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ABSTRACT

The analytical detection of sustained oscillations via Hopf bifurcations in ordinary differential
equation systems of dimension higher than the second is a first concern in macro-economic
dynamics. This paper aims to offer a unified perspective of the subject, by reviewing some
useful result of the recent mathematical literature and by clarifying the relations between the
body of stability theorems and the notions of simple and general Hopf bifurcations. A Liénard-
Chipart version of the Routh-Hurwicz-type theorem by Liu (1994) is proven which appears of
considerable usefuiness in applications. Subsequently, the notion of stability boundary, which
provides a powerful tool often making the detection of the bifurcation quite easy, is carefully
discussed as well. Delay and heterogeneous systems seem to be areas which could benefit in a
substantial manner from the results discussed here. A final illustration is given on two delay-
models: a Solow-type demo-economic model and a Kaleckian extension of the Lotka-Volterra-

Goodwin model.



1 Introduction |

In the recent years there has been a renewed interest for economic growth and the economic
business cycle. The development of the “endogenous growth theory” and of the “real business
cycle theory”, but also the renewed interest in Goodwin-type and keynesian macrodynamies,
are main outcomes of this debate. As a starting point it is worth to remark that, from a
theoretical point of view, there is only one mathematical notion of cycle which is relevant for
applied modelers (independently on the actual context, physical, biological or economical): that
of (asymptotically) stable limit cycle'. This is one of the reasons why the well known conservative
Lotka~Volterra cycle, despite all its indisputable merits for the developments of the endogenous
theory of fluctuations in applied sciences, is not a “good” fluctuation model.

'The problem of the detection of stable limit cycles, i.e. of persistent periodic behaviours, in
continuous-time systems, is intimately connected with the notion of Hopf bifurcation. Broadly
speaking, two main tools are available, in the standard tool-box of modelers for the detection of
limit cycles. As long as we are confined to 2-dimensional systems, the existence of closed orbits
can be established via the Poincaré-Bendixson theorem. In those cases in which the Poincaré-
Bendixson theory applies, the use of bifurcation theory usually does not provide further insights in
models already known. Viceversa at dimension three or higher, the Poincare-Bendixson theorem
cannot be applied anymore, and the Hopf theorem remains the key-tool to establish the existence
of closed orbits.? The Hopf theorem can, in principle, establish the existence of (local) persistent
periodic behaviours in whatever dimension. In general, given a dynamical system tuned by a
paramenter p, and having an isolated equilibrium F,, a Hopf bifurcation occurs at £; when,
a simple pair of complex eigenvalues of the linearised system ”crosses the imaginary axis”. To
ascertain the existence of a Hopf bifurcation we therefore have to investigate the behaviour of
eigenvalues as functions of u, in order to see whether values of the p parameter exist which give

rise to the crossing.

As the dimension of the system to be analysed increases, the computation of the conditions
stated by the Hopf theorem becomes more and more difficult, thereby making hard the analytical
detection of the bifurcation. In particular, the ”direct” criterion for a Hopf bifurcation, based on
the explicit determination of the eigénvalues, is already nasty at dimensions three and four and
totally impossible at dimension five or more. This makes it unavoidable to look for "indirect”
criteria. Numerical algorithms can of course be used but they pay the price of loosing the
possibility to provide economic interpretations of the bifurcation process. These difficulties seem
to have been the responsible of the fact that most investigations have been so far based on
oversimplified mathematical models, usually characterized by very low dimensions.® As far as

1We only deal here with “regular® periodic oscillations. We are not interested, in this paper, in complex
behaviours.

2Regarding the recent advances in the area of business cycle models (optimizing and non-optimizing) Semmler
(1994) states, “This has been made possible by bifurcation theory ...”. .

