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1 Introduction

Pseudoconcave vectar valued functions play a key role in multicriteria deci-
sion making and in multiobjective programming since their properties allow
to recognize the efficient points.

In these very last years, several classes of vector valued pseudoconcave
functions have been introduced and studied with the aim of extending to the
vector case some properties of scalar pseudoconcavity [3-12,14-16].

In this paper we deeply analyze a family of vector valued pseudoconcave
functions, among the whole proposed ones, which extends to the vector case
both scalar pseudoconcavity and scalar strictly pseudoconcavity as well as
their optimality properties, such as the global optimality of local optima, of
critical points and of points verifyving Kuhn-Tucker conditions.

This class of functions, introduced in [6,8], comes out to be particularly
relevant since it is possible for it to determine both first and second order
characterizations.

* The paper has been discussed jointly by the authors. In particular Sections 3,4,5,6
have been developed by R. Cambini.
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The proposed class of vector valued pseudoconcave function thus offers a
complete extension to the vector case of the well known scalar pseudocon-
cavity, giving the chance to work in multiobjective optimization with all the
properties of the scalar case.

2 Definitions and preliminary results

From now on we will consider a. vector valued function f, a cone € and some
of its subcones, verifying the following properties:
i} f:A-— R defined on the open convex set A C 1™, is a differentiable
vector valued function,
it) C C R™ i3 a closed convex pointed cone with honempty interior,
ill) C* C ®™ is any cone such that Int(C) C C* C C,
iv) C¥ = C\ {0}.
Some of the main results of this paper will be based on the following
fundamental preliminary theorem which specifies the behaviour of function
JF when J¢(zo)(x — 10} € Int(C).

Theorem 1. Let 2,20 € A, z # xo. It resulls Jp(zo)(z — x20) € Int(C) 4f
and only if the following condition (1) holds:

there erists a vector £, 5 € Int(C), 30" < (0,1] such that: (1)
Flxo + Az — 20)) € f(z0) + A1 = Méayae +C VA€ (0,A)

Proof. =} Suppose by contradiction that V¢, », € Int{C), VA* € (0,1], 3x €
(0, A%) such that f(zo+ Az —z0)) ¢ fz0) + A1~ AYep x, +C. Let c € Int(C)
and consider the sequences &, ., = Lc € Int(C) and A* = L € (0,1], n =

1,2,..., then there exists a sequence X, € (0, %) such that:
Tp + Aplx — - 1
flo + (""/\ z0)) = J(za) ~(1=dn)e+C.

Since limy,.. oo Ap = 0 we then have that:

Tr(eo) (it — o) = Hm LE0 T AnEZ20)) = F(Z0) iy

Tes =00 ’\n

which is a contradiction.
+} By means of the hypothesis we have:

f{@o + Az —m0}) — fl=o)

Je{wo)(w — wo) = Jim, 5 € &ray +C

so that the thesis follows since &, », + C € Int{C) being C a convex cone.

Another useful result, still based on the behaviour of function f with
respect to its Jacobian and Hessians matrices, is the following.
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Theorem 2. If the following condition holds:

AN e (0,1) such that: (2)
flxo+ Alz — 7)) € flwo) +C YA€ (0,0%)

then Ji(wo)(w o) € C. If f is alse twice differentiable then when Jg(xo){x—
@) =0 it s (x — x0) T Hy(zo)(x — 20) € C.

