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Abstract

We consider a constrained maximization problem with a quadratic
fractional function f over any closed and unbounded set X. The
behavior of feasible unbounded sequences is studied in order to de-
tive conditions under which f attains maximum, coonditions guar-
anteeing its supremum is finite and finally conditions that ensure
sup f{x) = +oo. We first consider a function f where the quadratic
form is semidefinite and then we specify our results for a particular
fractional programming problem in a more general context. Qur re-
sults cover the linear fractional case which can be seen as a particular |
case of the previous ones. Moreover we give a new characterization of
pseudoconvexity for a quadratic fractional function.
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1 Introduction

The optimization problems with unbounded feasible regions have been ex-
haustively handled in recent literature. Theoretical and algorithmic aspects
have been studied in order to find both constructive new methods and con-
ditions under which the maximum value exists. See for example the survey
proposed by Auslender [1] or the wide literature of fractional programming
problem dealing with polyhedral feasible region (Schaible [8]).

Even though we can find many results for optimality conditions, there is
almost nothing about the supremum of a function over an unbounded feasible

*The paper has been discussed jointly by the authors. In particular, sections 3 and 4
have been developed by Laura Carosi.



region. On the other hand, when a function does not attain maximum value it
is important to know if its supremum is finite or not. For the remarkable role
played both in optimization and in economic theory, we turn our attention to
a nonlinear fractional problem where the objective function is a ratio between
a quadratic and a linear function and the feasible region is any closed and
unbounded set. We study the case where the quadratic function is convex
or concave, or it is the product between two affine functions. For these
classes of problems, several necessary and/or sufficient conditions for a finite
supremum are established by means of the recession cone of the feasible set
and suitable directions associated with such a cone. Qur results cover the
linear and the linear fractional case which can be seen as a particular case of
the previous ones. : : _

To simplify notation and to save words, we take advantage of the fact that,
for any bounded (unbounded) sequence, there exists a convergent (divergent
in norm) subsequence. Namely, when we say that a bounded sequence {z,}
converges to z, we mean that if this sequence is not convergent, then it is re-
placed by an appropriate subsequence and this subsequence is again denoted
by {z,}. Similar abuse of language and notation is applied to unbounded
sequence, when we say that {x,} diverges to infinity. R

2 Pseudo concavity of a quadratic fractional
function

Consider the function |
- aTQz + aTz + ag
fla) =292

bfz + by
where Q is a n x n symmetric square matrix, a,z,b € " and ag,by € R.
We want to investigate the properties of this function. It is well known [2]
that if the matrix @ is negative (positive) semidefinite then the function f is
pseudo concave (pseudo convex). The following Theorem extends this kind of

result establishing a necessary and sufficient condition for pseudo concavity
(pseudo convexity) of f.

Theorem 2.1 Consider the function

_2TQx +aTz + ap

— . n, pT
flx) = e re€X={zxeR":bz+b >0}
i) [ is pseudo concave if and only if
Vu e R V2l e X :uTQu> 0= T H(z"u < 0 (2.1)



i) f 18 pseudo convez if and only if
Vue R, Va' € X :uTQu < 0 == uTH(2%u > 0 (2.2)

Proof. i) As it is well known, a function is pseudo concave if and only
if any of its restrictions on a feasible line is pseudo concave too. For such a
reason we study the pseudo concavity of the function ¢ (t) = f(zo + tu), for
every g € X, for every u € R™. We have

a0 _ot’+ Bty
(,O(t) -f(.’l? +tu) = T&D, 6t"|‘(50 >0
where o = uTQu, B = vT (2Q2°+a), v = 27Qz" + aT2® + ag, § = V7w,
by = bT 0 + by.

