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ABSTRACT

A general Goodwin-type framework for the investigation of labour market dynamics is devel-
oped. The framework embeds: i)a standard "malthusian” wage dependent fertility schedule, ii)a
participation schedule dependent on the state of the labour market, and especially iii)a simplified
"mechanistic” representation of the age structure prevailing in the population.

The aforementioned framework is then used to address two main problems: a)to provide an
alternative explanation to demoeconomic oscillations which is based on a model, Goodwin’s one,
that takes into account the overall macroeconomic structure, b) to compare different modelling
strategies for the age structure mechanism.

With respect to the latter point, the (mainly numerical) results obtained from our general
mechanistic model are also borne out by those provided by a simpler model, based on a sim-
plified representation of age structure by means of a time-delay, which permits a more detailed
mathematical analysis.

Two major facts emerge: a)the discovery of endogeous "labour-market induced” demoeco-
nomic waves, which provide an alternative explanation to the traditional Easterlin effect; b)the
feeling that even if the full treatment of age structure is complex, and its detailed effects may only
be studied via numerical simulations, simplified models based on time-delays may be of great
help in understanding the basic qualitative consequences of the introduction of age structure.’



1 Introduction’ |

A major part of the recent efforts in the area of demo-economic interaction has been motivated
by the need to provide sound mathematical foundations for the notion of ”Easterlin cycle”.
Among these we recall the contributions by Lee (1974), Samuelson (1976), Frauenthal and Swick
(1983), Feichtinger and Sorger (1989, 1990), Feichtinger and Doeckner (1990), and Chu and Lu
(1995). The common target of these contributions is the investigation of persistent oscillations
induced by the demo-economic interaction. In all these works the ”economic side” is based.
either on a neoclassical framework, as in Feichtinger and Sorger (1990) and Feichtinger and
Doeckner (1990), or is only implicit through some nonlinear demographic relationship, as in Lee, -
Samuelson, Frauenthal and Swick, Feichtinger and Sorger (1989), and Chu and Lu. All these last
models are in fact purely ”demographic”: the demoeconomic interaction is taken into account
by resorting to some clever modelling trick.

The recent work by Lee (1997) clarifies the nature of population fluctuations: ” Fluctuations
in the population age distribution come about in three ways. In the simplest case fluctuations are
imposed by some external force, such as the climate or the economy. It is also possible that the
population renewal process itself creates damped waves (the so called ”generational cycles”). The
third possibility is that ” Molthusion cycles” occur, due to the lags between the response of fertility
to current labour market conditions and the time when the resulting births actually enter the
labour force” (Lee 1997, 1097). The Malthusian cycle, to which the notion of Easterlin cycle of
course belongs, is the most important notion of demoeconomic cycle, and it calls for explanations
which be an endogenous outcome of the interaction between economic and demographic forces.
Despite the undoubted richness of his paper, Lee (1997) confines his analysis of Malthusian
cycles solely to Easterlin’s assumption, without any explicit consideration of the macroeconomic
structure (along the lines of Lee (1974), Samuelson (1976} etc).

In this paper we try to offer a different perspective, by setting the demo-economic interaction
within the framework of the classical Goodwin (1967) growth cycle model. This latter model
represents, in our opinion, a rich and stimulating framework for the investigation of general (i.e.:
not nécessarily of the Easterlin type) demoeconomic relations, in that it takes into account for
the overall macroeconomic structure. A second important motivation in favour of the Goodwin’s
framework is the fact that its "funding principle”, the profit-squeeze mechanism, is ubiquitous
in well formulated modern keynesian models, as sharply evidenced in recent research work by
Chiarella and Flaschel (1999a,b). - Chiarella and Flaschel have shown that Goodwin’s principle
is a highly robust dynamical principle that continues to be observed even when highly realistic
generalisations of the model, including neoclassical substitution, are considered.

Among the many extensions of the classical Goodwin’s model available in the macrodynamical

1The authors warmly thark Carl Chiarella for his encouragement and for his many helpful comments that
greatly improved the quality of the paper. The authors also thank the participants to the Fifth Conference of the
Society for Computational Economics (Boston 24-26/6/1999) where a preliminary draft of this was paper was
presented, for useful comments. Usual disclaimers apply.’



literature there has not been, to our knowledge, a systematic investigation of the consequences
of a full endogeneisation of population dynamics and age-structure. In this paper we start a
systematic analysis of the effects of population dynamics, age structure and labour supply within
Goodwin-type models (see also Manfredi and Fanti 1999a,b). This is done via a stage structured
representation of the full age structure mechanism which appears a suitable and parsimonious
tool. This representation permits to display the most relevant effects of the age structure on the
supply of labour, by simply adding a third nonlinear equation (embedding several demographic
parameters) to the basic two dimensional Goodwin’s model. We stress that our framework is
general and straightforwardly applicable to other types of growth models, such as the neoclassical
growth model by Solow {1956), see Fanti and Manfredi (1999).

Our framework is then used to investigate the dynamical effects on the Goodwin’s cycle of an
”almost realistic” treatment of the labour supply process embedding, besides age structure: i)a
standard "malthusian” wage dependent fertility schedule, ii)a participation schedule dependent
on the state of the labour market. This set of ingredients appears to be taylored to the study of
"malthusian cycles” following the previous definition by Lee.

Our analysis, besides some results on the steady state behaviour of the economy) shows the
appearance of sustained ?labour-market induced” demoeconomic oscillations via Hopf bifurca-
tions. These oscillations seem to be a strict consequence of the mechanism of formation of the
supply of labour: limit cycles appear essentially as the result of the balancing between the sta-
bilising action due to the ”participation” mechanism, and the demographic instability which is
caused by the delayed entrance into the labour market due to the age structure mechanism. By
choosing as a bifurcation parameter the age of entry into the labour force two main patterns
appear from our simulations: strongly capital-intensive economies exhibit a quite large bifurcat-
ing age of entry into the labour force, whereas the opposite happens in weakly capital-intensive
economies. The last fact seems to be in strong agreement with the empirical evidence contrasting
developed with developing countries.

The central role played by the age of entry into the labour force as a critical bifurcation
parameter (a role put in sharp evidence by the formulation used here} is suggestive in view
of the possibility to use it in the planning of demo-economic policies aimed, for instance, at
influencing family formation and fertility by acting on the process of transition to adulthood.

The results obtained on our general model have also been confirmed by those provided by a
simpler model, based on a simplified representation of age structure by means of a time delay.
As known from the literature on lags (Mac Donald (1978)) time-delays represent simplified but
effective tools to capture the complex effects of age structure. The results provided by the
simplified model are surprisingly close to those provided by the general one, with the advantage
that its analysis is much simpler, so that we are in the position to analytically determine the
whole bifurcation curve.

Two major facts thereby emerge from our analysis. First, the discovery of endogenous sus-
tained "malthusian” demo-economic waves based on a dynamical mechanism not necessarily of



the Easterlin type. Second, the feeling that even if the full treatment of age structure is complex,
and its detailed effects may only be studied via numerical simulations, simplified models based
on time-delays may be of great help in understanding its basic qualitative features.

The present paper is organised as follows. The second section is devoted to the derivation
of our age structured demo-economic Goodwin-type framework. Section three is devoted to
the basic properties of our general model. In the fourth section a complete local analysis of
the alternative model based on a time-delay is provided. Section five is devoted to numerical
simulations and to a comparison of the predictions provided by the two models considered.
.Conclusive remarks follow.