Proof. By means of the hypothesis 3A* € (0, 1) such that:

fl®o + Mz — 20)) — flzo)
A

Being ' a closed cone it then results:

€C VA€ (0,M)

J(xo+ Az — x0)) — flo) cC
A

Tr(zo)(z — mo) = lim

and the result is proved.
Suppose now Jy(xo){x — zp) = 0; by means of the hypothesis IX* € (0,1)
such that: \
f(fL‘o + (‘T - 'EO)) - f(TU) e YAe (O, )\*)
22
Let us consider the following second order Taylor expansion of f at zg:

Flwo + Alw — 20)) = f(@0) + M j(zo)z — 50) +
12 (o = a0) T Hy (o) —2) + A | = 30| #(3,0)

where limy_o+ ¢(A,0) = 0. Since Jy(xp)(z — xo) = 0 it results:

flzo + Az - 20)) — f(20)
22

so that, being C a closed cone, it results:

fzo + Az — z0)) — flz0)
AQ

_ %(:1: — w0)T Hy(zo)(x — o) + |12 — woll* oA, 0)

1 .
5(@ =) Hy(wo)(s — 7o) = lim €C

and the thesis is proved.

Note that the two previous preliminary resulis are not based on the gen-
eralized concavity of function f.

3 Pseudoconcavity and Quasiconcavity

The classes of pseudoconcave functions, whose properties are going to be
deeped on in this paper, are defined as follows (see [6,8]).
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Definition 1. Let ¢ € R™ be a closed convex pointed cone with nonempty
interior and let C* be a cone such that Int{C} € C* C C. A diflerentiable
function f: A —» R™, where A C R™ is an open convex set, is said to be a
(C*, Int())-pseudoconcave function if the following logical implication holds
Ya,m0 € A, x # 0

flz) € flm) +C" = Jp{zo)(z — o) € Int(0)

Note that in the scalar case, where € = Ry and Int{C) = R, the
classes of {C*, Int(C))-pseudoconcave functions coincide with the well know
pseudoconcave and strictly pseudoconcave functions when C* = R4, and
C* = R respectively.

In the vector case the following concept of quasiconcavity has been also
studied (see [6,8]).

Definition 2. Let € < R™ be a closed convex pointed cone with nonempty
interior and let, C'! and C? be cones such that Int(C) € €' C C and Int(C} C
C* C C. A function f: A — ®™, where A C R" is a convex set, is said to
be a (C', C?)-quasiconcave function if the following logical implication holds
Vz,xg € A, x # xg:

. fxo + Az — x0)) € f(zo) + C?
f(T)Ef(To)'i*C = V)\E(O,l)

Unlike the scalar case, the concept of vector pseudoconcavity does not
imply the one of quasiconcavity introduced so far, as it is pointed out in the
next example (see [6,8]).

Example 1. Consider the cone C = R and the following differentiable func-
tion f:[0,3] — R

(—z% +22)[1/2,1/2,11T if z € [0,1]
flz) = ¢ [1/2,1/2, 1) + (—22% + 922 — 122 + 5)[1,—1,0]T ifz € (1,2)
(3/2,-1/2,1]T + (x — 2)*[-5/6,7/6,—1/3]T  ifz € [2,3]

this function is (C*, Int(C))-pseudoconcave but it is not (C!, C?)-quasicon-
cave for any cones €1 and C? such that Int{(C) € ¢! C ¢ and Int{C) C
C* C C (see [6.,8]) since f(3) € £(0) + Int(C) while f(2) ¢ £(0) +C.

The relationship existing among pseudoconcave and quasiconcave func-
tions in the scalar case can be restored in the vector case by means of the
following new concept of vector quasiconcavity

Definition 3. Let €' C R"™ be a closed convex pointed cone with nonempty
interior and let C'! and C? be cones such that Int(C) € €' € € and Int(C) ¢
C? C C. A function f : A — ®™, with 4 C R convex set, is said to be
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a locally (C*, C%)-quasiconcave function if the following logical implication
holds Vx,zp € A, 2 # xg:

AA* € {0,1] such that ¥A € (0, A*)

: . ! 3
f(x) € flao) + = Flao + Mz — 20)) € flwo) + o2 (3)
Theorem 3. Let f: A — R™, with A open conver setf, be a differentiable
(C*, Int{C)-pseudoconeave function, then it is also locally (C', C*)-quasi-
concave for any cones C* and C? such that Int{C) C C' C C* and Iut(C) C
C*Co.

