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Abstract

Regular fluctuations and chaotic behaviour of wages and employment emerge as
a robust finding from standard wages and labour quantities adjustment, in a
simple neoclassical economy, when consumption and leisure are low substitutes.
In particular when the unique walrasian equilibrium of this economy is
destabilised, the economic variables (wage, demand for labor and supply of labor)
are attracted in a stable attracting region within which their motion is chaotic. In
this region we have shown that both average wage and average unemployment
with respect to the total population are larger than those existing in the
Walrasian Equilibrium, suggesting possible empirical implications in terms of a
‘reminiscence’ of a Phillips curve.



Introduction.

The relationship between wage inflation and unemployment has been extensively
discussed since the early work of Phillips (1958) and Lipsey (1960).

Likewise a renewed interest to study fluctuations in aggregate economic variables
has shed new light on both endogenously (Lorenz, 1993) and exogenously
(Kydland Prescott, 1982) determined business cycle.

In the business cycle literature there are several instances of models using the
Phillips curve as a building block. An important example is represented for
instance by Goodwin’s mo.del (Goodwin 1967) and its variants (Cugno and
Montrucchio (1982), Sportelli (1995),‘ Fanti-Manfredi (1998), Manfredi-Fanti
(1999)). A question is then: of what types of dynamical phenomena is the Phillips
relation responsible for? Rich dynamical behaviours in models incorporating the
Phillips curve occur in many variants of the Goodwin’s model. As known, these
models are based on the Lotka-Volterra paradigm, which is one the most fertile
generator of “rich” dynamics. This “richness” makes it often uneasy,
unfortunately, to clarify the exact role played by the Phillips curve in determining
the .emergence of persistent cycles and complex dynamics. The dynamical
behaviour of a system of equations based on the Phillips curve has been recently
analysed in this Journal by Soliman (1996) and by Montoro, Paz and Roig (1998).
The former author uses a very specific nonlinear formulation in discrete-time -
justified by the author referring to a phenomenological rather than a theoretically
microfounded approach - and illustrates the possibility of several dynamical
phenomena. The latter authors extend Soliman’s conclusions showing that the
introduction of a stabilizing monetary policy may lead to cyclical and chaotic
behaviors. |

In this paper we consider a simple economic model describing the dynamics of
the market of the unique input, the labour input. In this market, bofh demand
and supply are micro-founded: the demand for labour is derived from a profit-
maximiser firm with a usual diminishing return technology while the supply of
labour is derived from an utility-maximiser worker—consume'r with CES
preferences. Moreover we postulate that both the labour demand and supply

adjust only gradually to the respective optimal quantities, following a usual



adjustment process in continuous-time. The final building block of the model is a
Phillips-type curve based on the famous interpretation of Lipsey (1960): the wage
rate 1s assumed to continuously adjust,-following an adaptive rule, to the current
excess demand for labour.

A paper which has recently investigated the dynamics of a single market similar
to the present one is Chichilnisky-Heal-Lin (1995, CHL from now on). CHL have
considered an economy with fixed costs, which in turn cause both increasing
.returns to séal'e and a discontinuous firm’s labor demand. Moreover, as in our
model, the supply of labour is a continuous function and the adjustment is the
usual according to the laws of supply and demand. In CHL, due to the special
choice of the production function, the demand and supply curve do not intersect.
They could nonetheless prove the existence of a stable disequilibrium price.
Further djmainical analysis proved the existence of complex behaviours as well.
This is done by applying Keener’s (1980} results on chaotic behaviour in
- piecewise continuous difference equations (the work by CHL is in a discrete-time
framework governed by a discontinuous map). Although their result seems robust
it relies on a highly special assumption, as the authors claim: “we méy conclude
that the fixed cost is responsible for the chaotic behaviour..”(CHL, p.284).