2 A general Goodwm—type demoeconomic framework
embedding age structure and participation

2.1 The classical Goodwin’s growth-cycle model

The well known Goodwin’s model (1967) is the Lotka-Volterra theory of business cycle,
derived by Goodwin to describe how the conflict between capitalists and workers on the labour
market determines the distribution of the product and the employment level, and how these
forces in turn affect the long term growth of the economy. The structure of the model is the
following:
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where U = U(t) is the employment rate at time f, defined as the ratio between the total labour
force actually employed L(t) and the supply of labour N,(t), while V(2) is the distributive share
of labour at time ¢, given by the ratio w(t)L(¢}/Q(t), where w is the real wage and @ the total
product. V' can be expressed also as: V = w/A where A is the average productivity of labour.
Moreover v > 0,p > 0 represent characteristic parameters of the labour market, m > 0 is the -
output-capital ratio, and o > 0, n, > 0 respectively denote the rate of change of the productivity
of labour and of the labour supply. The model (1) is obtained in two steps: first by expressmg
the relations V =w/A and U = @/AN, in terms of their rates of growth:
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and, second, by adding the following assumptions:
i)the labour market is driven by the linear Phillips relation:
w(t
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ii)the accumulation rules are such that: a)the wage earners do not save, b)profits are entirely
reinvested, c)the technology is Leontief-type, d)the capital output ratio K/@Q = m~' is constant.
These assumptions lead to the following equation for the rate of growth of the output:

Qgg ml-V)ym>0 @)

iii)The supply of labour and the productivity of labour grow exogenously at the constant
rates ny, > 0 and a > 0. :

By introducing (3) and (4) into (2) the formulation (1) quickly follows. The model (1) is a
typical Lotka-Volterra system in which the labour share acts as the predator of the employment
(the prey). In particular, when m < a + n, the system has as a unique equilibrium the zero
equilibrium Fy = (0,0} which is globally asymptotically stable’ (GAS). Viceversa, provided
m > a + ng, system (1) exhibits the traditional Lotka-Volterra conservative oscillations around
the positive equilibrium E; of coordinates: Uy = (a+v)/p; Vi = (m — a — n,)/m (notice that
E, is economically meanigful provided p > c+ ). The equilibrium values U;, V; are the average
values of (U, V) during the fluctuation period. As a consequence the average rate of growth of

the output i8 g = o + n,.

The inequality m > o + n, plays a critical role in the model. As discussed in more detail in
Manfredi and Fanti (1999) it provides a threshold which at the same time governs whether: ijthe
Ey equilibrium may be unstable, therefore providing the conditions for the economic ”take off”
which is a necessary "precondition” in a process of economic growth; ii)the positive equilibrium
F exists and is locally stable. In brief: the inequality m > a4 n, governs the stability switches
between Eq and E,, therefore permitting the establishment of the conditions for a ”structured”
economic activity. This suggests, borrowmg from the demographic dictionary, the following
definition:

DEFINITION 1. The ratio:

Rp=— | )

is the reproduction ratio of the economy.

The previous definition® is suggested from the fact that, provided o + n, > 0, the growth of
the economy is possible IFF Rp > 1. The interpretation of Rg is the following (let us assume

2Far from being a trivial fact, the stability of the ”zero” equilibrium corresponds to a situation in which
© - accumulation is too weak to permit the birth of a "structured” economic activity, as stated by a labour market
plus a production structure.

3In demographic analysis the net reproduction ratio (NRR) Ry is a commonly used index (having genetic and
epidemiological counterparts) of the reproductive ability of a population, based on the ratio between the number
of newborn individuals in two subsequent generations. Under constant conditions it pred1cts the growth of the
population when Ry > 1 and its decay in the opposite case.



for simplicity & = 0): if the supply of labour is steadily growing at the rate m,, in order to
guarantee the growth of the economy, the accumulation conditions () must be able to provide
more than one additional job place for every new worker entering the labour market at least in
the optimal condition in which the entire product is distributed to profit. This definition appears
quite natural in Goodwin-type economies in which all the profit is remvested in new labour, a;nd
will be used in our subsequent investigation in this paper.

2.2 A general demoeconomic framework

- 'We now introduce our general Goodwin-type demo-economic framework (see also Manfredi
and Fanti (1999a,b)). This framework aims to be a first step toward realistic formulations of
the labour market. Compared to standard formulations of Goodwin’s model we have added a
detailed, but parsimonious, representation of the process of formation of the supply of labour.
The supply of labour at time ¢, N,(t), has to be defined as the product between the total number
of individuals in the working age span N(t), and their participation rate s(t}: N,(¢} = s(¢)N ().
The rate of change of the supply of labour then satisfies *:
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where n denotes the rate of change of the population in the working age span. For what concerns
the participation term a general form is the following:

+n (6)

@ = Q(wa U) _ (7) -

with: i)0g/0w > 0 (this amounts to postulate that the relation between the labour supply and
the wage is not backward-bending) and: ii)dq/8U > 0, which is based on the discouraged worker
hypothesis (Mincer 1966). In this work we will consider only linear participation:

5(t

?((t—)=*5+‘11U+¢12’w ¢1>0,¢2>0 (8)

2.2.1 Modelling the dynamics of the population in the working age span

‘The modellisation of the rate of change of the population in the working age span n(t) =
N(t)/N(t) represents a distinct purpose of this paper. The whole population process has been
modelled by means of a simplified three-stage structure aimed at representing the most relevant

*The relation (6) permits to fully evaluate the lack of realism of the assumption of a constant rate of change of
the supply of labour, which is common not only to the Goodwin’s literature but also to the standard (descriptive)
neoclassical growth model (Solow (1956}). Such an assumption implies both: i)a constant rate of change of the
population in the working age span, and ii)a constant participation rate.



stages of the individual life-cycle: pre-work ages ("young”), working age span {"adult”), and
retirement. Let us call them stage 1,2,3. We assume that only adult individuals (stage 2) do
reproduce. Table 1 reports the definitions for the involved demographic parameters .

Label ' Description
L1 oy Hg mortality rates in stages 1,2,3
" rate of transition from stage 1 to stage 2
(rate of transition to adulthood)
vy rate of transition from stage 2 to stage 3
(rate of retirement)
b rate of fertility of adults

Table 1 Demographic parameters employed in the model

Let us now derive here our main demographic relations, which are based on an age-stages
formulation already used in mathematical biology (Li and Hallam (1988)). Under the assumption
of constant coefficients, the general partial differential equation describing the dynamics of an
age structured population is reducible to an ordinary differential equations (ODE’s) formulation.
This latter is able, in many cases, to capture in a sufficiently realistic way the main effects of
age-structure whilst mantaining at the same time simplicity of treatment. Feichtinger and Sorger

- (1989) used the same ODE system but without explicit reference to the underlying PDE for age
structure, and in any case they did not derive any equation resembling our equation (25). The
present analysis clarifies in detail the limitations of the approach used by Feichtinger and Sorger
(1989).