Proof. The inclusion relationship follows directly from the definitions and
Theorem 1, being ¢ a convex cone.

Note that, as a particular case, any {C*, Int(C))-pseudoconcave function
is also locally (C*,C*}-quasiconcave and locally (Int{C), C')-quasiconcave.
Note also that, by means of the definitions, the locally (C!, C?)-quasicon-
cave functions properly contain the (€', C?)-quasiconcave functions studied
in [6,8], as it is pointed out in Example 1.

In the scalar cage the concepts of quasiconcavity and of locally quasicon-
cavity coincide under continuity hypothesis.

Theorem 4. A4 continuous sealor function f: A — R, A C R"® convex sef,
15 quasiconcave if and only if it is locally quasiconcave.

Proof. By means of the definitions every quasiconcave function is also locally
quasiconcave, Suppose now by contradiction that f is locally quasiconcave
but not quasiconcave, that is to say that 3z,y € A, z # y, A1 € (0,1) such
that f(y) = f(x) and f(z + A (y — 2)) < f{z); by means of the local quasi-
concavity of f Iy € (0,1] such that YA € (0, A2} flz + Ay — 2)) > f(z), s0
that Az < A1. Let us now define the following X € (Ag, A1 ):

A=sup{t €]0,1} s.t. f{z+ Ay —2)) = f(z) VA€ [0t}

by means of the continuity of f we can easily prove that f(z+A(y—z)) = f(z)
and that e > 0 such that:

Fat Ay —a) < fa+My—a) = fm) e A+re). ()
Being f(y) > f(2 + Ay — x)} = f(z) we have, by means of the local quasi-
concavity of f, that JA* € (A, 1] such that YA € (A A*) f(z + Ay — z)) =
f(z + My — x)) and this contradicts (4).

Note that if the scalar function is not continuous these classes do not
coincide, as it is pointed out in the next example.
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Erample 2. Let us consider the following scalar function f: R — R:
C[2ifx#£1
ﬂm_{lﬁm:l

It comes out that f is locally quasiconcave even if it is not quasiconcave,
being £(2) = f(0) while f(1) < f(0).

Note finally that Theorem 4 will allow us to show that the characteriza~
tions of pseudoconcave vector valued functions, we are going to state in the
forthcoming sections, are a generalization of the known results of the scalar
case.

4 Pseudoconcavity and Optimality

In this section we are going to point out that the family of (C*,Int(C))-
pseudoconcave functions extends to the vector case all the optimality prop-
erties of the scalar pseudoconcave functions, that is to say that they verify
the global optimality of local optima, the global optimality of eritical points
and the sufficiency of the Kuhn-Tucker like optimality conditions. These are
not new results and their proofs are given for a sake of completeness.

From now on we will use the following concepts of vector efficiency.

Definition 4. A point zp € A is said to be a global C*-efficient point for f
ift

Ax € A,x # xo, such that f(z) € flzg) + O
A point xg € A is said to be a local C*-efficient point for f if there exists a
neighbourhood I, of xo such that:

Av € AN Loy, 2 # o, with f(z) € f(zo) +C”

The first result which is extended to the vector case is the global efficiency
of a local eflicient, point.

Theorem 5. If f: A — R™, A convex set, is a locally (C*, O*)-quasiconcave
function, then every local C*-efficient point is also a global one.

Proof. Suppose by contradiction that zp € A is a local C*-efficient point
for f but it is not also global, that is to say that 3r € A, = # xq, such
that f(x) € f(xe) + C*; by means of the local (C*, C*)-quasiconcavity of f
we then have that JA* & (0,1] such that f(zo + Alr — 20)} € fxo) + C*
VA € (0, A*) and this contradicts the local C*-efficiency of xg.

Being any (C*, Int(C')}-pseudoconcave funcion also locally (C*, C*)-quasi-
concave, we have the following corollary.
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Corollary 1. If a differentiable function f: A — R™, A open conver sct, is
{C™, Int{C))-pseudoconcave then every local C* -efficient point is also o global
one.