3Even the more recent and influential texthooks in economie dynamics, despite their indisputable merits,
have emphesised this difficulty. In fact, for what concerns the issue of the detection of limit cycles in higher-
dimensional dynamical systems, Gabisch and Lorenz (1989, p. 166) state: ” The three-dimensional case is slightly



we know, there are practically no macro-economic applications of the Hopf theorem to four {or
higher) dimensional systems, unless under special forms of the Jacobian matrix. In some special’
(although relevant) cases, as that of the optimal economic control models with some rate of
future discount, it has been possible (Dockner (1985)) to ascertain the existence of the Hopf
bifurcation in a ”direct” manner. This was due to the properties of the hamiltonian matrix (i.e.

zero trace) which allows the explicit computation of eigenvalues. Many economic problems have
been investigated, by ascertaining the Hopf bifurcation in such a direct manner (Wirl, 1991;

Dockner and Feichtinger, 1991). Another instance of "direct” detection of a Hopf bifurcation is

represented by the multisector neoclassical optimal growth model (Gandolfo 1996, ch. 25), where
the bifurcation is found via a special triangular form of the Jacobian matrix. But in general we

must resort to "indirect” methods to ascertain the Hopf bifurcation®. Indirect methods usually

exploit the Routh-Hurwicz stability theorem (for instance Farkas and Kotsis (1992), or Asada

and Semmler (1995), in 3-dimensional problems). Farkas and Kotsis (1992) is, to our knowledge,

the only instance at dimension four. An important question is then: which are the relations

between the appearance of a Hopf bifurcation and the Routh-Hurwicz criterion? Can stability

criteria be used to detect Hopf bifurcations in arbitrarily large dimensions? These questions have

been attacked in Liu (1994), who has clarified the relation between the Routh-Hurwicz theorem

and the Hopf bifurcation. '

Starting from Liu (1994), the present paper aims to provide a unifying perspective of the
problem of the analytical detection of Hopf bifurcations, in order to make the Hopf theorem
an operative tool also at dimensions greater than four. Following Liu (1994), we distinguish
two types of Hopf bifurcation: the Simple Hopf bifurcation (SHB), which occurs when a pair
of complex ejgenvalues crosses the imaginary axis while all other eigenvalues have negative real
parts, and the general Hopf bifurcation (GHB). By systematically using the notion of SHB several
noteworthy facts are proven. :

First, if all the coefficients a; of the characteristic polynomial (CP) at the relevant equilibrium
point are strictly positive, we remark that SHB and GHB are equivalent at dimensions smaller
or equal four, We then show that, for instance, to ascertain the existence of a local limit cycle
in a fourth dimensional system we only need to obtain the annihilation of a third-order (Routh-
Hurwicz) determinant, which is surely a feasible task.

more difficult but still analytically computable....In higher dimensional systems (n > 4) the bifurcation values can
aften be calculated only by means of numerical algorithms”. Similarly Lorenz (1993, p. 101) notices: " Though
the applications of the Hopf bifurcation theorem (and ezpecially its existence part) are generally not restricted to
low-dimensional dynamical systems, the conditions for the existence of the bifurcation can be shown to be fulfilled
withowt difficulty only in two and three-dimesional cases. In higher-dimensionel systems the bifurcation values
can often be calculated only by means of numericel algorithms”. And Gandolfo (1996, p. 478-479): ” The huge
value-added of the Hopf bifurcation theorem over the standard planar theory of oscillations lies in the fact that
this theorem can be applied to higher-dimensional systems. However, also the application of the existence part
of the Hopf bifurcation theorem often becomes analytically intractable for systems of dimension higher than the
third...For fourth- and higher order equations, the problem becomes practically intractable from the algebraic point
of view, except in particular cases”.
4We will not be involved with related topics, such as the stability of the emerging cycles.



Subsequently, by exploiting the Lienard-Chipart stability theorem we prove an extension of
the theorem of Liu, which detects simple Hopf bifurcations via the Liénard and Chipart rather
than the Routh-Hurwicz theorem. This extension appears to be of considerable usefulness in
applications, as it shows that only n/2 conditions are needed to detect an SHB at dimension n.

But in effect we can go much further. We show that much simpler conditions can be obtained
if we concentrate on Simple Hopf Bifurcations of systems which could be viewed as parametric
perturbations of a known steble system. This case is so typical of the modeller’s activity to be
more than satisfactory for the goals of this paper. In fact, in this latter case (see MacDonald
1989), exactly as it happens while investigating the dependence of stability on one (or more)
parameters, all what we need is to find, in the parameter space, the curves that bound regions
of stability. We argue that, whenever we start from a point in the parameter space in which
the system is stable, then, provided we can rule out zero-eigenvalues bifurcations, the points
belonging to the locus Ay = 0 (An_; is the higher order Routh-Hurwicz determinant) are
SHB points. The extent of this simplification for the detection of the SHB is surprising: we
do not need anymore to evaluate a large number of Routh-Hurwicz determinants, but only one,
namely A,_;. :