Let N{a,t) be the age-time density of a given population, defining the density of individuals
aged a at time ¢. The dynamics of a {one-sex) age-structured populatlon is governed by its Von
Foerster partial differential equation (Keyfitz 1985):

a a
[BE + EE] N(as t) = ——“(a:t)N(aa t) _ (9)
plus the usual boundary and initial conditions:
N(0,t) = B(t) ; N(a,0) = ¢(a) (10)

where u(a,t) is the death rate at age a, B(t) the birth function at time ¢, and @(a) is a pre-
scribed function of age assigning the age density at time zero. To derive from (9)-(10) an ODE
formulation let us now subdivide our population into the following three broad age classes:
(0, Ay)=pre-work age (for instance A; = 15 years), (A;, As)=working age span (for instance:
(15,65)), (Aa, oo)=retirement ages, and let the functions P{t), Py(t}, Ps(t) respectively denote
the number of individuals (young, adult and retired) in the three groups at time ¢.° By perform-

3We could of course introduce an arbitrary number of stages (and this could of mt;erest from other points of
view) but this is the simplest reasonable choice.



ing separate integrations of the basic PDE over the three age groups, and by remembering that, -
by definition: P(0,%) = B(t), P{c0,t) =0, we get the following relations: '

Py(t) = B(t) — Di(t) — P(Ay, 1)

Py(t) = [P(As,t) — P(As, 1)) — Dyft) (11)

P3(t) = P(Ay,t) — D3(t)
where the D;(t) terms denote the number of deaths within each class at time ¢, while P(0,%),
P(Aj,t), P{As,t) are the flows from one class to the next one due to the aging process. The
interpretation of (11) is straightforward. - For instance the dynamics of the number F(t} of
individuals in the working age span is the outcome of the balance between the entries from the
pre-work class (P(A;,t)) and the exits due to aging (P(As,t)) and mortality (D2(t)). Notice
that we may write:

D; (t) =g, (t) i (t) (12)
where f; (t) is the average death rate in the class (which is usually time-varying unless the
population is in a stable state). By assuming that i) the death rate is constant in each class
(i; (t) = p;) we get Dy(t) = pu,P;(t). Let us now consider the quantities P(Aq,t), P (As,t)
describing transitions from one age-class to the next one. Clearly:

P(Ay,t) =Bt —A)p(A1) P(As,t)=B(t - A2)p(As) (13)
where p'(a) , is the survival probability up to age A;. Let us now assume that: -
| B(t) = b(t) Pa(t) (14)

i.e that all births take place in the adult population, where b is the fertility rate of the adult
population, assumed age-independent. In this case:

P(As, 1) = b(t — A4) Palt — Ay)p (A1) )

Hence:

| Py(t) = b(t — A1) [Pa(t — A1)p (A1) — Pa(t — A2)p (A2))] — paPa(t) (16)
The last relation provides the exact representation of the dynamics of the population in the
working age span. In other words: even if we assume that fertility is age-independent the math-
ematical description of population dynamics within macroeconomic models needs differential-
difference equations, the tractability of which, once embedded within a macro-economic model,
may be quite limited.® A strong simplification comes about if we assume that: P(A,t) = v Pi(t),
P(B,t) = vo P5(t). In this case (11) collapses into the ODE system:

Py(t) = bP (t) — (1 + v1) Pu(t)
Py(t) = v1.P1 — (pg + v2) () (17)
Bi(t) = 0 Bo(t) — pa P3(t)

8The analysis of population frameworks as (16) within macro-economic models is a future step of our research
agenda.




where p,(i = 1,2,3) are the death rates and v;(i = 1,2} are the transition rates between the
three classes. Both types of rates will be aesumed as constant since now on.

Some remarks are useful. The system (17) provides, being derived under several assump-
tions, a necessarily simplified view of the demographic reproduction process. Fertility is age-
independent. Moreover, by working on broad age stages its description can not give information
on facts concerning smaller time scales, i.e. it disregards age structure inside (0, A) and (A4, B).
On the other side, it has the advantage of providing a hopefully tractable demographic frame-
work for most of the basic macro-dynamical models, which are expressed in terms of ODE. As
stated by Feichtinger and Sorger (1989,279): ».. the approach may not be suited for quantita-
tive calculations but it has avdantages if one wants to get insights into the qualitative population
dynamics.” ‘ '

Let us now go one step further and introduce explicitly (17) within the Goodwin’s basic
Goodwin’s fomulation. This leads to the following 5-dimensional system in the (w, U) variables:

w(t) = wlt) (- 7+pU )
U =U@ (mt-w) - -n)
By(t) = B(t) - (4 + v1) Pi(t) (18)
Py(t) = 01 Pi{t) — (py + va) Po(2) |
_ B3(t) = vaPo(t) = pg Pa(t)

In order to concentrate on the pure effects of the labour market, in (18) we set a = 0. This
implies that productivity is assumed to be constant over time at a prescribed value Ap (for
simplicity we have rescaled Ay to one). This permits to work on the wage variable (w), rather
than on the wage share (V') used in (1). ‘ - .

The system (18) can be somewhat simplified. Notice first that the equation of the retired
population does not provide any input to the system and can be neglected, thereby reducing one
dimension. Moreover, the rate of change of the adult population n = P,/ P, satisfies:

P Py

P 'UlE“ — (1 + v2) : (19)
The last equation shows that the rate of change of the labour force essentially depends on the
ratio between young and adults prevailing in the population. It is possible to reduce the system
one further dimension by introducing the new variable Z = P,/P,. As: 7= Z (% - %) we
have: | '

. b :
=2 E”(M1+vl)”v12+(ﬂ2+v2)]

leading to: § .
Z=b—HZ —wnZ* ' (20)
where: j

H=(p+v1) — (g +va) % 0 (21)



Hence (18) has been reduced to the 3—dimen$ié)nal system:
w=w(—y+plU)
ﬁ=Uhﬂ—M—§%%mZﬂM+wM (22)
Z=b—HZ —v,Z*

The system (22) is the minimal modelling structure for the investigation of demoeconomic in-

teractions within Goodwin’s model. The demographic subsystem appears through the ratio
Z = Z(t) between the number of young and adult individuals in the population.

An alternative formulation is obtained by working on the rate of change n(t) = P/ P, of the
population in the working age class (instead of Z). As: :

n(t) = 2 = 0 2(t) ~ (g +v2) (23)

then: :
| 1 Z(t) = (i +v2) +n(t) ; w(t) =y Z (2) | (24)

We therefore get:

A(t) = (1) [n? + (H + 20 +v2))m = (v2b = H(py + va) — (g +2)?)]

This leads to the dynamical equation:

n(t) = (—1) [77,2 + Pn — B] (25)
where:

P = ( +v1)+ (g +v2) >0

B=uvb—Q=Q(R—1) (26)

Q@ = (pg + v2)(11y + 1) |

In particular the quantity: :
RO — ’U_]_b = ’U]_b
Q  (dy +v1) (g +v2)
is the net reproduction ratio of the population in our three stages demographic system (Manfredi

and Fanti 1999a).

(27)

By adopting the formulation (25)-(26), and by using (8) we arrive to the following Goodwin-
type demo-economic model: ‘ ‘

= wl-y+pU]
Ulm(l —w) — (-6 + qU + gaw) — n] (28)
n = (=1)[n*+ Pn— B(w)]

o g
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In (28) the economic subsystem is influenced by the demographic one via the labour supply term-
: nyg = £+ n, which is affected by i) the changes in the population in the working age span:
n = P/ P, and by ii) the changes in the participation rate s(t). Viceversa there can be several
inputs from the economic system to the demographic subsystem: virtually all the demographic
parameters are influenced by the living conditions and other economic factors. For instance,
following the malthusian tradition, both the fertility and the mortality rates should be modelled
as functions of the living conditions: b = b(w), ; = p;(w). Similarly the rates of transition to
adulthood (v;) and retirement (v;) are probably influenced by the state of labour market and so
on.