Let us note that when a = 0 the function (¢) is linear fractional so that
it is both pseudo concave and pseudo convex and the thesis follows. Consider
now the case a # Q. _ '

It is known (see for example [3}) that ¢ is pseudo concave if and only if
the following condition holds:

V0 : 6t° 4 6y > 0 with ¢’ (to) = (} we have either " (%) <0 (2.3) '
or " (t°) = 0 and t° is a relative maximum point for  (¢) ;
Note that uT H(2%)u = " (0) so that (2.1) is equivalent to the following

' a>0=¢"(0)<0 (2.4)

Consequently i) is equivalent to prove that (2.3) implies (2.4) and vicev-
ersa. Taking the first and the second derivative of the function ¢ we have

o (1) = adt? + 2abyt + By — by
(6t + 6p)°

2 (b2 — B68; + 6%)
(6t + o) '

" (t) =
Setting
A = o (abf ~ B66; + 6%)
we have
2,1
o

" (t) = ——-—————(&L n 50)3 .



When A = 0 we have ¢ (t) = 0 for every %, so that ¢ is linear and
in particular it is both pseudo concave and pseudo convex. It remains to
analyze the case A # 0.

(2.3) = (24) :

Assume that a > 0 and ¢"(0) > 0, hence A > 0. Let us note that
tp = ’—‘wg%ﬁg ig feasible since 6ty + o = ;i-\/K > 0 and it verifies '(ty) = 0.
Since A > 0 implies ¢" (t) > 0 for every ¢ with §t + 6y > 0, we have in
particular that " (to) > 0 and this contradicts (2.3).

(2.4) = (2.3).

Let be tp such that §t+ 6§, > 0 and ¢'(f) = 0; necessarily we have A > 0.
- The case A =0, a # 0 implies ¢” (£} = 0 for every t, so that ¢/ is constant
and since ¢'(tp) = 0, it results ¢/(t) = 0 for every ¢, that is ¢ is a constant
function. Consequently (2.3)!is verified. Taking into account (2.4), A > 0
implies & <0 hence ¢ (t) < d) for every t and (2.3) is verified. »

The following example shéws that Theorem 2.1 generalizes the classical
result dealing with semidefinite matrices which can be recovered as a partic-
ular case.

Example 2.1 Consider the function f(z,y) = 52—-;—33 and the set X = {(z,y) €

2 : & > 0}. The quadratic form is indefinite; nevertheless, it is easy to verify
that f is concave and in particular pseudo concave.

3 On the supremum of a quadratic fractional
problem. |

Consider the following quadratic fractional program

(3.1)

2TQx+alz + ao]

#2eX
where a, b,z € R”, ag, by € R. @ is a symmetric matrix, X is any closed
and unbounded set and ¥z + by > 6 > 0 for every z € X.
In order to study the existence of finite supremum for Problem (3.1), it is
necessary to analyze the behavior of f along unbounded feasible sequences.
With this aim, we recall the following definitions and properties [5], [7].

Definition 8.1 Let X C R be a closed set. The recéssion cone of X is the
set RecX = {d € R": there exist {o,} C Ry, {z,} C X, such that o, — 0,
OnZp —+ d.}



Definition 3.2 Let X C R" be a closed set. The set of recession direction
is the set Ot X = {d € RecX : ||d|| = 1}.

The following properties are well known:

Proposition 3.1 Let X be ¢ closed set and RecX its recession cone.
i) RecX is closed cone.
i) X is bounded if and only if RecX = {0}
#i)OTX is a compact set.

The following Lemma holds.

Lemma 8.1 Let {,} be a feasible unbounded sequence for Problem (3.1)
and set d = hm If dTQd # 0, then f(z,) — 400 or f(z,) — —oc

—In_
+oo llEnll*

according to dT Qd >0 ord'Qd < 0.
Proof. It follows by.calculating the limit of
Teul . @fay l7nll + 6" g2 + ooy

(‘Tn) pT _Za_ bo
lzall " llznll

As a direct consequence of the previous Lemma we obtain a necessary
and a sufficient condition for the supremum of Problem (3.1) to be finite.