Another important property which is extended to the vector case is the
optimality of all the critical point. Denoted with C* = {d ¢ R™ : d'c >
0 Ve € C} € R™ the positive polar cone of C, it is known that if zg € A is a
local C*-efficient point, for f then (see for example [3,4]):

Ja € CF, e # 0, such that aTJf(mg) =10
This suggests the following definition.
Definition 5. A point x¢ € 4 is said to be a critical point for f if;
Jo € Ct, o £ 0, such that o J¢(ze) = 0
By means of this definition we can prove the following result.

Theorem 8. If f : A — R™, A open convex set, is o (C*,lot(C))-pscudo-
concave function then every critical point is also a global C*-efficient one.

Proof. Suppose by contradiction that z¢ € A is eritical point for f but it is
not also a global C*-efficient one, that is to say that dx ¢ A, © # zg, such
that f(z) € f(xo)+C*; by means of the (C*, Int(C))-pseudoconcavity of f we
then have that J;(xzo)(z—xg) € Int(C}. Since xp is a critical point there exists
an o € C*, & # 0, such that o J;(xy) = 0; for a known property of polar
cones condition J¢(zg)(z — 7o) € Int(C) implies that o J;(zo){(x — z¢) > 0
which ig a contradiction being o J;(zg) = 0.

Let us now see how the defined classes of vector valued pseudoconcave
and quasiconcave functions give us the chance to extend the sufficiency of
the IKKuhn-Tucker conditions.

With this aim let us consider the following vector optimization problem:

] Cr-max flx)
P { glz) e V

where A is an open convex set, g : A — RP is a vector valued differentiable

function, V' C R¥ is a convex cone and zg € A is such that g{zg) = 0. With

respect to function g we will use the concept of weakly (€%, C)-quasiconcavity
studied in [6,8] (). '

' Let € C R™ be a closed convex pointed cone with nonempty interior and let
C" C \™ be any cone such that Int(€) € C¢* C C. A function f : A — R™ is said
to be a weakly (C*, C)-quasiconcave function if the following logical implication
holds Ve, mp € R™, 2 # zq:

f@) € flmo) +C" = Jp(wo}(z —20) €C

Note that in the scalar case the weakly (C*, C)-quasiconcave functions coincide
with the quasiconcave scalar functions.
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Theorem 7. Let us consider problem P; if [ 1 A — W™ iz o (C*, Int(C))-
pseudoconcave function, g : A — RP is a weakly (V, V)-quasiconcave function
and g € A verifies the following condition:

dae Cr, 00,48 V™ {5)
such that o J¢(wo) + 47T, (z0) = 0

then xy is a global C*-efficient point.

Proof. Buppose by contradiction that zg is not a global C*-efficient point,
that is to say that Jv € A, x # xq, such that:

f(x) € flzo) + C" and g{x) € V;

then by means of the (O*,Int(C))-pseudoconcavity of f and the weakly
{V, V)-quasiconecavity of g we have:

Jp(zo)(x — ma) € Int(C) and Jy(zo)(x — 20) € V.
Using the multiplier vectors o and 3 of condition (5) we then have:
o Ji(mo)(m — mo) > 0 and 7T, (2e)(x — z0) > 0

so that [af'T¢(wo) + BT J (o) (z — 20) > 0 which is a contradiction.

5 Pirst Order Characterizations

The well known result by Thompson and Parke [17] states that a scalar
function f, defined on a convex set A, is [strictly] pseudoconcave if and only
if the following logical implication holds Vz,z0 € A, z # 2¢:

€4 5, > 0 such that VA £ (0,1)
Fe) = Fand B == a0 235 < 20)) 2 £(50) + A1~ N

In the vector case the following new result, which extends the one by
Thompson and Parke, can be proved. '

Theorem 8. A differentioble function f, defined on an open convex set A, 4s
a (C*, Int(C))-pseudoconcave function if and only if the following condition
holds Vr,z9 € A, © # zo:

3, 2y € Int(C), 3N € (0, 1]
flz) € flwo) +C" = such that VA € (0, A*) (6)
flzo+ Az = z0)) € f(wo) + M1 — AYaey + C

Proof. The thesis follows directly by means of Theorem 1.