We will call (28) a "mechanistic” model, in that it embodies age structure without intentional .
approximations. The model (28) represents a flexible framework for the investigation of the role
of population dynamics and participation in demoeconomic interactions. Here we will use it in
order to investigate the joint effects of population dynamics and participation under a malthusian
fertility function: b = b{w). Of course the potential applications of the demographic framework
introduced here go well beyond Goodwin-type economies. For instance we already applied it to
the study of demoeconomic dynamics in the Solow’s neoclassical growth model.

3 Analysis of the mechanistic model

The model (28) is mathematically well-posed and admits a unique solution for every initial
condition. Moreover the variables U, w preserve positivity. To avoid the risk of being overbur-
dened with non-essential details, let us simplify the formulation of the participation function,
by writing simply §/s = gU, ¢ > 0. This is motivated by the fact that the general formulation
(8): g{w,U) = ~§ 4+ q1U + guw does not add, in the present case, further substantive dynamical
information.” This leads to the model:

= w(—y+ pU) = wfi (V)
U=U[m(l —w) — qU —n] = U fo{w,U,n) (29)
= (=1) [n® + P — B(w)]

where as usual:

B =ublw) - Q ; Q= (s +v2) {1y +v1) (30)
It is useful to define:
B'= Q(Ro(w) 1) - (31)
where: ' _
Rofu) = ——2%) (32)

(1 +v1) (g + v2)

"The equation $/s = g/ has the drawback that when the employment is in equilibrium the participation rate
should increase exponentially and so reach its upper bound. Qur fermulation is to be regarded just as a starting -
point.




is the wage-related net reproduction ratio (NRR) of the population. Ro(w) associates a value of
the reproduction ratio of the population to each level of the wage observable in the economy. In’
particular: Ry(0) = v16(0) /(g + v1)(pg +v2) is the NRR at zero wage, which assesses the ability
of the population to grow in absence of a ”structured” economic activity. As already stated we
consider only classical "standard” fertility: the fertility rate is a monotonically increasing and
possibly saturating function of the wage: b = b(w), b(0) > 0, (w) > 0. We will sometimes write
b{w) in the form: b(w) = bo-+by(w), by = 0,5:(0) = 0. We notice that all the results of this section
are preserved under the simplifying assumption of linear fertility: b(w) = by+b1w by > 0,5, > 0.

Manfredi and Fanti (1999a) have studied (?7?) under the sole effects of wage dependent fertility
(in absence of participation effects) and have shown that the original Goodwin’s model is always
destabilised® when fertility has a ”classical” standard form, whereas more complex facts oceur
when fertility exhibits ”postclassical” features such as downturns at high wage levels. Manfredi
and Fanti (1999b) have considered the effects of heterogeneity in fertility behaviour of employed
and unemployed individuals in presence of a general Phillips curve embedding ” insider-cutsider”
behaviour. In this last case they also found chaotic oscillations. o

3.1 Equilibria and their local stability analysis

The discussion on existence and meaningfulness of equilibria is quite involved, and we relegate
the details to appendix 1. As @ = U = 0 for U = w = 0, the system (29) always has an
equilibrium (let us denote it as Ey) with zero wage and employment and a nonzero rate of
change of the working population. This latter is a solution of the equation:

n®+ Pn — B(0) =0 (33)

"The last equation has only one nontrivial solution (i.e. suitable to represent a rate of change), '
the positive one namely, given by®:

_%(_p+vﬁvrﬂﬁm) | (34)

Hence ng 2 0 depending on whether B(0) 2 0. This implies: Ry{0) 2 1 where Ry(0) is the
aforementioned NRR at zero wage. The jacobian evaluated at Ej is:

' —~7y 0 0
J(Eo) = 0 m —nNgp 0
BO) 0 —(2no+P)

8This fact may be appreciated by observing that when a " trivial” population dynamics mechanism, based on a

relation between the current fertility and the current wage, is considered, then Goodwin’s conservative oscillations

are preserved
9The condition: A = P2 +4B(0) > 0 needed to ensure that the involved root be real is always satisfied. In

fact:
A= P +4B(0) = (P? — 4Q) + 4u1b(0) = (s, + v1) — (g + v2))” + 40nb(0) > 0



with eigenvalues: Ay = —y ;A = m —ng; A3 = — (2ng + P). Notice that: —(2ng + P) =
—v/FP?+4B(0) < 0. Hence, when Ry(0) < 1, as ng < 0, then Ey is always locally unstable (a
saddle point). In the more interesting case ng > 0, i.e. Ro(0) > 1 then Ej is locally asymptotically
stable (LLAS) as long as m < ng, and it becomes locally unstable when m > ny.

REMARK 1. The last result may be put in the form introduced in section 2. By defining the
reproduction ratio of the economy at zero wage as the quantity:

m
Rp(0)=— | (35)
. g
we see that Ey becomes locally unstable when Rg(0) > 1.

In words: economic development, as synthesized by the instability of E,, becomes possible
when accumulation is sufficiently fast and/or the rate of growth of population is not so large to
overtake accumulation. This generalizes Goodwin’s basic threshold result.

Moreover there may be an equilibrium with zero wage and positive employment Ey =
(0, U2,m2) and a nonzero equilibrium E; = (w;, U1, 7). The E, equilibrium is found by putting
w = 0 in the second and third equation leading to the system:

m—qU —-n=0 n®+ Pn— B(0) =0 (36)

The rate of growth of the population is hence determined from the second equation (36) and it
is obviously given by ng = ng. Moreover:

m:m;% (37)

Hence when ng > 0 then Us is positive for: m—ng > 0, i.e. Rg(0) > 1. The condition m—ng < gq
ensures economic meaningfulness. The jacobian evaluated at E, gives:

-y + pUs 0 0
J(Eg) = —mU2 “"qu —U2
B'(0) 0 —(2no+P)
with eigenvalues:
A==y +pUs dg=—qls; Ag=—~(2ny+ P) (38)
Therefore E; is a saddle point or a stable node depending on whether: ’
—Y+pU220 — p(U2-Ui) 20 - (39)

where Uy = +y/p is the employment value at the E; equilibrium. Hence, if E, coexists with the
nonzero equilibrium E,, then Fy is unstable, while it is LAS when it exists without £;.

Finally, for what concerns the nonzero equilibrium Ey = (wy, Uy, n;), from the wage equation
we find the equilibrium value of employment: U; = /p. We hence get the following sub-system
in the two variables (w, n): '

m(l—w)~qlU; —n=0

n?+ Pn ~ B(w) =0 (40)



the solutions of which are the intersections of the lines: na(w) = m — ¢/ — mw and nB(w) =
: (—P ++/P?+4B (w)) The existence of E; again depends on the mutual position of the
intercepts n.4(0), ng(0). It is easy to see that if ng(0) > n4(0) the system can never admit
nonzero equilibria. In the opposite case, np(0) < n4(0), the system always admits a unique
. nonzero equilibrium E; (details on the full meaningfulness of E; are given in appendix 1). This

result can be expressed again in terms of suitable reproduction rates of the economy. Provided
qU +n(0) > O the correct threshold will be: Rp(w = 0;U = U1) = m/qU; + n(0).

REMARK 2. The equilibrium value of the rate of grouth of the population at Ey may be
positive or negative. It will be certainly positive when ng(0) > 0 (Ro(0) > 1), and in the event
np(0) < 0 it will be positive as long as: np(F=LL) > 0. It will be negative otherwise.