Theorem 3.1 i) If supf( ) < 400, then d7Qd < 0 for every d € O X.
i) If dTQd < 0 for every d € O*X then supf(m) = maxf(a:)

Proof. i) If there exists d € O*X such that d¥Qd > 0, from Lemma
3.1 there exists a feasible unbounded sequence {z,} such that ﬂ_ﬁzﬂ — d,

f () — +o0c and this is absurd.
ii) Let {z»} be a feasible sequence such that lim f (2n) = sup flz). X {z,}

is unbounded then &2 ey — 4 € O* X, so that, from Lemma 3. .‘L f (Tp) — —00

and this is absurd. Consequently {z,} is bounded so that it converges to a
point z* € X. From the continuity of the function f, we have

lim f(z,) = f(z*) = sup f(z).
n—00 : zcX
[

The following example shows that the necessary condition i) of Theorem
3.1 is not sufficient to reach the finite supremum.
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2, .2
Example 3.1 Consider Problem (3.1) where f(z,y,z) = ;T—"il and
X ={(z,y,2) € R®:2 >0,y = 2% 2 = 2/x}. It results
OtX = {d = (0,1,0)}, d¥Qd = 0 and sup f(z,y,2) = +oo, since

. (eanz}eX
S (57 V3) =

The previous example points out the necessity to deepen the analysis
in the case dTQd = 0. With this aim we will assume that Q is semidefinite
positive or negative; as it is well known, for such matrices it results dT Qd=20
if and only if Qd = 0. ,

Let KerQ = {z € R" : Qz = 0} and denote with (K erQ) 1ts orthogonal
subspace. Any element z € R" can be written as z = 2z* + z! where 2* €
KerQ and 2zt € (KerQ)*.

The following Lemma holds.

Lemma 3.2 Consider Problem (3.1) where @ is semidefinite and let {z,}
be an unbounded feasible sequence with =5 “ 2 — d. Then i) and ii) hold.

i) If d € KerQ and —5— \/—I— — w, with the convention w = 0 if z+- = 0,

{EZY)
wTQu + oTd
then B fon) = = |
i) If d € Ker@ and { ” !I} 18 an unbounded sequence then _
Flan) = oo or f(z,) — —oc0 according to Q is semidefinite positive or
semidefinite negative.

Proof. i) Taking into account that zXQz, = z1TQz, we have

_n_:cl T m# T %n r.l..o

V enl) Q\/umnu O fonl ¥ Tl
o) = L R
Tn In

and so i) holds.
ii) We have

fon) = = ]T“ﬂ Qﬂ“T““ el T Toul

BT oo + iy

- J_ - +
Since 12 — z ¢ Ker@, it results 27Qz > 0 or 27Qz < 0 according

to ¢ is semidefinite positive or semidefinite negative. The thesis follows by
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L2 TR
noting that H = (JJ”—’;}%) — +00 since {—“’lin—”} is an unbounded

sequence. |

Lemma 3.2 allows us to obtain conditions which ensure that the supre-
mum of Problem (3.1) is finite.

With this regard, consider the followmg set associated with a recession
direction d:

.L

Wi={weR": H{xn}cX” ” —-deOtX, T
T Ln

with the convention w =0 if z; = 0.
The following Theorem holds.

— w}

Theorem 3.2 Consider Problem (8.1) where Q is semidefinite negatwe
Then the supremum is finite.

Proof. Let {z,} be a feasible sequence such that liI_}:l f(zs) = supf(z).
Tir—400 reX

If {z,} is unbounded then %5 — d € O X. The following cases arise:

feal |
- {-\—/-..-n=“|°|: ”} is bounded, then from i) of Lemma 3.2 nliTw f(xy) is finite.

. {—-—n—-u"fl: ” is unbounded, then from ii) of Lemma 3.2

lim f(zp) = —o0 == supf(z) and this is absurd. =
n—too zeX

The following Theorem specifies when Problem (3.1) has maximum value
and gives a characterization of the supremum when the maximum is not
attained.