Characterizations of Pseudoconcave Vector Functions ¢}

Note that in [6,8] a function f over a convex set A has been defined
to be a strictly (C*, Int(C))-pseudoconcave function if the following logical
implication holds Y,z € A, x # zp:

iz z, € Int(C) such that VA € (C,1)

flx) e flzg) +C* = Fwo + (@~ a0)) € [z0) + AL — \Yewng + C

This class of functions comes cut, by means of Theorem 8, to be strictly
included in the one of (C*, Int(C))-pseudoconcave functions, as it is focused
on by Example 1 (see [6,8]). Example 1 points out also the importance for
(C*, Int{C"))-psendoconcave functions of the existence of a line segment prop-
erty in just the beginning (%) of the interval (0,1), that is in (0,A*), and
points out also that (6) is a better definition for nonsmooth vector valued
pseudoconcave function than the one given in [6,8].

In [13], see also [1], a continuously differentiable scalar function f, defined
on an open convex set A, has been proved teo he [strictly] pseudoconcave if
and only if the following condition holds:

Vag € A and Vd € ®R®, d # 0, such that Vf(29)"d = 0 the
function ${\) = f(zq+ Ad) attains a [strict] local maximum at X = 0.

In the vector case it is possible to prove the following results.

Theorem 9. Let f be o differentiable function defined over an open convex
set A If f ds o (C*,Int(C))-pseudoconcave function then:

Vrg € A and Vd € R, d # 0, such that Ji{zo)d € Fr(C) the
Ffunetion ¢(A) = f(xo + Ad), A > 0, atteins a locel C*-efficient point
at A = 0.

Proof. Suppose by contradiction that dmg € A4, 3d € R™, d # 0, such that
Jr(2o)d € Fr(C) and ¢(A) does not attain alocal C™-efficient point at X = 0,
that is to say that IX > 0 such that f{zg + Ad) € f(zo) + C* by means of
the (C*,Int(C))-pseudoconcavity of f it results AJ;(xp)d € Int(C) so that
Je(zp)d € Int{C) and this is a contradiction since J¢{zy)d € Fr(C).

Theorem 10. Let f be o differentiable function defined over an open convex
set A. If the twoe following conditions hold:

i) f is a locally (C*, C™)-quasiconcave function,

i) Yoo € A and ¥d € R™, d 3£ 0, such that J;(xo)d € Fr(C) the function
H(A) = flzo + Ad), A > 0, attains a local C*-efficient point at A = 0.

? Function f of Example 1 is (€, Int(C))-pseudoconcave but it is not strictly
(C*, Int(C))-pseudoconcave (see [6,8]) since the line segment property holds in
(0,1) but not in (0, 3), even if f(3) € f£(0) + Int(C).
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then fis o (C*, Int(C))-pseudoconcave function.

Proof. Suppose by contradiction that there exist x,mq € R, & # x4, such
that f(z) € flis)+C* and Ji(zo)(z —z0) ¢ Int(C). By means of hypothesis
i) it results f(zo+A(x—z0)) € f(mo)+C* VA € (0, A*); this implies that A = 0
is not a local C*-efficient, point for ¢{A) where d = = — 3 and, by means of
Theorem 2, that Jy{xo)(x—xzo) € C; we then have that J;(zg){z—mq) € Fr(C)
and this contradicts hypothesis 41).

The following example points out the importance of condition i) in The-
orem 10.