The local stability analysis of £ leads to the jacobian:
_ 0 puy 0
J(El) = “mUl -“qu -—Ul .
B'(wn) 0 —~(2n+P)
. The characteristic pdlynomial K?® + AK? 4+ BK + C = 0 has the coefficients:

A= X+qU
B U (gX + mpw)
C = U(mX+ B'(w)) pw

f

where we defined: 2n+ P = X, and we suppressed the suffix, by writing w instead of w, and so
on. As all the coefficients are strictly positive, the Routh-Hurwicz stability test gives:

aX® + ¢UX + gmpUw — B'(w)pw > 0 (41)

Unfortunately, a full analysis of the stability condition (41) is quite difficult, both in the general
case of a general fertility function b{w), where equilibria can not be determined explicitly, but
~ also in the case of linear fertility. The stability properties of the model (29) will therefore be
investigated numerically (see section five). .

4 An alternative formulation based on time-lags:
fertility depending on the lagged wage

It is of interest to compare the results of the model developed in the previous sections with
a simplified formulation in which the age structure process is embedded via a time delay in the
rate of change of the supply of labour. As well recognised in the specialised literature, time
delays represent a powerful strategy in order to provide simplified, and hence more tractable,
representations of age structure processes (McDonald 1978). In rough terms we may say that



the rate of change of the population in the working age span n is a function of past fertility,
which in turn is a function of the past levels of the wage (see also Fanti and Manfredi (1998a)).
We can therefore reformulate our demo-economic model in the following way:

%% = —y+pU :
79 = m(1 - w) — gU — (J1, bw(r))G(t - r)dr - 1)

where b(w(7)) denotes past levels of the wage-related fertility rate, G is the delaying kernel, and
 denotes the total exit rate in the adult ages (it may be thought as the sum of the mortality
rate plus the retirement rate of the general model). The previous system of nonlinear integro-
differential equations (IDE’s) is difficult to manage analytically but useful information can be
obtained by resorting to the case of linear fertility. This leads to:

(42)

() = w(t) (—y + pU)
U(t) =U(2) [m(l —w)—qU — (bn + b, f w(r)G(t — r)dr — )]

In what follows we adopt the assumption of an exponentially fading memory, i.e. we assume
that the delaying kernel G is of the exponential type: '

(43)

G(z) =ae™® z>0,a>0 | (44)

This assumption is in some sense coherent with the general model, where transition to the adult
state was regulated by constant transition rates, i.e. by an exponential survival mechanism.
Moreover it permits us to reduce the IDE system (43) to a 3-dimensional dynamical system
This is done by introducing the new variable:

S(t) = f_ ; w(r)G(t — T)dr (45)

(which defines the "average wage over the past”) and formally applying the linear chain trick
(McDonald 1978). This leads to the system!®:

W =w(=y+pU)
U=U[m(l-w)—-qU = (bp+ b5 ~p)] (46)
S=a(w— 5) :

where the quantity ¢U + (by + b18 — p) denotes the total rate of change of the supply of labour.

10830me further conditions are needed to ensure the equivalency between the initial conditions of the ODE
system (46) and the initial ”functions” of the IDE system (43).



4.1 Equilibria

The equilibrium properties of the model (46) (details in appendix 3) are analogous to those
of the general mechanistic model. The model (46) always has the zero equilibrium Ey, = (0,0, 0).
Moreover, for w = 0 (§ = 0), provided m — ngy > 0, we bave an axis equilibrium B = (0, U,,0)
with:
:m+ﬂ—b0=m—n0 _ (47)
- q q
which is economically meaningful provided that: 0 < m — ng < q. Finally, remembering that
0 £ w < 1, positive equilibria of the wage may exist only if the total rate of change of the supply
of labour at equilibrium is strictly positive at least for some w. By denoting Uy = v/p, positive
equilibrium values of the wage are solutions of the equation: m — ng — qUy ~ (m + b)) w = 0.
Hence, provided that m — no — gqU; > 0, then a positive equilibrium (E;) with coordinates:

Uz

w1=w;,%;qg‘* U=v/p Si=w (48)
exists. The condition m — ny — gUy > 0 indicates that even if accumulation is sufficiently high so
as to "absorb” population growth (m — ng > 0), the existence of an equilibrium with a positive
wage can be prevented by a too strong participation effect and/or a too high employment level.
By writing the last condition in terms of g we have: ¢ < (m — ng) /U; = ¢, meaning that a too
large participation rate would, coeteris paribus, decrease the rate of growth of the employment,
thereby making the employrnent itself unable to effectively sustain the wage. Notice finally that
'E; will be economically meaningful provided:

m —ng — qU;

<1
m+b1

"This is always true (provided m — ng — qU; > 0 still holds) if ny > 0. In the opposite case the
further condition: '
' b1+bg——,u>—-qU1 — n1+qU; >0 . (49)

has to be imposed. The condition (49) states that, as previously pointed out, in order to have a
fully economically meaningful equilibrium value of the wage, the total rate of change qU/ + n of
the supply of labour must be strictly positive at least when the wages are set up at their maximal
values.

4.2 Local stability analysis of the equilibria

At the zero equilibrium we have the jacobian:

-~y 0 0
JE)=] 0 m-ny 0
a 0 —a



with eigenvalues (—v,m — ng, —a). Hence, as already pointed out the zero equilibrium is locally
unstable only when m —ng > 0, i.e. provided that Rg(0) > 1. For what concerns the axis

equilibrium we have:

-y + pU, 0 0
J(Ep) = -mU;  —qUy bl
a -0 —a

The characteristic polynomial has the eigenvalues: (—v + pUs, —qUs, —a). Hence E; will be LAS
or not depending on whether —v + pU, is negative or not. But:

1+ pUa = p Uy = V) = £ (m — o — qlh)

Hence: —y + pU; < 0 for m — ng — qU; < 0: this shows that £, will be LAS only in absence
of Ey. Otherwise, when F, exists, E, will always be unstable (independently on the stability
properties of Fy itself).1!

Finally, the local stability analysis around E; gives the jacobian (writing for simplicity U, w
instead of Uy, w }:

0 pw 0
J(E)=| —mU —qU —-bU (50)
a 0 —a

The corresponding characteristic polynomial P(K) = K3 + A;K? + A,K + AsC = 0 has the
coefficients: '
' Ai=a+qU; Ay = aqU + mpUw ; A3z = apUw (m + by)

As all the coefficients of the characteristic equation are strictly positive, the Routh-Hurwicz test
for local stability analysis only needs to check the sign of the quantity: Ay = A; 4y — A3 > 0. As
our focus is on the role of the extra parameters a, ¢ introduced via our formulation embedding
population dynamics and participation, let us write such a condition as:

fola) = A(g)a® + B(g)a+ C(g) > 0 (51)
where:
Alg)=q ; Blg) =q°U — pwb; ; C(g) = gmpUw

"The set of parameter constellations satisfying:

fala) = A(g)a® + B(g)a+ C(g) = 0 | (52)

' Despite the richness of economic interpretation of the overall process of birth and death of equilibria in the
model, we will not pay anymore attention to the the equilibria By, Ea since the main object of this work is the
investigation of the existence of sustained oscillations via Hopf bifurcations. From this point of view the only
relevant candidate for subsequent analysis is the positive equilibrium F;. In fact, since the system preserves
positivity no meaningful oscillations are possible around Ejy, E.




defines the stability boundary of E;, which separates (locally) stable from unstable behaviours.
As we will see later on, on the set f,(a) = 0 a Hopf bifurcation occurs.