Theorem 3.3 Consider the Problem (3.1) where Q is semidefinite negative.
Then the following statements hold.
i) If OTX N KerQ =0 then supf(z) = meajgcf(:c)
reX T

€
i) If Q is definite negative then sup f(z) = max flz).
X T
i) If Wy = 0 for every d € O X Nker Q then supf{z) = maxf(x).

reX zEX
i) If Problem (3.1) does not reach mazimum then
wlQuw + o¥d
supf(z) =  su sup ————— | .

xeX deOt XNKerd



Proof. i) and ii) follow directly from ii) of Thecrem 3.1.
iii) follows from ii) of Lemma 3.2.
iv) follows from 1) of Lemma 3.2. n

The following examples point out that when there exists d € 0T XNKerQ
with Wy # 0, we can have both maximum and finite supremum not attained.
: -2z +y+1
Example 3.2 Consider Problem (3.1) where f(z,y) = e rui3 and
X = {(z,y) € R? : y = 2%}. We have O*X = {d = (0,1)}. Consider a
feasible unbounded sequence of the kind {z,} = {(zn,22)}. It results z =
(2n,0) and \/||za]l = ||@all /2 + 1. Hence —E oy, w = (1,0) so that

llz=

Wy # 0. It this case we have sup ‘”—%ﬁj“—% = —1 while the mazimum value
weWy

of the function is 1/3 attained at (0,0).

R
Example 3.3 Consider Problem (8.1) where f(zx,y) = -—%%i—l
X = {(z,y) € R? : y = 222}, We have Ot X = {d = (0,1)}. Consider a
- feasible unbounded sequence of the kind z, = (z,,2z2). It results z;- = (z,,0)

— 1 zg - (L
and /|| zal = ||zall & 2 + 41.“ Henie_ Fg o wws (75 0) so that Wy # 0.
It easy to verify that sup %’%ﬂ = —-;- +1= :,13- = supf(xz) which is not
weWy zeX
attained as a mazimum since it results f(x,2z%) < 1/2 for every z € R.

L

Now we will consider the case @) is semidefinite positive. Let us note that

for every d € O X we may have feasible sequences {z,} such that e

and some of the corresponding sequences are unbounded.

-
]
In the following we will denote W7 the set of all unbounded sequence of
this kind.
The following Theorem holds.

Theorem 3.4 Consider Problem (3.1) where Q is semidefinite positive Then
the following statements hold.
i) If there exists d € Ot X such that d ¢ Ker() then supf(z) = +oo.
zeX

ii) If Q is definite positive then supf(z) = +oo.
zEX

1) If O X C Ker@Q and if there exists d € O X such that W} # 0 then
su}lgf(:t:) = 400, '
X< .



i) If OY X ¢ KerQ and if W} = 0, then the supremum of Problem (3.1)
i8 finite. Moreover if f does not attain mazimum then it results

T T4
supf(z) =  sup ( sup W—QU;J'"—G—) :
reX deO+ XnKerl \weWy b'd

Proof. i) and ii) follow from i) of Lemma 3.1.
iii) follows from ii) of Lemma 3.2.
iv) The desired result follows from i) of Lemma 3.2. n

The following examples show that when @ is semidefinite positive, O* X C
KerQ with W} = @ for all d € Ot X, f may admit maximum value or not.

y'+1
z+1

Example 3.4 Consider Problem (8.1) where f(z,y) =

X ={(z,y) ER: x>0, y =)
We have O X = {d = (1, O)}, ot x KerQ and Wi = 0. It results
max f(z,y) = 1 attained in (0,1).

a_nd

Example 3.5 Consider Problem (8.1) where f(x,y) = ?__?—;I—_?éy-

X={(x,y) eR*:0<x<1,y>1}. We have OrX ={d=(0,1)},
and OYX C KerQ. For every unbounded feasible sequence {(mn,yn)} the

and

4, L A
corresponding sequence —mmnl. — - ,01) is convergent to (0,0},
PONGINg et Tannll ( [ 7 0.9
so that W} = 0. .
wlQw +1

Moreover the supremum sup f(x,y) = sup =1 is not attained.

weEWy 1-

4 On the supremum of the product of an
affine function and a linear fractional one.

In this section we consider a particular quadratic fractional function for which
we can study the behavior of any feasible unbounded sequence

o sy = | @t @) (2 + o)

4.1
zeX bz + bo ( )

where a,b,c,z € R*, ap,by,cg € R, b7z + by > 0 and X is any closed and
unbounded set.