In this paper we obtain a robust chaotic behaviour in a continuous-time
framework which seems mathematically more general and reasonable than the
piecewise difference equation used by CHL (see for instance Gandolfo, 1996}
Moreover we assumed a usual diminishing returns technology, and this latter is
surely more general than the discontinuous technology assumed by CHL. As the
only extra-ingredient with'respect to the Lipsey’s interpretation of the Phillips
curve we postulated the existenice of an adjustment process! also in the
demanded and supplied quantities. _

- Our main finding is therefore that robust chaotic behaviour ofl prices and
quantities in the labour market may occurleven from a simple micro-founded
economic model characterised by the simplest adjustment mechanism. In
particular chaotic fluctuations occur when the substitution between consumption

and leisure is sufficiently weak. Furthermore we observed the following non self-

' By passing, we recal! that the use of a “disequilibrium” model does not imply a lack of optimizing
behavior by economic agents nor that their behavior is irrational. This aspect is extensively
discussed by Wymer (1992).



evident fact: the absence of ﬂexibility on the side of the firm, as well as the
absence of stickiness on the side of the supply of the izvorker, can destabilise the
economy and lead it in a “trapping” chaotic region characterised by both an
average wage and an average unemployment with respect to the total population
larger than those existing in the Walrasian Equilibrium (WE from now on)2
regime. This suggest as a policy implication, to preserve this asymmetry in
flexibility between the firms and the workers. '

The plan of the paper is as follows. In the second section we present the model.
The analysis of the equilibria, their local stability and the existence of a Hopf
bifurcation is presented in the third section. Section four i_lliistrates through
numerical simulation the analytical results of section three as well as the
emergence of chaotic behaviour, whereas a less technical discussion of the
working of the model is postponed to section five. Section six is devoted to some

concluding remarks.

2. The model.

Our economy is composed by a single représentative firm and a single
representative worker-consumer. Labour is the only input, by means of which the
firm produces a single consumption good. The model is “essentially” neo-classical
in that the firm and the consumer are both maximiser of, respectively, profit and
utility, subject to prescribed technolcigy and preference constraints. These latter
are set 'accordi'ng to a Cobb-Douglas production function and a CES utility

function. The technology is represented by the following production function:

Y=DL' 0O<a<1,D>0 (1)

where the parameters a,D have the usual meaning. Let IT and w respectively
define the total profit and the wage rate. By setting the price of the unit output

equal to one, the profit function is defined as

* A social welfare comparison (in a statistical sense) between the stable WE point and the stable
chaotic set is beyond the scope of this paper. We notice however that the stable WE point does
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A standard maximization of (2) gives the optimal demand for labour:

= (w)=[%j"“‘ G)

The worker-consumer maximises the following CES utility function, as in CHL:

ven=let v -np]” peen @

where N>0 is the maximal labour supply and C>0 the worker’s consumption level.
By still following CHL, let us assume N=1. The standard utility maximization
gives the optimal labor supply: '

L= fw)=—2r (5

14wt

As well-known the elasticity of substitution between consumption and leisure, (e),
is: e=1/(1-b). The following features hold. The amount of labour supplied is an
increasing function of the wage for b>0 and a decreasing one for b<0. Moreover,
for b<0 consumption and leisure are “low” substitutes. In particular the larger b
is in absolute value, the more consumption and leisure tend to be “consumed” in
fixed proportions, such as in the ca.se of any recreational and shopping activities.

These facts are summarised in the following table.

b=1= e=w Infinite substitution.
[0<b<l=e>1 High substitution
b>0=e—1 Cobb-Douglas

not seemn necessarily better in terms of welfare.



~o<b<0O=e<1 Low substitutibn

b—-w=e>0 Leontiev (fixed proportions)

Let us now investigate the Walrasian dynamics of this economy. The excess

demand for labour (z) can be expressed as
zZ(w)=L—-S | (6

where L,S are the current demand and supply of labour. If we assume that the
optimal demand and supply of labour instantaneously adjust to their current

counterparts, then it would also holds
L=1"; §=1I"

The price of labour (the wage rate) is not assumed to immediately adjust to labour -
market disequilibrium situations. Rather we postulate that the wage continuously
adjust to the current excess demand for labour, according to an adaptive rule

with speed of adju.stment 1>0:
w=lz(w)=I(L-S) (7)