The stability parabola fy(a) defined by (51) is convex and has a positive intercept. When
the abscissa of its vertex is negative f;(a) will be strictly positive for every positive value of «
and no loss of stability may occur. This happens when: B(q) = ¢?U — pwb; > 0, i.e., by using
(48), when:

A(g) = (m +b1) Ug” + pb1Uq — pby(m — ng) > 0 | (53)

Remembering that m — ngp > 0 (necessary for the existence of Ej), the parabola A(g) is convex,
with a negative vertex abscissa and a negative intercept. This implies that B(q) > 0 for ¢ > ¢*12,
where ¢* is the unique positive solution of the equation: A(g) = 0. Hence the following holds:

PROPOSITION 1. The positive equilibrium Ey can never be destabilised when the pa’r‘tzczpatzon
rate exceeds the threshold value g*.

The last proposition is in agreement with the fact that a very large ¢ causes a very strOng
stabilizing pressure, therefore preventing possible instability patterns®.

In the opposite case B(g) < 0, i.e. for 0 < g < ¢*, the parabola f,(a) has a positive vertex
abscissa, and therefore it may become negative for positive values of a. If its discriminant:

A = ¢*U? — 2¢°U puwby + pw?? — dgPmplw | (54)

is negative bifurcations are necessarily ruled out. Viceversa if A > 0 blfurca,tlons may occur.
Let us study the discriminant A as an explicit function of g, A(q), where:

Alg) = Ulg* — 2 (by + 2m) wg? + p?blu? ' (55)

By substituting in (55) the equilibrium value of the wage: w = w; = (m — ng — qU;) / {m + b)
we find: '
Alg) = U%q" = 2y (b1 +2m) (C ~ Dg) ¢* + p° (C — Dg)* =

By expanding the last expression we arrive to the following quartic equation in g:

Aog* + A1g® + Asq® + Agg + Ay =10 S (56)

2The threshold ¢* satisfies: ¢* < g;. In fact:

g = —b1y + VU2 + 4(m + by) bry(m — ng)
2(m+b1) Uy

A direct comparison between ¢* and ¢, qulckly proves the statement.
31n addition, when B(q) =0, i.e. g = g*, we have:

fa(a) = ga® + gmpUw

which is always positive. This shows that no bifurcation may ocecur for ¢ > g*.



where:

Ay = U?>0; A =2Dy(b+2m)>0; _
Ay = D*p*] —2Cv (b +2m) ; A3 = —2CDp*V? < 0
Ay = pB2C? >0 '

m — Ny U

¢ = m=+ b ; =m-|—b1

The quartic (56) has to be studied for 0 < ¢ < ¢*. The only coefficient whose sign is umbiguous
is A3.1* The following lemma holds:

LEMMA 2. There exists a unique ¢** strictly smaller than g* such that the discriminant A(q)
is strictly positive for 0 < q < g™ and strictly negative for ¢** < g < q*.

Proof. For the equation (56) the two following sequences of signs of coefficients are possible:
(++——+) and (+++ — +), both admitting two sign changes. Therefore, from Descartes
rule of coefficients the following facts holds: i) there are at most two real positive roots, ii)there
are either two or zero real positive roots. Let us now observe that, as B(g*) = 0, it follows:

A(¢*) = B¥(g*) — 4A(¢*)C(g") = —4A(¢")C(g") <0

Hence A(q) is strictly positive at ¢ = 0, while it is strictly negative at ¢ = ¢*. This implies
that A(g) has at least one real positive root in the interval (0,q*) which will be denoted as ¢**.
From Descartes rule, as A(g) has at least one real positive root, it must necessarily have two
real positive roots. Let us denote as g, the second of these roots. Clearly, due to the fact that
A(g) will eventually be positive again (A(+o0o) = +00), g, necessarily lies in the set (q*, +o0).
Definitively, A(g) is strictly positive for (0,¢**), it changes sign at ¢** and remains negative in
the whole interval (¢**, ¢*) (end proof). ' '

The previous lemma implies that the parabola f,(a) becomes negative (i.e. Hopf bifurcations
are possible), only in the interval (0,g**). :

In particular, for 0 < g < ¢**, the stability parabola has two real solution, both of which are
admissible, i.e. we have two admissible bifurcating values of the a parameter given by:

1
a2 = 5o (~¢U + puby ¥ V) (57)

We are now in the position to state our main result concerning the dynamical properties of
the system (29): ' '

14 Aq:
i

CE

from the bracketed term we see that A will be negative for small values of v, but may well become positive for
large values of 7. :

Ay [v8] — 2(m — ng) (m + by) (2m + by)]



PROPOSITION 3. When the participation rate q exceeds a prescribed threshold (g > g**) the
positive equilibrium By of the system (46) is LAS independently on the delay. When 0 < q<q*
the system (46 ) continues to converge to the locally stable equilibrium E; only when the delay
parameter a is sufficiently large or sufficiently small, i.e. for a > ay and a < a1. In the whole
window o) < a < ag the equilibrium E; is locally unstoble. At the points a = al,a = ay Hopf
bszr‘catzons occur.

Proof: the part of the proof of our main proposition concerning the local stability /instability
of E; is evident from our previous discussion. In particular, to formally prove that at the
points @ = a;,a = ag, where stability is lost, a Hopf bifurcation occurs, we need to show
that: i)purely imaginay eigenvalues exist for the linearised system at a = a1,a = ay due to a
"continuous” movement of a pair of complex eigenvalues; ii)the crossing of the imaginary axis by

~the involved complex pair occurs with nonzero speed. The proof of i) is evident, see for instance
Liu (1994) or Fanti and Manfredi (1998b). To show that the crossing of the imaginary axis by
the bifurcating eigenvalues occurs with nonzero speed, we have to consider (Liu 1994) the sign
of the derivative of the higher order determinant of the Routh-Hurwicz theorem with respect to
the chosen bifurcation parameter (a in the present case), evaluated at the bifurcation point. We

have: dA d :
=2 = — (A= Ay) = —afq(a) = 2A(g)a+ B(q)

Remembering that the bifurcating values are:

L (—B(q) + \/Z)

2= 54

we immediately find:

Yul@))  _pq=BD+VA | gy /B —TAGTE) > 0
da /,, -

2A( )

and similarly:

(Ei%f(:_')) . ~VB¥g) - 44(9)C(g) < 0

This completes the proof, by confirming the existence of a Hopf bifurcation at both the points
a1, 9.

The smooth functions of the structural parameters: a; = a;(g,..); az = ag(g,..} where:

a; (g,..) € az(q,..), define the appropriate bifurcation surfaces in the parameter space. The
special structure of the bifurcation curve in the (a, g) plane is illustrated in fig. 1'°. It is defined

" by the union of the two curves a; = a4 (g, ..), a2 = a2 (g, ..) which collapse in the same point for

q=q".

15The bifurcation curve of fig. 1 is calculated by using the same values of the main economic parameter used
in the simulations of the next section. For instance, for: m = 0.33; vy = 1; p = 2; b = 0.10; ng = 0; we find:
¢ = 0.66; ¢* =0.368; g** = 0.125.



Fig. 1. Structure of the bifurcation curve

of the Ey equilibrium

The main finding of the previous bifurcation analysis is therefore the existence, of a twofold
Hopf bifurcation: for every value of the participation coefficient in the window (0, ¢**) (other
- parameters being equal), there are two bifurcating values of the delay parameter a: one occurring
for very short average delays, the second one occurring for relatively large delays. The substantive
aspects of this result will be discussed in the next section.