Erample 3. Consider the cone ¢ = %i and the [ollowing twice differentiable
function f:{0,2] — R%:

BT —(x - 1), -1 ifz e [0,1]
f=) = { 3, 1T 4 (x — 1)4[-2,2)7 ifx € (1,2]

It results Jy(wg)d € Fr(C) only for z = 1 which is a global *-efficient
pcint for f, so that condition ii) holds in Theorem 10; we also have that
f is neither locally (C*, C*)-quasiconcave nor weakly (C*, C)-quasiconcave
nor (C*, Int(C))-pseudoconcave since f(2) € f(0) + Int(C), f(z) ¢ F(O)+ C
Yr & (0,1), and Jp(0)(z — 0) = 4(z — 0)[3,-1)T ¢ C Vr > 0.

We finally provide the following result which characterize a {C*, Int{C))-
pseudoconcave function with no quasiconcavity requirement.

Theorem 11. Let f be a differentiable function defined over an open conver
set A. Function f is o {C*,Int{C))-pseudoconcave function if and only if the
Sfollowing condition holds:

Yrg € A and Vd € ™, d # 0, such that Je(xo)d ¢ Int(C) the
Junction (X)) = fxg + Ad), A > 0, attoins a global C*-efficient point
at A =0.

Proof. =) Suppose by contradiction that 3z € A, 3dd e R, d #0, IA > 0
such that J{zo)d ¢ Int(C) and flzp + Ad) € f(zg) + C*; by means of
the {C*, Int(C))-pseudoconcavity of f it results AJ¢(zo)d € Int{C) so that
J¢(zp)d € Int(C) which is a contradiction.

<) Suppose by contradiction that there exist z,mg € R"™, = 5 x5, such that
F(z) € flzo) 4 C* and Je(xo)(z — 20) & Ink(C). Setting d = x — zy, it results
Jp(zo)d ¢ Int(C) and ¢(1) € $(0) + C* which is a contradiction.

6 Second Order Characterizations

In [13], see also [1], a twice continuously differentiable scalar function f, de-
fined on an open convex set A, has been proved to be [strictly] pseudoconcave
if and only if the following condition holds:
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Vro € A and Vd € R?, d # 0, such that Vf(xp)Td = 0 either
dTHy(zo)d < 0ot dT Hy(x0)d = 0 and the function ¢()) = f(wo+Ad)
attains a [strict] local maximum at A = 0.

In order to extend to the vector case this result, we firstly prove the follow-
ing second order necessary condition which holds for the class of (C*, Int(C))-
pseudoconcave functions, for the class of (C*, C%)-pseudoconcave functions
(class studied in [6,8] (*} which contains the (C*, Int(C))-pseudoconcave func-
tions}, and for the class of locally (Int(C), C)-quasiconcave functions.

Theorem 12. If function [ verifies at least one of the following properties:
i) f i a (CF, Int(C))-psendoconcave function,

i) f 18 a (C*, C*)-pseudoconcave function,

@) f is o locally (Int(C), C)-quasiconcave function,

then the following condition holds:

Vao € A, Yd € R™, d £ 0, s.t. Jy(wo)d = 0 it results dT H(wo)d ¢ Int(C)

Proof. Suppose by contradiction that there exists w & R™, w # 0, such that
Jy(wg)w = 0 and wTHf {(zo)w € Int{C). By means of the following second
order Taylor expansion of f at g it results:

flxo + tw) — f(xg)
tQ

1 1
= 1 Jp(wo)w + sl Hy{wo)w + || o (t,0)
where lim;_.q & (t,0) = 0. Since Je{xg}w = 0 it results:

lim Flzo + tw) — flzg)
t—0 {2

= %in% —;'TUTHf(ZI‘U)’lU + Jlw|]? o (¢, 0)
1
= ETUTHf(:UO)'LU e Int{C}

Then 3¢ > 0 such that f(zg+tw) € f(xo)+Int(C} Vt € (¢, ¢). Let #; € (0, ¢)
and let 2y = o+t w so that f{zy) € f(zo)+Int(C). If f is a (C*, C%)-pseudo-
concave function [{(C*, Int(C"))-psendoconcave] it results J¢(zo)(z1 — mp) =
tiJp(zo)w € C° [€ Int{C)] and this is a contradiction since Jy{zo)w = 0;
function f must then be, by means of the hypothesis, a locally (Int(C), C)-
quasiconcave function.