This simple methodology for detecting local limit cycles has wide applicability. In particular
it is fruitful to study Hopf bifurcations in ordinary differential equation (ODE) problems arising
from an underlying "reducible” distributed delay system with erlangian kernel. Distributed delay
system with Erlangian kernels may be reduced (Mac Donald 1978, Farkas and Kotsis (1992)), to
an autonomous ODE system. This new ODE system actually has a dimension which is greater
of that of the corresponding delay system, but: a)it will preserve the equilibria of the underlying
unlagged system; b)it adds to the original system new equations which are simple, at least for
what regards the practical computations involved in local stability and Hopf bifurcation analyses.

From the economic point of view, the use of "erlangian” distributed lags allows to represent in
a fair manner two realistic elements, so far neglected in economics mostly because of the involved
analytical complexity: the heterogeneity of agents and their tendency to react to economic im-
pulses with different patterns of lag. In particular the equivalence (Invernizzi and Medio (1991))
between a single ”representative” agent which reacts along a continuous gamma distributed lag
and an indefinitely large number of agents reacting with different discrete lags whose lenghts
are randomly distributed among agents according to a gamma distribution, permits to avoid
the usual "rough” dynamic aggregation. In many cases, starting from an existing "roughly”
aggregated model whose stability is known, we need to investigate whether stability is preserved
under more general and realistic assumptions, such as heterogeneity and/or delayed responses of
economic agents. The results presented here could permit to deal with this task, and to prove
the existence of endogenous oscillations, with algebraic computations which are much simpler
than usually believed (and often permit substantive economic interpretations).

These facts are illustrated by means of two models which provide nice instances of computable
Hopf bifurcation: i) a demo-economic extension of the Solow’s model (1956) in which the rate of
change of the labour force is realistically related to the past fertility; ii) a 5-dimensional kaleckian



version of the Goodwin’s model. These illustrations show how the notion of stability boundary
may be applied in order to detect SHB not only in the standard case in which the underlying
unlagged model is (linearly) stable, but also in the case of neutral stability.

The present paper is organised as follows. In section two the Hopf theorem and the related
notions of simple (SHB) and general (GHB) Hopf bifurcations are reviewed. In section three, after
having reviewed the Routh-Hurwicz and Liénard-Chipart stability test, we review the Routh—
Hurwicz type theorem for the detection of Hopf bifurcation by Liu (1994), and demonstrate that
it can be simplified, by proving a Liénard-Chipart-type version of the same theorem. In section
four we discuss the detection of simple Hopf bifurcations in relation to the notion of stability
boundary. Section five is devoted to the economic illustrations. Conclusive remarks are left to
the final section.

2 The Hopf theorem: simple and general Hopf
bifurcations

A simplified formulation of the Hopf theorem is the following (for rigorous formulations and
proofs see Guckenheimer and Holmes (1983), Marsden and McCracken (1976)).

THEOREM 1. Let be given the dynamical system: X = fu(X), parameterised by a “tuning”
(scalar) parameter p, and having an equilibriurn Ey at (Xo(u),u). Let f be of class C. The
system has a Hopf bifurcation at (Xo(ty), to), W

1} the system has in (Xo, 14} @ simple pair of purely imaginary eigenvalues® X (1) B (,u),“a.nd
no other eigenvalues have zero real parts.

2)the "bifurcating” pair A, ) satisfies the "nonzero speed condition”:

(dRe(A(p))/du) ., = (dRe(A(no))/dp) # 0 | (1)

As prescribed by theorem 1, the problem of the detection of the bifurcation is to be solved
in two steps: first by checking for the existence of a pair of purely imaginary eigenvalues of the
characteristic equation (and that no other eigenvalues have zero real parts); second by applying
the “test of nonzero speed” (1), aimed to check that the involved pair of complex eigenvalues
actually crosses the imaginary axis with nonzero speed. Notice (see Farkas (1995)) that the
nonzero speed condition is actually not necessary for having a Hopf bifurcation. It is purely a
genericity requirement.

51t is possibie to show that a smooth curve of equilibria (z (i), i) exists and satisfies @{g) = zo9. Moreover

)\(p),i (1) vary smoothly with p.