Equation (7), which is nothing else than the Phillips equation in the famous
interpretation of Lipéey (1960), is the bare bone of the Walrasian dynamic theory.
More relevant “dynamical” flesh can be added by considering the possibility that
the current demahd for labour (L) does not immediately adjust to the optimal
demand.(LD), as well as the possibility that the current supply of labour (S) does
not immediately adjust to its optimal counterpart (LS). Both these assumptions
seem to be quite natural. For instance in the case of the firm, let us assume that
a wage change occurs. The firm reacts to this change by computing a new value
of the optimal demand for labour but this new value is unlikely to be effective
until a certain time has elapsed (because of, namely, negotiations with the union
or other legal procedures). Or in the case of the worker (assumed with a new-born

baby) the new optimal supply (assumed increased) due to a- wage change cannot



be effectively expressed until the nursery-school is closed for summer holidays.
By assuming that both the current demand and supply adjust to their optimal

counterparts following an adaptive adjustment, our model finally takes the form:3

1/{a-1} .
L=g(”-1)= g{[%) - LJ g>0

- : 1
S:d(L‘“—L)zd(W—S) >0 (8)

w=1{L-8) A>0
So far, it has. been usual to analyse the dynamics of traditional wage
adjustments, such as that implicit in (7), by considering an exogenous cyclical
fluctuation either of demand, for instance of the type LD(t}= cos(t) {Hansen,
- 1970)%, or both of demand and supply (Bowden, 1980). We have built a different
mechanism, based on a subsystem of demand and supply adjustments, which
can also display some endogenous cyclical features which in turr interact with

the Phillips-Lipsey mechanism.

3. Equilibria and their local stability

1. Existence of equilibria

The equilibria of the system are defined as the solutions of the equation:

1

! “ where k =[—] >0 ©)
aD

L
1+ wht

kw 1= =

for O<a<1,b<1. This corresponds to the intersections between the two curves fifw)

and fafw) denoting optimal demand and supply.

* Due to the fact that the maximum of labour supply is set to one, it should also be assumed that
the upper bound for L is necessarily one. But we do not impose explicitly this bound in order to
avoid the further non-linearity due to the existence of a “barrier” in the dynamics (in fact in this
event also locally unstable linear systems could behave chaotically (Simonovits, 1982)). Our main
goal is in fact to investigate the dynamical behaviour of our economy under the “minimal” number
of “ nonlinear” ingredients, i.e. just those due to the neo-classical assumptions. Nevertheless we
can assume that, temporarily, during the cycle a situation of overemployment, due to, for
instance, overtime work and so on, could exist. Note that this problem arise also in the Goodwin’s
model (1967), in which the rate of employment is not botunded, and for which similar temporary
overemployment situations can be postulated, as in Flaschel-Groth (1995)).

* “Instead of building up a complete model for labour demand, we shall impose an EX0genous,
cyclical fluctuation of demand for labour upon this system.” {Hansen (p.19)).



It is possible to show that the system always has a unique equilibrium which is
economically meaningful, The optimal demand curve has the traditional strictly
decreasing form over the set of positive values of the wage for all the possible .
values of its characteristic parameters a,D. In particular when w—0*, fifw)—>+ .
Vice-versa, for what concerns the supply curve there are two broadly distinct
cases: i) O<b<l, and ii) b<0. In the first case the ratio b/ (b-1) is negative. Let us
denote b/ (b-1)=-3, with 0< g <c0, As:
1 1w

Wil= = =
fw) L 1+w” 1w
1+ wh-t

in this case the optimal supply is strictly increasing and saturating to its unit
upper bound. Moreover £(0)=0. Hence a unique economically meaningful
equilibrium always exists (fig. 2).

Let us now consider the case b<0. By writing: b=-c we have: b/ (b-1)=¢/c+1=6, with
O< 8 <1. In this case: |

P ) [ ————

Lo i l+w

Hence, by defining: 1/(1-a)= vy, y>1, the detection of equilibria leads to the

equation:
k(l +w® ) = w’

to be studied for w>0.