By means of the continuity of f 3¢, 0 < € < ¢, such that ¥t € (—€,0) it is
flzo +tw) € flzo) + Int(C) and f(zo + tw) € f(z1) — Int(C). By means
of a well known result on the existence of the maximal points (see [2]) then
Ity € (%, 0) such that, defined zq = mq + taw, it is f(wo + tw) ¢ f(x2) + C

3 A function f : A — R™ is said to be a (C*,C°)-pseudoconcave function if the
following logical implication holds ¥z, 20 € R, & # x4:

f(x) € flmo) +C* = Jp(wa)(z —z) € C°
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Yt € (t2,0); note also that it results f{vs) € f(xo) + Int(C) and f(zs) e
flz1) - Int(C),

Since f is locally (Int(C'), C)-quasiconcave and f{x1) € f(z2) + Int(C) then
A" € (0,1} such that f(xa + A(xy —x2)) € flz2) + C ¥X € (0,1%), that is to
say that flzg +tw) € fxy) + C VL € (ta, ta + A7 (£ — £2)).

This is a contradiction since f(wg+tw) ¢ f(x2)+C Vi € (t2,0) and the proof
is then complete.

Theorem 13. Function f is o (C*,Int(C))-pseudoconceve function if and
only if the following conditions hold:

i) [ is a locally (C*, C*)-quasiconcave function,

i) Yoo € A andVd € R”, d # 0, such that J¢(xo)d = 0 either d* Hy(zq)d ¢
C or d"Hp(xo)d € Fr(C) and the function ¢(\) = f(xg + Ad), A > 0,
odtains a local C* -efficient point at A = 0,

i) Yz € A andVd € R, d # 0, such that J¢(zo)d € Fr(C), Ji(mo)d # 0,
the function ¢(A) = f(xg + Ad), A 2 0, attains a local C*-efficient point
at A =0.

Proof. =} The result follows directly from Theorem 3, Theorem 12 and the
definition of {C*, Int(C'))-pseudoconcavity.

<=} Suppose by contradiction that there exist z, x5 € R™, & # zo, such that
f(x) € flwe) + C* and J¢(xo)(z — 20) ¢ Int(C). By means of hypothesis 1) it
results f{zq + Mz — zo}) € flzo) 4+ C* VA € (0,A*); this implies that A = 0
is not a local C*-efficient point for ¢(A) and, by means of Theorem 2, that
Jy(xo)(m — mo) € C, which implies that Jy(zo)}(z — zp) € Fr(C).

If J¢(zo)(z — o) = 0 then by means of hypothesis i) and the previous Theo-
rem 2 it is (z — mg)TH s {zp){z — 39) € C; this implies for hypothesis ii) that
(@ — z0)" Hy(zo)(z — 20) € [r{C) and that ¢()) attains a local C*-efficient
point at A = 0, which is a contradiction.

Suppose now J¢{xol{x —z0) € Fr(C), Ji(xo)(z —x0) # 0; hypothesis iii) then
implies again that ¢(A) attains a local C*~efficient point at A = 0, which is a
contradiction. The proof is then complete.

Let us note that the previous Example 3 points out that no one among
the three conditions of Theorem 13 is redundant,

7 TIFurther Results

In this section we will point out that the pseudoconcavity of a ascalar or a
vector valued function can be characterized by means of the optimality of any
point zg with respect of a constrained scalar/vector optimization problem
Fy,. This kind of results may be used in order to state some more second
order characterizations of the "bordered Hessian” type.



Characterizations of Pseudoconcave Vector Functions 13

In the scalar case it is possible to prove the following result.