Note that in this case we remove the Assumption bz + by > 6 > 0 for
every £ € X therefore, now it may happen that 47d = 0 for some reces-
sion directions. Consequently we establish results about sup f{z) in a more
general context with respect to the previous case.

The following Lemma holds.

Lemma 4.1 Let {z,} be a feasible unbounded sequence for Problem. (4.1)
and set d = lim 'II_—an such that (aTd) (cT'd) # 0. Then f(z,) — +oo or

f(zn) = —o0 according to (a”d) ("'d) > 0 or (a¥d) (¢7d) < C.

Proof. It follows by noting that

T xp i T _an L4
_ lnll (a Ty + II:uDII) (C foal] T umnu)
f(a:n) - bT _&p )] )

fanl " Tl

As a direct consequence of the previous Lemma we obtain a necessary
and a sufficient condition for the supremum of Problem (4.1) to be finite.

Theorem 4.1 i) Ifsupf(sc) < 400, then (aTd) (cTd) <0,V de Ot X.
i) If (a™d) ( Td) < 0 Jor every d € OT X then supf( z)= mea}cf(x)

Proof. i) If there exists d € O* X such that (a7d) (c7d) >0, then from
Lemma 4.1 there exists an unbounded sequence {z,} such that %z- " = 4,

f(zn) — +co and this is absurd.

ii) Let {z,} be a feasible sequence such that lim f(z,) = supf(z). If {z,}
n—00 zeX
is unbounded then &2 ” i d € O+ X, so that, from Lemma 4.1, f(z,) — —oo
and this is absurd. Since {z.} is bounded, it converges to a point z* € X.
From the continuity of the function f, we have lim f(z,) = f(z*) = supf(z).
n—00 - zEX

-

The following example shows that the necessary condition stated in i) of
Theorem 4.1 is not sufficient to have finite supremum.

+1)(y+2+2)
Example 4.1 Consider Problem (4.1) wh S U 2 (:1:
p (41) where f(z,9,7) = =0

X={(z,y,2}: 22 0,y=1* 2= /z}. WegetO*X = {d=(0,1,0)},
(a™d) (¢"'d) = 0 and supf(z,y,z) = +oo.
: zeX

¥
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Theorem 4.1 points out the necessity to deepen the case (aTd) (ch) =,
since in this situation, we can have finite supremum as it is shown in following
example.

2
Example 4.2 Consider Problem (4.1) where f(z,y) = (:c:j)y(:i—g ) and

X ={{z,y) : x> 1,y =1} It results O*X = {d = (1,0)}, (a7d) (c"d) = 0.
Simple calculations show that supf(z,y) = 2 which is not attained as o
: xeX )

AT,

In order to study what happens in the case (a”d) (¢"d) = 0 we consider
the following sets: at = {x € ®": a¥z = 0}, b+ = {z € R* : b7z = O},
ct={zeR": Tz =0}, D=a*Uct ={z e R": (aTz) (Tz) = 0}.

According with the previous definitions any element of a feasible sequence
Tn can be written as follows:

(1) z,=a,+ ana
(2) z,=dc, +v,C (4.2)
(3) @n=b,+8,b

where a!, € at, 3, € b*, ¢, € ¢t, op, B,, 7, are scalars.
Hence we have

(1) ¥z, =an a2 ‘
2) Tzp =7, el (4.3)
(3) tTzn =B, bl

Take into account the above fact, in the general case when a, b, ¢ # 0, we
can define the following sequences

(1) @Z=%+"—Zﬁr

(2 nm=ratiEs (4.4)
(3) B =0nt i |

Consequently we can write

BT+ B ol
The following Lemma holds.

£y Lonllal +a0) Ol + o) _ s MalP el o

11



Lemma 4.2 Consider Problem (4.1) and let {z,,} be an unbounded feasible
sequence with (22 — d . Then i) and ii) hold.

i) Ifd € D and B2% — §,, then lim f(x,) = 8 lelClel
Pn n—+00 lal

i) Ifd e D and 53%“ — 00 then f(an) — 400 or f(@n) — —o0 according
to Eglﬂ >0 or 25 < O definitively.

