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Abstract

We study an asset prices model under bounded rationality. In the economy there are rational
traders and noise traders. If noise traders market behaviour is modeled as a pure noise {random
walk) and rational traders compute the expected price as a geometric average of the observed prices
{bounded rationality), then we show that in the limit, as the trade interval goes to zero, the asset

price is described by a mean reverting process.
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1 Introduction

In a continuous time setting, the evolution of asset prices, interest rates, risk factors is
described through stochastic differential equations. In many cases these stochastic differen-
tial equations are taken for granted, and no much attention is paid to their microeconomic
foundation.

There are of course many attempts aiming to determine the most appropriate stochastic
process to describe the evolution of asset prices and interest rates. They are mainly based on
econometric arguments estimating and comparing the performances of different specifications
of the processes with the corresponding time series. For a survey on this literature we refor
to Campbell et al. [6]. There are also some pieces of theory well suited to characterize
the evolution of such quantities. Following the seminal contribution of Lucas [21], general
equilibrium theory provides us with a theoretical foundation for the short term interest rate
and for the asset price dynamics, e.g. see [11]. In equilibrium, the Arrow-Debreu prices
process contains many interesting pieces of information. In a continuous time setting, under
some conditions, we have that the interest rate is the negative of the drift of the Arrow-
Debreu prices process. In a complete market setting, choosing properly the utility function
of the representative agent, and the dynamics of the state variables, some diffusion processes
for the short term interest rate are obtained. In Cox et al. [7, 8 and in Goldstein and
Zapatero [16], considering a power utility function we obtain a theoretical foundation of the
Cox, Ingersoll and Ross (see [8]) and of the Vasicek interest, rates dynamics (see [28]).

The general equilibrium approach can also be used to model the stock price dynamics.
Indeed, in a staftionary economy where all agents are fully rational and trust the model
itself, the equilibrium stock price is given by the expected value of the discounted future
dividends under an equivalent risk neutral probability measure. Under this measure the
asset expected return is equal to the risk free rate. The theory provides us with restrictions
for the asset prices under the risk neutral probability meaure. If the agents are risk neutral
and are characterized by a discount factor which is the inverse of the risk free rate of return,
then the risk neutral probability measure and the historical probability measure coincide.
Exploiting these results, in Kreps [18] and in Bick [3] the classical random walk with drift
process for the stock price (geometric brownian motion) has been obtained in a general
equilibrinm framework.

This asset pricing theory provides us with some testable implications. Mainly, assum-

ing a stationary economy, the asset excess returns should be unpredictable and no sign of



autocorrelation of the excess returns should be observed. Many studies have tested empiri-
cally these implications. An evaluation of the empirical literature allows us to establish that
returns are predictable and that they are mainly characterized by mean reversion (excess
returns are negatively autocorrelated, see [14]). Moreover some phenomena such as booms,
crashes and excess volatility are difficult to be interpreted inside the classical asset price
[ramework. Two well established schools of thinking can be identified in the literature abont
the interpretation of these facts: the die hard classical asset pricing school, and the so called
behavioural finance school. People belonging to the first school explain these phenomena by
relaxing the assumption of stationarity for the asset dividends-returns. As a consequence,
we have that the equity premia are not costant over time and excess returns turn out to
be autocorrelated, e.g. see [14]. The partizans of the behavioural school argue that the
nonstationarity of the model is not enongh to explain the phenomena observed in financial
markets and invoke the presence of some elements of irrationality in the market, e.g. see [10]
and [20]. On this debate we refer to Fama [12, 13].

This paper aims to contribute to this debate, by providing a bounded rationality micro-
foundation for asset prices in continnous time.

Over the last ten years we have a large literature on asset prices with heterogeneous
agents, and in particular with the presence in the market of rational and non rational agents,
e.g. see [9, 10]. In Fdllmer and Schweizer [15], for instance, a microeconomic approach is
developed to determine the stochastic differential equation for the stock prices as the equi-
librium outcome in a market populated by heterogeneous agents: rational traders, funda-
mentaolist traders and noise or liguidity traders. The agents of the first class aim to exploit
all arbitrage opportunities in the market, the traders of the second class base their decisions
on the comparison between the stock price and the fundamentals about the security. Finally
noise traders are pure noise in the market demand, noise due traders’ buying and selling
stock for liquidity needs. In order to derive a diffusion process, in Follmer and Schweizer
[15] it is assumed that rational agents are myiopic, i.e. they foresee the future price as the
price one period before.