5 Simulation evidence and substantive facts: comparing
the ”mechanistic” with the delayed system

Sur’pfisingly, and this is a major result from our simulation runs, the general mechanistic
model exhibits an almost complete similarity, both for what concerns quallt ative and quantitative
predictions, with its simplified delayed version.

To organise the discussion let us begin from the delayed model, which, in view of its sharper
analytical properties, seems the appropriate starting point. We must first of all note that the pure
existence of a Hopf bifurcation says nothing about the stability properties of the involved periodic
orbits, i.e. it does not say whether the emerging periodic orbit is locally stable {(supercritical
bifurcation) or unstable (suberitical bifurcation). Unfortunately the investigation of the stability
properties of periodic orbits appeared via Hopf bifurcation at dimensions greater than the second
is a hard task (see Marsden and MacCracken 1976). Moreover the predictions of the Hopf theorem
are local in nature: they nothing say about global behaviour.

~ We therefore have resorted to numerical simulation to clarify the stability nature of the Hopf
bifurcations occurring at the points e = a1, a = ay , and more generally to investigate the global
properties of our model, in particular its more substantive demo-economic properties.

The first remarkable simulation evidence is that both the points ¢ = a,,a = a, generate
supercritical bifurcations (i.e. locally stable limit cycles). In particular the whole window a; <
a < ay is a region of stable oscillations. Moreover, all the properties of the model seem'® to
hold globally: when the E, equilibrium is locally stable, then its stability seems to be global
rather than only local; when E; switches its stability with the stable limit cycles emerging at
the bifurcation points, then the involved periodic orbit seems not only locally stable but also
globally stable.

We now summarise our main findings, by illustrating the working of the model in terms

16We could not produce a formal proof of this fact.



of the two pivotal parameters (a,g). In the region of strong ”participation effect” (defined by -
g™ < ¢ < q1) the model is stable independently on the delay (let us call this situation "strong
stability”) and the economy converges to the long term (seemingly globally stable) steady state
£y. This makes sense: the stabilizing action of participation is so strong to always prevail against
the destabilizing action of the delay. :

Viceversa, when the participation effect is weak (0 < ¢ < ¢**) the F equilibrium may be
destabilised by the action of the delay. More in detail, as long as a is very large (in relative
terms), ie. for a > as, which corresponds to ”very small” values of the mean delay T = 1/a,
the E; equilibrium preserves its stability. But as a is decreased (this happens for increasing
mean delays) stability may be Jost. This happens for a = ay where a first Hopf bifurcation
occurs and E; exchanges its stability with a stable limit cycle. The whole window a; < a < aq
(characterised by intermediate values of the mean delay) is characterised by stable oscillations.
Finally, by furtherly decreasing a, a further bifurcation occurs at a = a; where the stability of
the Ey equilibrium is restored: hence for very large mean delays the local (global?) stability of
the economy is recovered. This last point gives an important economic example in which the
role of the delay is not purely destabilizing.

The process of switching and reswitching of stability between the F; equilibrium and the limit
cycles emerging via Hopf bifurcation appears of particular interest. At the points a = a;,a = as
. distinct Hopf bifurcations occur leading to periodic behaviours in suitable neighborhoods of
these points. A prediction of the Hopf theorem is that the radius of the emerging periodic orbit
depends (approximately) linearly on the distance between the actual value of the bifurcation
parameter and its value at the bifurcation point. In simple words: consider a dynamical system
depending on a bifurcation parameter 1 and undergoing a Hopf bifurcation at y,. Let us suppose
that the bifurcation is supercritical in a right neighborhood (pg, ttg + ). This means that for
every p € (pg, fig + o) a stable limit cycle exists with radius proportional to ||u — ,]|. Now, as
simulations show, in our systems these neighborhoods are of the type (a1,a; + o), (ag, a2 — p) .
But simulations also show that the radius of the periodic orbits emerging at @ = ay is strictly
increasing as @ decreases from ay to a threshold value a* and then decreasing as a is further
decreased from a* to ay where the fluctuations are reabsorbed (and the radius converges to
zero). This seems to denote that the process of switching between the two regimes of bifurcation
is a smooth one. This agrees with the fact that, although a = a;,a = ay are distinct Hopf
bifurcation point, the whole bifurcation process is due to the "activity” of a unique complex
pair of eigenvalues which has negative real parts for large a, it crosses (with nonzero speed) the
imaginary axis a first time at a = as, it keeps positive real part as long as a; < a < a2, and
crosses anew (always with nonzero speed) the imaginary axis at a = a;.

From the substantive point of view the first bifurcation (appearing at a,, i.e. for short
delays) may be interpreted as a sustained oscillation induced by a delayed (but relatively " quick”)
adjustment of wage-dependent participation (we will analyse it further it in a subsequent paper).
Viceversa, the second one (appearing at ay, i.e. for large delays), appears as a typical population
induced oscillation.'?

'"We must admit that the "smallest delay” oscillation was not at all expected. Its appearance reveals that in



As previously pointed out, all the findings relative to the simplified delayed model are fully
confirmed, by numerical simulations, for the general mechanistic model. In fact not only the
mechanistic model exhibits sustained oscillations as well, but, more important, the structure of
its bifurcation process seems to be completely analogous to the one exhibited by the delayed
model. Indeed, by choosing the rate of transition to adulthood v, as the relevant bifurcation
parameter for the mechanistic model, simulation indicates that, exactly as for the delayed model,
when losses of stability occur, then there are always two bifurcations values, one occurring for
very small values of the bifurcation parameter, i.e. for relatively large delays, and the other one
for very small delays. In particular the structure of the bifurcation curve in the (v;, ¢) plane is
qualitatively identical to that found in the (e, q) plane for the delayed-model. Though we will
not deep here the relation beween the mechanistic and the delay model we remark that the main
difference is represented by the quadratic term in the n equation in the mechanistic model, which
has no counterpart in the delay model. Now, though the quantitative impact of this term could
be substantial, its qualitative impact will in general be limited.*

Here we report a few numerical results, the aim of which is purely illustrative; more detailed
investigations are postponed to future work. For ease of comparison we simulated both models
under the same conditions: v = 1, p = 2 (identical labour market conditions), by = 0.02, 5 = 0.03

- (the fertility rate is assumed to be linearly related to the wage). For what concerns the mortality
rates and the rates of transition to adulthood the comparison needs more care, as the simplified
delayed model contains just an overall exit parameter from the adult state (p). The value of ¢ in
the delayed model was therefore fixed to the level u, + v» taken by the total exit rate from the
adult class in the mechanistic model. Finally, we fixed the participation coefficient to ¢ = 0.015
in both models.

Table 2 reports the "smaller” (i.e. those corresponding to the ”demographic” bifurcation)
bifurcating values of o (for the delayed model) and of v; (for the general mechanistic model),
for two broadly different situations, the first one typical of highly capital-intensive economies
{0 = m~! = 5), and the second one typical of weekly capital-intensive economies (¢ = 2). As
the table shows, sustained oscillations appear for quite realistic values of the demo-economic
parameters involved. '

D model: bif. value of 2 | M model: bif. value of v,
m=0.2 (o =5) | 0.05/year (a=1 =2 20ys) | 0.055/year (v’ = 18 years)
m=05 (6 =2)] 0.135 (! = 8years) | 0.144/year (vi’ 27 years)

Tab. 2. Bifurcation values of the parameters a and vy in the

two models (legenda: D=delay, M=mechanistic)

some cases the existence of delayed wage-dependent participation may be a further source of dynamic complexity.