The right-member curve has a zero-intercept and is stricﬂy increasing. As y>1 it
increases more faster than the 45° line. On the other side the left-hand curve has
a strictly positive intercept (given by k>0) and is strictly increasing as well, but, as
0<é<1, it increases more slowly than the 45°¢ line. Hence also in this case a

unique economically meaningful equilibrium exists (fig. 2}.
The following proposition summarises our steady state analysis:

Proposition 1: the model (8) always admits a unique equilibrium pomt

E1=(L*,S*,w*). E; is always economically meaningful.



Notice therefore that the previous proposition holds both when consumption and

leisure are substitutes as well as when they are complements.

Fig. 1. Equilibrium analysis: optimal demand and supply curve:
| the case b>0 (a=0.15, b=0.5)

Fig. 2. Equilibrium analysis: optimal demand and supply curve:
the case b<0 (a=0.15,b=-10)
2. Local stability analysis :

To investigate stability let us write our model in the form:

L=g(fiw)-L)
S=d(f,(w)-8) gdl>0 (10)
w=IL-8)

For simplicity let us suppress (*) and denote by (L,S,W) the equilibrium values of -

the state variables. The jacobian evaluated at Ej is:

-g 0 g
JLSw)=J(E)=| 0 -d df(w) (1)
I =i 0

The corresponding characteristic equation is:
A ral +a,A+a, =0

where the coefficients ai (i=1,2,3) are defined as:

a=g+d
a, = gd ~1(gf, (w)- df, () (12)
a, = 1dg(f, ()~ £, (w))



- We note that a; is always positive. Moreover as is always positive when b>0, as in
this case the optimal supply curve is strictly increasing (Vice-versa when b<0, as
is not necessarily positive). Let us concentrate first on the “traditional” case b>0.
In this case, according to the Routh-Hurwicz test, E; is locally stable when the

further inequality a;az-as>0 holds. The latter condition leads to the inequality:

(g +d)ed ~1(gr; (w)-ary W)~ 1ag 1, ()~ 7 (w)) > 0

or.

(g+d)gd +1{d f, (w)- g £, ())> 0 (13)

By recalling that f,’(w)<0 the last inequality is always true, showing that when
b>0 the E1 equilibrium is always locally asymptotically stable LAS.

These fact are summarised in the following:

Proposition 2: if consumption and leisure are “strong” substitutes (O<b<1,
corresponding to a monotonically increasing supply function) the unique

equilibrium E; is LAS independently from the values of the adjustment

parameters,

An intermediate case is represented by b=0 which causes a rigid optimal labour

~ supply. In this case we have the system:

L=g(f,(w)-L)
S=d(1-8) g.di>0 (14)
w=I(L-5)

In this case the equilibriuin E; is explicit: E1={1,1,k"), and it is always LAS. In

fact the coefficients of the characteristic polynomial are simply:

a mg-}-d ;oa, égd—lgfll(w) ; a3z—ldg]ﬁ'(w) (15)



In this case the Routh-Hurwicz test quickly shows that E1 is always LAS:

a0, —a, = (g +d)gd ~1g f, (w))+ ldgf, (w) = (g + d)gd (g + d)lg /() > 0

The case b=0 is simple and we will not deep it. Notice that it leads to the system:

S(r): Sy "‘(I_Su)e“dr
L =g(f,(w)-1)
W= (LS, +(1-S,)e)

which is non autonomous but asymptotically autonomous.

Let us now consider more in depth the case b<0. In this case both the derivatives

of the optimal labour supply and demand are negative. Let us put for simplicity:

fiw)=-4 ; f,(w)=-8
Hence, as:
a, = f, (w)- £, (w)=4-B

for A~B<O (A<B) (corresponding to the case of a supply curve steeper than the
demand curve at equilibrium) the equilibrium is always locally unstable (a saddie
point).> Vice-versa, for A>B the coefficient a3 remains positive and more
interesting dynamical effects may appear. In this case the condition aias-as>0

becomes:
(g+d)gd+l(Ag2 —Bd2)> 0

or:

* The equality A=B causes a saddle-node bifurcation. In this paper we have not considered the
whole spectrum of possible bifurcation patterns of the equilibrium as we are mainly interested in
the mechanisms leading to complex behaviour. A full picture of the bifurcation patterms is
obtained via equilibria continuation methods (Kutznetzov 1995) in a different paper {Fanti and
Manfredi (1999)), :



g'd+al)+d*(g-Bl)>0 (16)

We immediately notice that for d=g we get:

aa, —a, =2d’ +1d*(4-B)>0

Hence, for d=g the system is always locally stable in a néighborhood of the E;
equilibrium. This shows that, a fortiori, the system remain LAS for_ all
combinations (g,d) satisfying g>d (i.e. when the speed of adjustment of the
demand sector of the economy is larger of the corresponding quantity of the
supply side of the economy). On the contrary, when g<d, the system may
definitively loose its stability. Instability arises when, provided that g<d, it holds; -

(g+d)gd+l(Ag2 —Bd2)<0 an

We claim that a Hopf bifurcation arises when the equality:

(g+d)gd+l(Ag2 —Bd2)= 0 (18)

holds. The previous equality defines the stability boundary of the system. To
simplify the analysis in this study we study the bifurcation process using as a
bifurcation parameters the speed of adjustment of the demand for labor to its

optimal level. To do this we write the bifurcation locus as:

H(g,d)=(d +14)g* +d*g —IBd* =0

For d=0 we have g=0 showing that the bifurcation locus passes through the

origin. The full structure of the curve is found by solving the previous equation.
with respect to g; we get:

. _~d -\d' +4Bla v i) _=d’ +Jd* +4IB(d + 14)d*
Hi S SERLE 2(d +14)

2(d +14) '(1_ %)



Notice that the discriminant A=d?+41B(d+IA)d? is always positive. So that the
solutions (19) are always real. It is easy to check that only the solution gy being'
positive is adequate to represent the desired bifuircation process. This shows that
a bifurcation value always exists. The structure of the bifurcation curve of the E;

equ111br1um is given by

—d® +\|d* + 41B(d + 14)
& 20 +14)

20

It is of interest to study the shape of the curve (20) as a relation of the type
g=gu(d) where g,d are the speeds of adjustment of the current demand and supply
" curves. It i 1s not difficult to see that, as expected, the curve gu(d) lies always in the
region g<d. Moreover gu(d) is a strictly increasing function of d. In fact we have,

~after some algebra:

{(d”A)(“ 24+ (VA ) (4d° + 12187 +8[2ABd_)]_(\/Z - d2)}

. 1
dy=~ _
A (d +14)
1 . .
= (4 B 4 24P B2 4+ 5201 A B 4 484°F 4B + 161°4*B*d%)> 0
2(d +14)

Finally it is possible to show that gu(d) is a convex curve. To complete the proof of
the appearance of a Hopf bifurcation of the E; equilibrium, let us now show that
the pair of bifurcating eigenvalues cross the imaginary axis with nonzero speed.

This is equivalent to show that (Liu, 1994):

(%(alaz —aa)J 20

B=gkx



We quickly have:

(j—g(a,a2 ~a, )J. = (2(d +14)g +d )pe, =+Jd* +4IB(d +14)
¥=Ry

Whic:h;. is always positivé, thereby completing the proof.

The fig. 2 illustrates the biflircation curve and the stability features of our basic

system in the case A>B in the (d,g) positive quadrant. The straigh line g=d splits
the plane into two regions. In the region above the line (g>d) the system is always
LAS, and this happens on all the points of the line as well. Viceversa in the region

below the line the system is stable in the region above the bifurcation locus.

Fig. 3. The structure of the bifurcation curve (a=0.15, D=1, b=-10, A=4)

Let us summarise our dynamic finding in the following:

Proposition 3: if consumption and leisure are weak substitutes {b<0) (the case of a
monotonically decreasing supply function), and provided some other condition is -
satisfied, there exists a bifurcation value of the adjustment parameter of the
current demand gn=gi(a,D,b,d,l} such that for O<g<gn, the unique equilibrium E:
is locally unstable. Moreover, a suitable left neighborhood of gu exists in which a

stable limit cycle (at least one) exists.