In this paper, we also look for a microfoundation foundation of the evolution of stock
prices in an equilibrium perspective with heterogeneous agents. The main feature of our
analysis is that we assume the agents not to be fully rational, i.e. they are characterized by
bounded rationality. To simplify the analysis we assume that there are two classes of agents,
(boundedly) rational traders and noise traders. Bounded rationality is modeled by assuming
that traders forecast the future price by updating their expectations through a first order



autoregressive learning mechanism. The so called (modified) adaptive expectations: the today
expectation for the tomorrow price is a convex combination of the yesterday expectation for
the today price and of the yesterday price. This learning rule can also be interpreted as an
extrapolative technical analysis trading strategy. The noise traders demand is described by
a pure white noise component. The diffusion process for the asset price, obtained in the
standard weak limit by means of a suitable time rescaling of the discrete modeling equations
(see [22]), performs a mean reverting process around the level given by agent’s expectation,
which in turn is modeled by a recurrent Ornstein-Ulenbeck process. As a consequence, we
obtain that the autocovariance of asset price increments is negative, and therefore the price
process is characterized by mean reversion.

'This result calls for a discussion with those obtained in the bounded rationality literature.
The analysis of financial markets under bounded rationality has been developed in several
papers, e.g. see [1, 5, 25, 26, 27]. If dividends are autocorrelated, then bounded rationality
generates excess return antocorrelation, and phenomena such as excess volatility and long
swings from the fundamental value can be explained. Our paper does not rely upon the
autocorrelation of the fundamentals process. Pure non-correlated noise in the market can
generate mean reversion under bounded rationality. The second interesting feature of our
analysis is that the stochastic process for the asset price performs a mean reverting around the
level given by agent’s expectation process. If agents use an extrapolative learning mechanism-
technical analysis trading rule then the drift is determined by agents’ expectation. This
paper provides a theoretical analysis of the Shiller [23] noise traders model under hounded
rationality.

The paper is organized as follows. In Section 2 we present. the discrete time financial
market model. In Section 3 we study the convergence of the asset price to a diffusion

process.

2 Bounded Rationality in Financial Markets
Following Shiller [23], we consider the following forward-looking difference equation
(1) Sk:vk§k+ak2k, k=1,2,...

where Sy is the asset price at time , S denotes agent’s expectation at time k of the asset
price at time k + 1, the coefficient v, i3 a suitable discount factor, the sequence (Zy) k1o

which models the noise in the market, is a sequence of independent and normally distributed



real random variables such that E|Z;] = 0 and D> [Z:] and the coefficient o is the noise
traders component variance.

Equation (1) is the classical no arbitrage equation plus a noise component. In a market
with two assets, a risky asset and a risk-free asset characterized by a interest rate r, setting
Sy = Ey. [Sky1], where E, denotes the conditional expectation at time k given the available
information, v, = (1 4+7) ', and ¢ = 0 we end up with the classical no arbitrage equation
with respect to the risk neutral probability measure.

The random variable Sy in (1) can be interpreted as the equilibrium asset price in a
market where there are two classes of traders: rational troders and noise fraders. Agents
belonging to the first class behave according to the no arbitrage principle looking at the
expected rate of the return of the asset, when the expected return is larger or lower than the
risk free rate they buy or sell short the risky asset. Agents belonging to the second class act
for pure liquidity needs and therefore their effect on the market price is purely idiosyncratic
and is described by the sequence of random variables (Z,) Bl

To simplify the analysis we assume that the asset does not deliver dividends. The asset
can be interpreted as a future contract. The noise component does not, affect the funda-
mentals of the contract, therefore if the agents are ‘fu]ly rational the price of the contract
should be constant over time. Our choice of not considering dividends is motivated by the
fact that we want to isolate the effect of pure non fundamental noise on the asset price when
the agents are not fully rational. Being constant the asset price when the agents are fully
rational, the comparison will be straightforward.

In what follows the agents are not characaterized by rational expectations. The rational
expectations assumption is a mile stone in modern economic and finance theory, every other
behavioural assumption is named bounded rationality. The rational expectations assumption
is based on two main hypotheses: agents know the model and use all the available information
in the best way. Bounded rationality requires to weaken these two assumptions. In our
analysis, following among the others Barucci [2], we assume that rational traders update
their expectations according to the first order autoregressive learning mechanism:

(2) Sk = S\'k—l + O{k,(sk_l — S’kgl), k=1,2,...

for a suitable learning coefficient (0 < ag <1). As mentioned above, the idea captured
in (2) is that the today expectation for the tomorrow price is a convex combination of
the yesterday expectation for the today price and of the yesterday price. Note that, to

avoid simultaneity problems between the expectation formation and the determination of



the equilibrium price, the asset price Is not compared to the contemparaneous expectation,
as it is done in the classical adaptive expectation framework.