Theorem 14. Let us consider o differentioble scalar function f, defined on
an open conver set A, and the following problem, depending on 1o € A:

_ Maz f(x)
Pay = {Vf(a:o)T(m ~20) <0

Then the three following conditions are equivalent:

i) f is [strictly/ pseudoconcave,
i) ©y is a [strict] global mazimum for Py, ¥rg € A,
i) xq 48 a [strict] local mazimum for Py,, ¥z € A.

Proof. i) = i) Suppose by contradiction that Jxy € A such that xg is not
a [strict] global maximum for Py, so that 3y € A, such that V f(z)7 (y —
2o) < 0 and f(y) > f(xo) [f(y) = F(xo)]; then by means of 1) it results
VF(xo)T (y — zp) > 0 which is a contradiction.

it} = i) Trivial.

i) = i) Suppose by contradiction that f is not [strictly] pseudoconcave,
that is to say that Jy, o € A, y # xo, with f{y) > flzo) [f(¥) = f(zo)] and
V#(zo)T(y — o) < 0; note that the whole line segment [zo,] comes out to
be feasible for P,,. Being the function ¢(A) = f(zg + Aly — z0)) continuous
over [0,1], there exists the minimum value m,, for if, so that we can define
the following A € [0, 1]:

A = sup{A € [0,1] such that f(zq + My — 20)) = my };

being f(y) > flxo) [f(y) = f(z0)], being zp a [strict] local maximum for Py,
and being the segment |2y, ¥ feasible for Py, it results 0 < A < 1; by means
of the continuity of f we can easily prove also that:

flzo+ Ay — ) = m, and that (%)
Flzo + My —20)) < flwo+ My —z0)) YA e (X 1];

it then results %‘%(X) =0=VFf@E) T (y ~ x0) where T = 2o + My — o).
Let us consider now the problem Ps; being:

Vi@ (y—7) = (1 - NVFE) (g —z0) =0

it comes out that the line segment [Z,y] C [zo,y] is feasible also for Py so
that, by means of the hypothesis, 7 is a [strict] local maximum for f over
[%,y] and this contradicts (7).

Note that the second order optimality conditions applied to the previous
problem Py, allow us to find the well known characterization of pseudocon-
cave scalar functions by means of the bordered hessian,

In the vector case the following analogous result holds.



14 Riccardo Caimbini and Laura Martein

Theorem 15. Let us consider function f and the following problem, depend-
ing on the point xy:

{ C*-maz f{x)
Jg(zo){z — wa) ¢ Int(C)

Then the three following conditions are equivalent:

P'ﬂn =

i) fis (CF, Int(C))-pseudoconcave,

i) o is a global C*-efficient point for P,,, Vrg € A,

i) f is locally (C*, C*)-quasiconcave and xq is a local C*-efficient point
for Py, Vg & A.

Proof. i) = i) Suppose by contradiction that 3zq € A such that zp is not a
global C*-efficient point for P, so that Jy & A, such that J;(zq)(y — zg) ¢
Int(C) and f(y) € f(xo) - C*; then by means of 1) it results J;(zo)(y —29) €
Int(C) which is a contradiction.

i) = 1) Suppose by contradiction that Jzo,y € A, y # xq, such that f(y) €
flzo) + C* and Je(m)(y — 20) ¢ Int{C); y comes out to be feasible for
Fy, and g results not to be a global C*-efficient point for P, which is a
contradiction.

it) = ifi) The thesis follows since a global C*-efficient point is also local and
since ii) implies 1) and any (C*, Int(C))-pseudoconcave function is also locally
(C*, C*)-quasiconcave for Theorem 3.

1) = ii) Suppose by contradiction that Jzg € A such that zp is not a global
C*-efficient point for Py, so that 3y € A, such that J;(zo)(y — z¢) ¢ Int(C)
and f(y) € f(zo) +C™; by means of the local (C*, C*)-quasiconcavity of f it
i8 f(zo+A(y—20)) € fxa)+C* VA € (0,A%), A* € (0,1), and this contradicts
the local C*-efficiency of zg for Fy,.
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