Proof. i) -ii) The result follows immediately by taking the limit in (4.5).
]

Lemma 4.2 allows us to obtain conditions which ensure that the supre-
mum of Problem (4.1) is finite.
With this regard for every d € Ot X N D, set

Ag={bs€R: H{mn}CX W_)dEOJFX’aE’In — 84}

and define A} the set of all unbounded, definitively positive sequences {-—g.—ﬂ

The following Theorem specifies when Problem (4.1) has maximum vahie
and gives a characterization of the supremum when it is not attained.

Theorem 4.2 Consider Problem (4.1). Then the following statements hold.
i) If there exists d € Ot X such that (a”d) (cTd) > 0 then supf( ) = +ooc.
it) If there ezists d € OTX N D such that A% #£ @ then supf( ) = +00.

iii) Assume (aTd) (cTd) < 0 for everyd € O*X . If we have A% =0, for
everyd € OYX N D, then supf(z) is finite and if it is not attained it results
zeX

21112
supf(z) = J—M sup ( sup 5,,.;) }

zeX 18]l dco+xnp \seciq

Furthermore if Ag = 0 for every d € O XN D then supf(zx) = maxf(x).
reX TeX

Proof. i) follows from Lemma 4.1

i} follows from ii) of Lemma 4.2.

iii} Let us note that the supremum is finite if and only if, for every un-
bounded feasible sequence {x,}, we have nﬁxfm f(zn) 3 +o00. The thesis fol-

lows by noting that (a”d) (cTd) < 0 implies lim f(#) = —co,from Lemma
4.1, and that (a”d) (cTd) = 0 with A} = § implies , from Lemma 4.2, that

12



lir41_1 f(z,) is finite or —occ. If in addition A4 = @ for every d € O*X N D,

necessarily we have 1i141} f(zn) = —oo for every unbounded sequence, so
M= 00
that the supremum is attained as a maximum. _ [

The following examples point out that when there exists d € Ot X N D
with A% =@ and A, # 0 we can have both maximum and finite supremum
not attained. '

Example 4.3 Consider Problem (4.1) where f(z,y,2) = L“%—K;’;”l and

X ={(z,y,2) e R :0 <z < ly 2 0,z = F} It is easy to verify
that Ot X = {d = (0,1,0)} so that d € D. Consider any unbounded feasible
sequence hy, = {Zn, Yns\/Un}. Since z, is bounded, without any loss of gen-

emlzty we can assume lUm z, = T with & € [0,1]. It results of, = z, + 2,
—t-}00

3 (Unt VUn) + 1,6 =9n+2,%5 - 1241, s0 that A= 0; Ay # 0

and ”—“3”5-"— sup ( sup 6,;) = 2% = 3. Simple calculations show that the
IBI™ geotxXnD \suciry

function f assume mazimum value 3+ /2 attained at the point (1,2,/2).
1

Example 4.4 Consider Problem ({.1) where f(z,y,z) = %ﬁ,

X = {(z,9,2) e R : 2 > 1,y = /2,0 € z < 1}. It is easy to verify that
OtX = {d = (1,0,0)} so that d € D. Consider any unbounded feasible se-
quence Ry, = {Zn, \/Tn, 2n}. Since 2, is bounded, without any loss of generality

we CaT assume hm zn = Z with Z € [0, 1]. It results a;, = 35 (3.’1:,,, + ,/:r:n)+5,

=z, 4+1, 8, = (:L‘n+,/asn)+5,—g¥ﬂ—>l3(z+1) a,nd(?d— (Z+1),
so that Ay =10, Ag # 0 and f(Tn) Yny2) — S(Z+1).
Simple calculations show that function f does not attain marimum value so

thatsupf() Musupéd 58 = 6.

b
1 5ok,

4.1 Particular cases.

Consider the following Problem

supf(z) = (a"z + ao) (" + co) (4.6)

zeX

obtained from Problem (4.1} setting b= 0 and by = 1.
With similar argument, for any unbounded sequence {z,}, we have

F(za) = anyy, llall® [lelf®.