3 Convergence to a Diffusion Process

The system of stochastic difference equations (1) and (2} can be rewritten in the following

canonical innovation form:

Sy = ’l%{;’k + oy Ly,
Sk+1 = Sk + agp1 (vg — 1) Sk + ap 10675,

(3)

and where

Sl = 3[) + Ofl(S() - Sg)

Since .Sy is the datum asset price at time k = 0, if we make the natural assumption that the

random variables of the sequence (5’0, Ly dim,.. ) are independent, then it is well known

that the solution (S;ﬂ, Sk) of (3) is a Markov chain with respect to the filtration (Fie) g
k>0 =

generated by the sequence (S’gj L1y Ly ) itself,

Following Nelson [22], we can show, by means of a standard stepwise time-rescaling
and under snitable hypotheses on the coeflicients, that it is possible to obtain the weak
convergence of the solutions of the rescaled systems to the solution of a system of diffusive
stochastic differential equations. To this end, first, we rewrite (3) in the following equivalent

form N .
Sk — Sp—1 = —dpS; + Sk — Sy + 0u 2y,

) Spr1 — Sk = _ak+1dkélc + Qg 10k 2,

where we have introduced the discount rate dp, = 1 — vy. Then, for each n > 1, we consider
the partition of the interval [k — 1,k[ (k > 1) by means of the n points k — 1 = tagh—1) <
bae—1)+1 < ... <lpp-1 <lnp =k, wheret; —t; 1 = At =1/n for every 7 > 1, and we rescale

the system accordingly by writing

S =812 = =, S+ A (S0~ 5, ) 4 0,27,

(5) Y f’;l .
St(ffl - St(j) = _atj+1dtj3t(_:1) + 0 Zf,(_?):

Notice that, since we want to make both the drift terms and the variance of the noise
terms of the rescaled system (5) proportional to A, we are led to introduce the term
At (ét(j) - St{:?)l), and we are also led to require that (Zt(',n‘)) is a sequence of indepen-

: S|

dent and normally distributed real random variables having mean 0 and variance Af. On
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the other hand, the discount rate di; depends on At owing to its own nature. Actnally
di, = d(tj,ti41) = d(t;,At), and we assume

(6) dtj = 6tjAt + o (At) 3
where &, is a suitable interest strenght at time ¢;, for every j > 0.

Lkewise the solution of (3), the solution (St(f),ﬁtfj) of (5) is a Markov chain with

Jj=0
respect to the filtration (]-}(j")) ., Benerated by the sequence (5’5”), zM, .z )
j‘#o k3
Now, we introduce the sequence (W},@) given by
T /520
i det [ 0 20 if > 1
K 0 ifj=0"

and we write
S S, S E S W H W oty <t <ty
= S, and (Wt(”)) = W™ have right

The processess (S,f”)) = Gr), (Sf("))
20 20 t20
continuons paths with finite left-hand limits (RCLL paths). Moreover, given the Polish space
D ([0, +oo[; IR) of all RCLL paths endowed with the Skorohod distance, it is well known that
the D ([0, +-0o ; IR)-valied sequence of random variables (W)
Wiener process starting at 0.

s converges weakly to the

We want to show how, applying Nelson’s criteria, it is possible to check the weak con-

vergence of the sequence (S ) 5”(”')) , a8 n. goes to infinity, to the solution of a system of
n>0

stochastic differential equation. To simplify the analysis we assume a constant learning rate,

market volatility and interest strenght:

(7) o, =a, oy, =0, 6 =65 forj>1.

4 §

The results can be easily extended to time varying parameters. Our main result is the
following.

Proposition 4 As n goes to infinity, the sequence (S(”), 5’(”)) converges weakly to the
n>0

solution of the system of stochastic differential equations

- ds, = ((1—5)5}—53) dt + o dW,
dgt = *0{68’\% dt+ T dm,

where (W), is a standard Wiener process.



Proof.  The proof follows the gnideline outlined in Nelson [22], and it is based on a classical
existence result for stochastic differential equations (see (17, Chap. 5, Theor. 2.9]).
Let us consider first the matrix field
def o 0
o : IR? — R?* @ IR?, T (x1,2) = ( ao 0 ) ,
and the vector field

b lR2 — IR,E, b (.1'31,:82) = (bl (.1}1, $g) ,bg (55‘1, CC;)) ;

where
def def
by (z1,29) = (1 = 8)zy — 1, bo (21, 22) = —abdxy.

Since it is easily seen that the conditions given in [17, Chap. 5, Theor. 2.9] hold true, we
can conclude that (8) has a unique non-exploding strong solution for every given initial price
So and for every distribution of the expected price Sp.

