 >0
h=1

and therefore

H C
> 2D oun (af) ey

an __ h=le=i i
h =T g

5 (e + ef™)

hence the sequence { A7} converges as follows :

C
2 Th Dasoup (Tw) €55

o e=l m - >0
hzl (& +em)

where the strictly inequality comes from D scun (Zw) > 0,and from i) and

B . . Dzs’C Uy (mx, ) Dsa’C wpr(Tpe )
ii) of Assumption 11. Since p** = —b—g— , p** — —L=r—— > 0.
h! B

- Step 4. A? has a converging subsequence in R, ,

Since Dgocuy (z7) = A®. From step 1 we know Dyecus (z;) has a con-
verging subsequence, then )\”" =X =D ety (Th) > 0.

Step 5. p% has a converging subsequence inR,,fore=2,..,1

It follows directly from the first order condifion and step 4. -

Step 6. A;* has a converging subsequence in Ry, (s > 0)

For h = h’, we proved the resulf in step 3. For h # h'since {23}, {p""}

D s1uplah
. . moo__ T h
admits convergmg subsequence, and AJ® = e we can easily note

D_s1un(FR)

that (A"} — =i > 0.
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Step 7. {¢™} has a converging subsequence

Due to Assumption iii} of 7, for every asset ¢, there exists a A’ such that -
)\h’Ri + 'Ju'h'Db;'l, ay (bhf, Mg:) = /\hrRi =0

Then the boundness of the sequence{¢q'”} follows; in fact we have AJt¢i™ =

. . Ty
Zs: Asny®™ for every n. That implies ¢ = e for every i and every n.
| Si | |
Hence {¢""} — —L;O—

Step 8. {(b”,(m})")} has a converging subsequence in R/ x R,

From ~® (z;, — ex) +q™m) + Ue™ — U (1, p) en+ Rby, =0 we get Rby, =
—g™ml — o (zn — ex) = UeP + W (14, p) e, Consider the S equations referring
- to states s = 1,..., 5. Recall that rank [Y] = I, the vector (b,) is a continu-
ous function of (xx, (m})"™, en, ef, p) . Then since { (2}, (mf)" €g, ex™, p\*»)}
admits a converging subsequence we have {(b%)} - by, .

Step 9. {(¢f™)} has a converging subsequence in R, and {(¢"*,¢*)} —
(‘js qOm) € Q ) .

Since there exists a consumer A/ such that m) > 0, from budget con-
straint referring to state s = 0 we can derive ¢0™ as a continuous function
of {(a:h, AmdN" b, edn edmn pin g )} Since the latter sequence admits a
converging sequence we get (q”"‘)"’ — ¢™ > 0.

Since A2 > 0 for every s, and §™ > 0, then §°™ is a no arbrtrage money
price (see Definition 10) is veriﬁed

Step 10. { (", (2) )} has a converging subsequence in R*r x R,

Since ay, (by, mﬁ)ls a continuous function, ay, (b2, mI*) > 0 implies

an (zh,rﬁg) > 0. Let J, = {J3, JP} bea partition of the set of index J,

such that J2 = {] € Jy:al (bh,mh) = 0} and JP = {3 €Jy:al (bh,mh) > 0}

If § € J2, by a well known limit fheorem, there exists a n* such that
' ah( m(m3)") > 0 for every n > n*. Hence for every n > n* we have

pt=0ie {ul"} — 0 for every j € JP.

If j € JA, from iv) of (7), rank (D,,,,ag;“‘ (Eh,ﬁzg)) = 44,

Let Dy, at’” ( (E;h, ﬁiﬁ)) be the sqrxa.re submatrix of Dy, a;, (whose dimen-
sion is §J x #JA) such that JdetDbha; (I;h, fﬁg)l > 0 and Dy, a,’ (bh, )
is the matrix of dimension ({J, — §J#) x (I — §J) which is the comple-
ment of Dbh By a well known limit theorem, there exists n/ such that

,detDbhah (87, (mf)™) ’ > Ofor every n > n/. Let us take n™ = maz {n n'}.
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Making the proper permutations, we get:

1 I 1

5, 1T ' n |
e | | Dbhai’; B mi)) |~ |1
2y D,y (55, (mf)")

i“n
h

for every n > n** i.e

et oy | = 7]
IJ: AnDbhah (bh, mh ) n*n
Then pfAr = o [Dt;; Yai” (b7, (mg)")] follows and so w'r @i,
From APg™ + p2 Dpmay, (B2, m9%) + A% = 0 we have 47 — %, = Apd™ +
tnDimay, (bh, e
iv) It follows directly from iii). |
We are now ready to claim and prove the existence result.

Theorem 30 (Existence ) For every economy w € Q, EQ(., # 0.

. Proof. From previous Lemmas, Assumptions of Degree Theorem are
satisfied. Since deg(g,0) = 1,we have deg(f,0) = deg(g,0) = 1. Then the
result follows. : : u
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