The inspection of the structure of the bifurcation curve gu(d) shows that the
stability. of the Walrasian equilibrium prevails for combination of values of the
speeds of adjustment of the decisions of both the firm and the households which
lie above a critical line, given by the bifurcation curve. Therefore the following
remark holds | |



Remark: stickiness in the realization of the employment decisions of the
households as well as flexibility in those of the firms tend to favour the stahility of

the Walrasian equilibrium.

Moreover, our simulation analysis of the next section will show that when g is

furtherly decreased, chaotic behaviour can emerge.

4. Numerical simulations

Even for simple models as the one considered here it is difficult to obtain a global
view of the dynamics. Nonetheless a good feeling in the global behaviour of the
system may be obtained by simple strategies, i.e. by choosing a bifurcation (or |
“contfol”) parameter and by analysing how the structure of the attractors evolve,
as the control parameter is varied while all the other parameters are kept fixed. In
this work we have chosen as the bifurcation parameter the parameter g, which
measures the degree of flexibility of the employment decisions of the firms. In
what follows we report an example of the main simulative evidence from our
simulation runs. |

The sequence of windows of distinct dynamical behaviour reported below was
oBserved for a very wide set of values of initial conditions and parameters.

The simulations reported in the figures 4-13 as illustration of the dynamics of the
system (8), are based on the following specific parameter constellat1on D=1,
a=0.15, b= -10, d=4, L=4. The corresponding equilibrium values are L*“S** 0.832
and w*=0.182. All the reported simulations are performed with initial conditions
very close to the equilibrium E; (L°= 0.825, 8°= 0.835, w°= 0. 18).

Dynamical simulations are then performed focusing on how the equilibrium point
changes its qualitative properties. For quite large values of g (g>1.3) E; is a stable
node (see fig. 4 drawn for g=12). When g is decreased below 1.3 the equilibrium
point becomes a stable focus (fig. 5, drawn for g=1.25): trajectories converge to

the equilibrium with damped oscillations. As predicted by the analysis of the



previous section, a Hopf bifurcation occurs when the speed of adjustment of the
demand for labour falls below the critical threshold value defined by equation
(20). This threshold is given by gu=1.068 in our parameter constellation. The
predictions of section 3 are confirmed by numerical simulation: trajectories
starting sufficiently close to the steady state initially diverge, and subsequently
converge to a stable limit cycle. Fig. 6 (drawn for g=1.066) reports a phase plane
view of the dynamics of model (8) in the (S,L) plane. The involved cycle, which
seems to be uniqueb from simulation, exhibits small oscillations between 0.82
and 0.84 both for demand and supply.

When we further decrease the adjustment parameter g, complex behaviours arise.
Generally speaking the emergence of a strange or chaotic attréctor may be
detected through several measures?. 1) by “eye”, i.e. by the visual inspection of
highly irregular dynamical patterns both in the phase space and in the time
paths; 2) through bifurcation diagrams; 3) through many numerical and
statistical tests8.

The direct visual inspection reveals that the trajectories of the system wander
erratically in a bounded region of the phase plans L,S and w, S (see figg. 7-8).
Furthermore a typical feature of the chaotic behaviour (which distinguishes it
from the quasi-periodic behaviour), namely the SDIC (sensitive dependence on
initial conditions), is neatly indicated by the comparison between any two time
paths starting from very close initial conditions. Fig. 9a plots the trajectory of the
wage in the time domain for the initial condition of L°=0.825, S°= 0.835 and
w°=0.18, while fig. 9b reports the same plot for the same initial conditions for
demand and supply but w°=0.181: the two paths, both of which display a highly
irregular pattern, differ neatly, both in the amplitude and frequency of the cycles.

% The Hopf theorem does not predict the uniqueness of the involved periodic orbit.
" The use of techniques for the global analysis of the system (8) in order to obtain an analytical or
geometrical detection of “chaos” is beyond the scope of this paper (see Wiggins (1990)).