Now, following Nelson, to prove the weak convergence of (S(”“), 8 ("J)n>0 to the solution
of (8}, as n goes to infinity, we want to show that the conditional variance-covariance matrix,
and the conditioanl expectation vector per unit of time of (S("), 5 ("')) converge uniformly

n=0
on compact sets to the components of the symmetric non-negative definite matrix field

— a1 012
a:R* -+ R?  a(z),) = ’ ,
Qo1 422
given by

de
o™ oo’

and to the components of the vector field b : IR? — IR? respectively.

To this task, observe that the hypotheses on the noise sequence (Zt(:‘)) o and on the
' I

filiration (.ﬂ(j’)) give

j=0

BSPIF| = S,

B[SIAY] = &0,

B|z0 17" = B[70] =0,

LT el
B\(z0)) 1750 = B|(20) | =2

- 3 z - 3.'.
B|(20) 17| = B|(70) | =0

- 3 . - 3:
B|(700) ) = B|(4)) | =




Then, taking into account of (6) and (7), by straightforward computations, we obtain

(9) E (s - PER] = a8 4 (50 -5,
(10) E(($0, - S@) O] = —ad$®,
(11) E[(s§j) ) |f(”)] = g (ﬁ{j’*)) + A8 (30 - 50 ) 4 At

—20td8{Y (8 — s,
12) E[(gé;)_stf:‘_)l) (Sﬁfﬁl Stf)) ]ﬂ&"fJ = ad? (ng))Q—Amff (S(”) St(”)l)S")

+Atac?,
(13) [(Sf}’fl S(”)) fﬂﬂ.”_)]} = o2 (S(”)) + Ata?a?,

Now, writing Pf(n)htj ' IR?xB (R?) — R, for the j-th transition probability of the Markov
chain (S () St Gm) ) o0 where B (IR?) denotes the Borel 7-algebra on IR?, for k1 =1,2, we
define

iy (1, 20) /112 (e — @) (g0 — ) PV, (@1, 2o, dyy, dya),
and

z d n
B (11, 0) Y /2 (Yo — 1) Ijtg-ﬁ)l,tj (%1, 22, dy1, dya)
R

where we claim that the integrals on the right hand side of the above equalities exist and
are finite.
Indeed, setting

de, - ,
C;(c ) (1,22) ! At 1f2 (e x}c)4 Hﬁﬂ,tj (21, 22, dyy, dys)
R

for k = 1,2, and recalling that the Markov property gives
4
B (507 -50)" 170 ] = [ (e S0 B, (50580, )

and

o (87 =82 1) = [, G $02)" 0 (802 50, ).

computing

B [(sw s¢)! u-—,gn)l]



2l 4 Sin 3 i T
= & (87) - anwa (307) (800 - s,
» 2 o 2
NYNY ( S(n)) ( S,(J”) _ S!(;’jl) + 6Atd o? (St(,n ))
N ~ 3 N &
ol (e S50, )" - 128840250 (817 - Si7%)

~ 4 n 2
i R RV (57— si) + 3400,

and
., i 2
E [(sg‘) f;”l) F J = otd! (S(")) + 6AtAd? (S§f)) + 3A2a40
we obtain
A (g, ) = AtTd% — 4dta? 5 (2 — 1) + 6Atd 22 (22 — @1)" 4 6d%0 22
—4At2d.’,l’:2 (562 — .’El) — 12Atd0’ ) (ﬁz - .’L‘l) -+ Ats (932 - 331)3
+6At 07 (x4 — 3:1)2 + 3Ate?,
and

S (21, m3) = At o dhad + 6atd2e? + 3Atalot
Taking again into account of (6) and (7), it follows that for k& = 1,2

hm c( )(:cl,xg) ={,

uniformly on compact sets of IR?, which gives our claim (see [22, sect. 2.2]).

This existence and finiteness result allows us to combine the relations

B[(s8 = SO IFD] = [ (n=80) P, (S, 5, d ).
- ]R2
E (S’(ﬁh éf'(:’)) |‘7:£:1—)1 = fIR ) (yQ S(,:)J Pgl-)l,tj (St(jn—)l’ ‘gf(: )7dy1’ dyg) ’

[
6 ] - (-2 6, ).

o[- 52) 52,42

— /]RQ (yl — Sf,(J )1) ( S(n)) 'Pt(;H)l t (S(Jn)lvs(n) dybdyz) ,

[(S,(;)] - ) IJ-"(")} /m2 (yg S(”)) " 1,3 (8,7 . (f),dyl,dyg),
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with (9)-(13), to obtain

i) (21,m2) = a3+ AP (23 )7 + 02At — 2Atdas (25 — 27),
&ﬁ’}ﬁ? (z1,20) = &gﬁ) (1, 22) = ad’x3 — Atad (v — zy) To + Atao?,
ag’f; (z1,22) = oPd®22 + Ata?s?,

135”) (z1,22) = —dmo+ Al{zs— 1),

0 (z1,20) = —ad,.