13



Setting

Ag={ba € R:3z,} C X ~de 0Y X, oyl — 64}

Tl n“

and A% the set of all unbounded, deﬁmtlvely positive sequences {ozn"yn} we
have the following corollary.

' Corollary 4.1 Consider Problem (4.6). Then the following statements hold.
i) If there exists d € O X such that (a¥d) (¢'d) > 0 thensupf(z) = +oo.
z2€X

i) If there ezists d € Ot X N D such that A # @ then supf(z) = 4oc.
zeX

iii) Assume (aTd) (c'd) < 0 for everyd € Ot X . If we have A% =@, for

every d € O+X ND, then supf(x) is finite and if it is not attained it results
) zeX

supf(a) = ol el _sup (sup 51).
zeX §

deOtXnD \a€hy

Purthermore if Ag =0 for everyd € OYXND then supf(zx) = mea}cf(m)
x€X z

As we have already seen in the general case, when d € O X N D with
A% =0 and Ay # (D we can have both maximum and finite supremum not
attained.

Example 4.5 Consider Problem ({.6) where f(z,y) = (x + 1)y and

X ={{z,y) eR?: 2 > 1,y =1} Itis easy to verify that

OtX = {d=(1,0)} so thatd € D. Conszder any unbounded feasible sequence
{{zn,yn)}. IEresults o = z,+1, 7} = o Oy = 1+ — 1, 84 = 1, s0 that

Ay =0, As# 0 and '[|a||2 lc||®  sup (sup 6d) = 1. Simple calculations
deO+XND \84€M4
show that the function f assumes mazimum value 2 attained at the point

(1,1).

Example 4.6 Consider Problem (4.6) where f(z,y) = (x — 1)y and
X={(z,y) eR?: x> 1,y =1}. It is easy to verify that
OtX = {d=1(1,0)} so thatd € D. Consz’der any unbounded feasible sequence
{(Zn, yn)}. It results o = z,—1, v = o AR = 1o — 1, 84 =1, s0 that
Ay =0, Ay # 0 and |al’ |lc||® sup (sup 6d) = 1. Simple calculations
de 6

o+XND 2EA,
show that function f does not attain mazimum value.
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When ¢ = a and ¢y = ag, Problem (4.1) becomes

(aTz + ap)’

4.
bTx + by ( 7)

sup [f (z) =

aeX

where a, b,z € 7, ag,by € R and X is any unbounded closed set.
We assume that 57z + by > 0 for every z € X.

It is well known that f is a convex function (see [3]).

We have the following results.

Corollary 4.2 Consider Problem (4.7). The following statements hold.

i) If3d € O X : a¥d # 0 then sup f (z) = +c0.

#) If3dc Ot X : a¥d =0 and A} # 0 then sup f (z) = +o0.

it1) f has finite supremum if and only if OTX C at and A = 0. More-
over if f does not have mazimum value then

TN
supf(z) = % sup ( sup 5,1) .
zeX |6l|* aco+xnD \sacirq

The following example shows that even in Problem (4.7), when 0+ X C a'
and A} = @, we can have both maximum and supremim not attained.

Exampl.e 4.7 Consider Problem (4.7) where f(z,y) = % and

X = {(z,y) € R : 2 > 0,y = 2}, Ot X = {d = (1,0)} with d € a'.

w2 T 2
@ = \Fatk, B=3(/Ent+a)+1. Bt = %(%_:':_;?)H — 2. Hence for

any unbounded feasible sequence we have f(xpn,1n) — %2 = 1. Studying the

2
inequality % > 1, it easy to verify that for 0 < k < 1/2 the supremum

of f is not atiained, while for k > 1/2, function f admits maezimum value.

Remark 4.1 When ¢ =0 and ¢y = 1 the problem (4.1) reduces to a linear
fractional problem whose properties regarding the existence of finite supre-
mum are studied in [{]. '
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