! Among these, we remark the computation of 1) the construction of a Poincaré map by numerical-
graphical techniques which in the case of a simple bi-dimensional surface of section, permits to
identify different types of dynamic behaviour, as limit cycle, subharmonic oscillations,
quasiperiodic oscillations and the presence of a strange attractor; 2} the dominant first-order
Lyapunov exponent for a reconstructed attractor which whether is positive gives a sign of
existence of SDIC (Wolf at al, 1985); 3) the correlation dimension of the (reconstructed) attractor
which whether is a non integer number indicates a fractal structure of the attractor {Grassberger
- Procaccia, 1983). Such computations (for sake of brevity not reported here) have confirmed the
presence of deterministic chaos in the system (8).



Furthermore, we can see that different initial conditions generate a different
shape of the chaotic attractor: compare the figures 8 and 10.

The analysis of the bifurcétion diagram (fig. 11) clearly indicates the onset of
chaos: when still with reference to our initial parameter constellation, the g
parameter is reduced below the threshold value gc=0.62 the stable limit cycle,
appeared via the Hopf bifurcation, bifurcates in its turn, and the system exhibits
an evident route to chaos of a quasi-periodic type (still see fig. 11). Finally when a
further reduction of g occuré, a so-called “catastrophic” crisis appearé implying
sudden increases in the size of the chaotic attractor, until the final exploding
crisis (for ge<0. 53}, which leads the system to global instability.

The figures 12-13 illustrate a remarkable fact: the ch_aotu: fluctuations of the
demand for and supply of labor are on average below their equilibrium value

whereas they are systematically exceeding the equilibrium value for the wage.
FIG. 4- View of the monotonic ‘convefgence of the trajectories to the equilibrium
in the phase space L, S. (g=12). | |

FIG. 5 - View of the oscillatory convergence of the trajectories to the equilibrium

in the phase space L, S. (g=1.25).

FIG. 6 - View of the convergence of the trajectories to the stable limit cycle in the
phase space L, S. (g=1.066).

FIG. 7 - Chaotic behaviour in the phase space S, L.

FIG. 8 -~ Chaoctic behaviour in the phase spaée w, S (I.C.: L°=0.825, 8°=0.835,
w°=0.18).

FIG. 9 (a,b) ~ Two enlarged windows of the plot of the time path of the variable w
in the case of a very small difference in one initial condition (L°= 0.825, 8°=
0.835; time plotted 50000-61000): a) w°=0.18; b) w°= 0.181.

FI1G. 10 - Chaactic behaviour in the phase space w, S (I.C.. L°=1, 8°=0.4, w°=0.2).



FIG. 11 ~ Bifurcation diagram for the parameter g (between 0.535 and 0.62) and
the labour supply S. |

FIG. 12 - Time path of the variables L, S compared with the equilibrium value
L*=5*= 0.832 (g= 0.55).

FIG. 13 - Plot of the time path of the variables w compared with the equilibrium -
value w*= 0.182 (g= 0.55). |

5. Working of the model

In this section we try to provide an heuristic view of the working of the model (8).
As we have seen, in presence of a sufficiently limited flexibility of the employment
decisions of the firm (as measured tHough the g parameter), i.e. for g<gu, the
stable Walrasian equilibrium is destabilised: an initial excess demand for labour
will not be reabsorbed. Two broad dynamical situations may then occur: i)
provided that g is in a suitable intermediate window (ge<g<gn), an initial excess
demand for labour gives rise to an increasing wage which eventually leads to a
cyclical balance between demand and supply; Vice-versa, ii) when g<gc, the
increase of the wage does not end in a balanced (though cyclical) regime, but in
chaotic fluctuations. _

In substantive terms, the increase in the wage tends to discourage both the
optimal demand and the optimal supply (this is due to the fact that we are in a
case of low substitution between consumption and leisure) though in different
measures depending on their parameters (i.e. technological returns to scale and
elasticity of substitution between of consumption-leisure). The balancing effect of
the reduction in both demand and supply occurs in a region which is far from the
WE, and lies prevalently below the WE value: after the initial reduction ini both
desired demand and supply , their different “speeds ” permit the occurrence of
chaotic fluctuations inside a “trapping region”,‘ but the wage is never able to
decrease sufficiently to come back next to (and beyond) its (unstable) WE value.