Thererefore, writing
n def — ~ln iln 7{n
a,A(,’J) (z1,29) = At ! (afﬁ,,) (21, 22) ~ b,g ) (1, x2) b}”) (ml,:c2)) ,

and
n de, ~15(n
b (21, 22) E ALY (20, 20)
for k,1=1,2, we have

o} (m1,m0) =02, o) (21,2) = aiy (21, m) = a0’ 033 (21, 22) = a’o?

and
bgﬂ) (21, 22) = —At Ndzy + 3y — 21, béﬂ’) (z1,72) = ~ At odixs.

Hence it is immediately seen that, for all k,1 = 1,2, we have

lim G,E:I.,) (ml, .’132) = Q] and lim bi"n) (.’L‘]_, CE2) = bk (.131,35’2)
n—oo n—oo

uniformly on compact sets of IR?.

What shown above implies that we are in a posif.ion to apply Nelson’s criteria (see [22,
2.2 - 2.3]}, and the desired result easily follows. m|

System (8) can be integrated by means of a standard procedure (see [17, 5.6, p. 354])
and the solution (St, gﬁ)po is given by

1-§ , 16 4 1 t
(14) Sf'- = 1 0685 -+ (S() - 1 aésg) 8_1 + 1 jé\ﬁeﬁt/ e? dWS
. _ _ 0
t
(15) S, = ggeﬁ“6t+aa"e””&/ e dW,.
0

Therefore, in our model, the limiting price process looks like a mean-reverting Ornstein-
Ulenbeck process around the level given by agent’s expectation process.

Having obtained an explicit form (14) for the limiting price process, we can apply Tté
calculus to compute the main features of (5t);0¢ In particular, it is matter of straightforward

computations to prove the following result
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Proposition 5 For all ¢, At > 0 we have:

(16) Cov (Spyae — 8y, Sy — S;_ Af)

_ (1_‘5)2 ( L 2'31) — (21— At) (1 —a5A1)2
(1~ ab)® 5

(1_5) 2|a 2(1 o) —{2t—At 7t2
+Ht§5_OD[&} 2" 1= 6)) T e

(L -5)? 2 [ } —(1+ab)t { At —Af ~ab)At —(1—as) Aty 2
-~ p + (e (1— — e(lma®At (1 _ o (-ana
(1 — ab)?
L OBA (1 _ e—aéAt) 2)
_loa(l-6) (1 - emedan)?
2 6(1—as)?

a(l-a) (1-46) _ pobAt) 2 _ A2
T 0) (1— o) (@ ) =)
_I_e*(l--!-afﬁ)‘ﬁ ((eAt _ 1) (1 _ e—aﬁAt) + (earSAf. _ 1) (1 _ e*At)) )

102 (1 - a)? A2
2ot L)

Proof. Indeed, from (14) it follows that for all 0 < s <t we have:

(17) Emg:1miMEﬁHeﬂ&+(&r-£:;Ef%De*

and

(18) Coun(S,,S;)

(1 — 6)2 2|4 —abs —4 —adt _ —t
m[) [So} (e — £ )(e e )
10'20‘5 (1 - 6)26ﬁa5(s+i) (620:5.9 . 1) i
2 6{(1 - afb)?

‘:Eici(l ;i ‘('3’1) (]— ;)62) (e—(s+a6£) (€(1+a5)s _ 1) + 8—(0165+t) (e(1+a5).s . 1))
(4 —

EO.Z (1 — l‘rjf)g‘[_:,}—(s-}—t) (623 _ 1)

2 (1 - 0é)? '

From the latter, thanks to the bilinearity property of the covariance functional, we obtain
the stated result. O

12



Equation (16) shows clearly thast if the variance of the expected initial price S, is small
enough, more precisely if

A 10?1 (1~(ch)2
2 ot Lol —a)
D! &) <5 5T e

then the price process increments are negatively correlated. Moreover, (16) shows that
for any value of D? [5’0] and for any time step At, the price process increments become
negatively correlated as times flows. In particular, if the expected price S is a datum, then
the price process increments are always negatively correlated. This result shows that a pure

noise in a bounded rationality economy produces a mean, reverting effect.
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