18 A very heuristic argument is the following: at zero wage the n equation in the mechanistic model looks as:
7 = —n? — Pn+ Q. Provided it admits only one positive equilibrium, the previous equation will not differ much,
in qualitative terms, from the equation: . = —Pn + (). '



The figures 2-3 report a phase space dynamics of the ”D” and "M” models for values of a
and v, quite close to their bifurcating values, while the fig. 4-5 report the time paths of the
corresponding long term cyclical behaviors. Both models exhibit a quite appealing ”viability”.
Notice that, from (23): :
n(t) = v Z(t) — (uy + va)

where Z(t) is the ratio between the numbers of young and adults at time t, the Auctuations
in the rate of growth of the adult population are dlrectly mirrored in ﬂuctuatmns in the age
dlstrlbutlon of the overall population.

Moreover the following main facts emerge:

i)the similarity of dynamical behaviour in the two models is ”complete”. This appears to be
of first importance as it suggests that up to a certain degree even highly simplified (i.e. poorly
parametrised) delay models can be of great help in understanding the basic qualitative features
of more complex age-structured models.

ii)For what concerns purely quantitative predictions, the results from both models remain
quite close, with the exception of the dynamics of the rate of growth of the population which
seems quite overestimated by the delayed model.

iii)the transition to adulthood appears to be the main demographic mechanism capable of
generating dynamic instability (and therefore lead to oscillations). With the exception of the
birth rate at age zero (bg) which has also a slight destabilising effect, all the remaining de-
mographic factors, as summarised by the demographic parameters (u;,vs), have essentially a
stabilising role on F;.

Fig. 2 Projection onto the (s,w) plane of a limit cycle in the delayed model
Fig. 3 Projection onto the (n,w) plane of a limit cycle in the mechanistic model
Fig. 4 Long term cyclical oscillations in the delayed model

Fig. 5 Long term cyclical oscillations in the mechanistic model



6 Conclusions

In this paper an attempt is made to model the demoeconomic interaction by introducing a
mechanistic treatment of age structure within an economic framework, that of the classical Good-
win's (1967) growth cycle model, which takes into account the overall macroeconomic structure.
In particular a detailed (although perhaps still very simplistic) representation of the process of
determination of labour supply is considered, which in our opinion suits very much the idea of
"malthusian mechanism”, as clearly defined by Lee (1997).

Two main conclusions emerge. In the first place persistent endogenous demoeconomic oscil-
lations may be the natural outcome of the working of the labour market, i.e. the outcome of
the dynamical balancing between the destabilising effect played by the delay of transition to the
adult state, and the stabilizing force implicit in standard participation schedules (based as in
this paper on highly traditional assumptions, such as the discouraged worker hypothesis). This -
idea is alternative to the notion of fertility feedback implicit in the traditional Easterlin effect.
Second, the feeling that even if the full treatment of age structure is complex, and its detailed
effects may only be studied via numerical simulations, simplified models based on time-delays
may be of great help to understand the basic qualitative consequences of the introduction of age
structure.
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8 Appendix 1: the non-zero equilibrium in the
mechanistic model

The nonzero equilibrium 5 of model (29) is the solution of the following subsystem in the
variables (w,n): ' _
m(l—w)-—-qu—-nz() .
n?+ Pn — B(w) =0 (58)

Hence, its solutions are the intersections of the lines: na(w) = m — qUy — mw and ng(w) =

% (—P + /P24 4B (w)) The existence of E; depends on the mutual position of the intercepts

n.4(0),np(0). By recalling that an equilibrium pair (wy,n,) is economically meaningful provided
0 < wy <1, we have the following cases: '
A)When nﬁ(O] > 0 and n4(0) < 0 no nonzero equilibrium may exist.

- B)When ng(0) > 0, n4(0) > 0, we have the two possibilities: i)n5(0) > n4(0) in which no
nonzero equilibrium may exists; i)0 < ng(0) < n4(0) (or: Rg(0) > 1) in which E; exists, it is
meaningful and provides a positive rate of growth n; of the population.

C)When ng(0) < 0, n4(0) > 0, then:
i)if np(™=) > 0 then E; exists (and it is meaningful) with ny > 0;

ii)if np(2=24) < 0 but —qU; < ng(1) < 0 then E; exists and is meaningful with n; < 0;
iit)if ng(1) < —qU; then F) exists but it will not be meaningful.

D)When ng(0) < 0, n4(0} < 0, then:



i)0 > np(0) > n4(0): no nonzero equilibrium exists; ii)0 > n4(0) > np(0): E; exists and it
is meaningful as long as ng(1) > —qU;. '

9 Appendix 2: equilibria in the delay-model

The equilibria of the delayed model (46) are the solutions of the system:

w(=y+pU)=0 |
U(m(l —w) ~qU — (b + byw — p)) =0

where the quantity: qU + (b + byw — p)defines the total rate of change of the supply of labour.
The nullclines of the wage equation are w =0 and U = U; = v/p (p > ). The nullclines of the
U equation are: U = 0 and the line:

| | m—ng q

wmm+b1 _'r.n+blU (59)

Hence the zero equilibrium Ey always exists. Notice moreover that meaningful equilibria of the
system are given by those intersection of the nullclines which are located within the admissible
"hox" (0w <L 1,0<U L)

Let us first consider the case ng > 0 (notice that in this case the existence of a positive
equilibrium of the wage necessarily implies a strictly positive rate of growth of the total pop-
ulation). In this case the intercept of the line (59) satisfies (m - ng)/(m + b;) < 1. Then, if
m — ng < 0, neither positive equilibria nor axis equilibria exist. Vice-versa, m — ng > 0 then
an axis equilibriumn F, exists, with Uy = (m — ng) /g, and, provided that U, > U, a positive
equilibrium F; also exists. In particular: '

i)if E; does not exist, i.e. Us < Uy, then E, is eéonomjca,lly meaningful, as: U; =v/p <1 by
assumption.

it)if By does exist, i.e. Uy > Uj, then it is necessarily economically meaningful. This is not
necessarily the case for Ey; £y will be meaningful provided that:

m — Ng
q

U2= <l — m—"ng<gq : (60)

Let us now consider the case np < 0. In this case the intercept (m—mno)/ (m + 1) may exceed
one. We have to distinguish:

i)(m —ng)/(m+b;) < 1. In this case the intercept nonetheless remains in the admissible box.
This corresponds to ng 4 b; > 0, i.e. n(1) > 0. In this case F; still exist and it is economically
meaningful, while £, is not necessarily meaningful and the condition (60) is still needed.



ii)(m — ng)/(m + b)) > 1. In this case the intercept does not belong to the box. This
corresponds to ng + b1 < 0, i.e. n(1) < 0. In this case also E; is not necessarily meaningful. It
will be meaningful provided that the condition:

m = ng — ql;

w) = <1
! m+b1

ie.: ‘ '
no+qli+b >0 — n(l)+qU; >0 (61)

holds. The meaning of the last condition is that, to have an economically meaningful positive
equilibrium of the wage, it is necessary that the equilibrium growth rate of the total supply of
labour, given by the sum of the equilibrium growth rate of the population and of the equilibrium
rate of change of the particpation rate, be strictly positive.
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