For example, in the fig. 12, we see that the max1mum peak of the oscillation of

the labour supply lies always below its WE value In other words the system, once



that the WE is abandoned, behaves either regularly or chaotically, fluctuating in a
range of values of the employment and of the wages that are on average
respectively lower and higher than the WE values. |

CHL find that® in the chaotic region the wage is on average exceeding the stable
disequilibrium wage. This implies that (on average) an excess supply of labor over
time. Their suggestion is therefore that the model endogenously display a
Phillips-curve-type pattern, but also that in this case the revealed negative
relationship between wage dynamibs and unemployment which is persistent in
the long period could not be interpreted by the policy—maker as a locus of
equilibrium trade-offs'betweeh wage inflation and unemployment between which
to choose. In fact the Phillips curve would only be “a by-product of price
dynamics in a non-convex economy”. But we recall that in the CHL model there is
no WE, and therefore their reinterpretation of the Phillips curve could be ascribed
to the specificity of their economic assumptions (non-convexity, no market
equilibrium, etc.); in contrast, in our model there is a WE which can be
destabilised by various factors, among which a low flexibility in the firms’
employment decisions and a high speed of wage adjustment. Out of equilibrium,
our economy can show a stable erratic pattern, the main economic features of
which are: 1) a “ dynamical Phillips-curve reminiscence”, and 2) a behaviour of
wage and employment which lie systematically respectively above and below the

levels predicted by the Walrasian Equilibrium.

6. C'onclusions

This paper has showed that regular fluctuations and chaotic behaviour of wages
and employment may be a robust outcome of a market economy when
consumption and leisure are low substitutes. In particular when the unique’
walrasian equilibrium of this economy is destabiliéed, then the economic
variables (the wage, and the demand and and supply of labor) evolve toward a

stable attracting region within which their motion is chaotic. In this region we

° This results seems mainly due, as already peointed out, to the special discontinuous production
function, according to which a sufficiently high wage leads to zero production and, consequently,
to a zero labor demand.



have shown that both the average wage and the averagé unemployment are larger
than those existing in the Walrasian Equilibrium, suggesting possible empirical
implications in terms of a ‘reminiscence’ of a Phillips curve.

In conclusion we summarise the following main results: 1) in the chaotic set there
always is either excess labor supply or excess demand for labor along with wage
changes. The wage always moves in opposite direction to the unemployment, but
this relationship is persistent in the long-run, then it is not only a transitory
disequilibrium phenomenon for a wage adjustment process converging to the
equilibrium as postulated by the neoclassical interpretation of the Phillips curve;
2} the economy is driven away from the WE and _.trapped in a stable.
‘disequilibrium’ wage set in which excess demand for (or even supply of) labor
lead to wage changes which are: i) persistent in the long-period, and ii) of erratic
time pattern, and finally where iii) on average the employment is largely smaller
~ than that predicted by the WE.
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APPUNTI di RECUPERO

A little more flesh could be added to the bare bones of the theory expressed by eq
(). The addition of still more flesh would imply considering the possibility
that...... , as well as the possibility that the wages do not immeditaely adjust to
labour market disequilibrium.' _ _

That these modifications do not alter the basic results (findings, outcomes)

reached (obtained, attained, shown) in the present essay (paper, work) is shown
in Fanti (1999).

FIG. 4 - Plot of the time path of the variables L, S, w : regular oscillations
(g=1.066) (time plotted 0 -5200; the variable w is fescaled).

FIG. 8 - Plot of the time path of the variables L;_ S, w : irregular oscillations
(g=0.55} (time plotted O -5200).
FIG. 11 - An enlarged window of the plot of the time path of the variables L, S, w :

irregular oscillations (g=0.55) (time plotted 3100-4600).
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