The aforementioned form of the Hopf theorem is quite general. There are other forms (for
instance Farkas, 1995) based on the stronger requirement that the remaining (n — 2) “non bi-
furcating” eigenvalues have negative real part. This latter formulation is closer to the "modeller
view”. Modelers in fact usually do as follows: given a nonlinear system having at least an equi-
librium point Ey, they discuss the condition for the local stability of F; in terms of the parameter
p. The points in the parameter space that bound the stability region and in correspondence of
which stability is lost due to the crossing of the imaginary axis by one (or more) complex pair are
candidates to host a Hopf bifurcation. This approach is clearly special if compared to Theorem
1. The following definition due to Liu {1994) is useful in order to organise the present discussion:

DEFINITION 1. (simple Hopf bifurcation) a dynamical system with an equilibrium point Ej
undergoes a simple Hopf bifurcation (SHB) at E\ when a simple pair of complex conjugate eigen-
values of the jacobian matriv J(E1) passes through the imaginary azis while all other eigenvalues
have negative real parts.

The previous definition distinguishes simple Hopf bifurcations from other types of Hopf bi-
furcations, characterised by other eigenvalues on the right half plane (call them General Hopf
Bifurcation, or GHB). From the point of view of modelers the SHB is the most relevant type
of Hopf bifurcation. In fact it regards the case in which, for those parameter constellations for
which the bifurcation is supercritical, the emerging periodic orbit will be asymptotically stable,
and hence "observable”, physically or numerically (Liu, 1994). Moreover it largely corresponds
to the typical way of viewing the operating of the real world: we usually believe (more or less
awarely) in a ”stable” world but worry about the possibility that instability (mainly observable
as fluctuations) occurs and hence seek the conditions needed to preserve stability. Finally, the
notion of of SHB is also operative from the point of view of the practical detection of the bifur-
cation. In fact the detection of simple Hopf bifurcations at E, needs to check to existence of a.
loss of stability of Fy having a special nature, i.e. a loss of stability driven by "movements” of
a simple pair of complex eigenvalues. This naturally fills the bridge between Hopf bifurcation
analysis and the body of theorems for ascertain local stability of dynamical systems in higher
~ dimension, such as the criteria by Routh-Hurwicz, Liénard-Chipart and so on. As it is known
the essence of these results is that they by-pass eigenvalues for ascertain stability: they are based
on the pure inspection of some set of functions of the coefficients of the characteristic equation:
the Routh-Hurwicz determinants.® Before continuing let us recall the conditions for a SHB:

al) the system has in (Xg, u,) a simple pair of purely imaginary eigenvalues ), ), and no
other eigenvalues have zero real parts.

a2) the "nonzero speed condition” is satisfied:

80n the contrary the problem of the detection of GHB is not related in an evident way to the problem of
stahility.



3 Stability versus bifurcations: detection of SHB via
Routh-Hurwicz-type theorems

3.1 Basic facts from stability theory

We recall those facts of stability theory which are essential for the subsequent discussion
on SHB. Let P;(A) be a characteristic polynomial (CP) ascertaing the local stability of an
equilibrium point E; of an n-dimensional dynamical system:

Pi(2) = det(J(E1) — MJ)
= apA" + a1 () A" + a2(p) A2 + o e ()M F an (1) ' (2)

where J(E,) is the underlying jacobian matrix. We set for simplicity ag = 1, and wrote a; = a;(u)
to denote that the coefficients are functions of some (scalar) parameter u. The equilibrium point
E, 1s said to be locally asymptotically stable (LAS) (alternatively P;(])) is said linearly stable,
or also strictly Hurwicz, see MacDonald (1989), 60) if all its eigenvalues have negative real parts.
The Routh-Hurwicz (RH) theorem (Gantmacher (1959), McDonald (1989)) provides a necessary
and sufficient condition for the local stability of the polynomial P;()) giving also a practical
stability test. Given the so called Routh table:

a; a3 as dp ag
ap Qa Q4 Gg g
R = 0 a; a3 as ay
0 Qg Gp Q4 ag

the Routh-Hurwicz test states that Py(A) is LAS iff the determinants A; of the first n principal
minors of the Routh table are strictly positive.

3.2 Necessary conditions for stability; the Liénard-Chipart condi-
tions

An obvious necessary condition for stability is a, > 0. As it holds: A, = a,A,_1, then,
provided a,, > 0, we only need to consider (n — 1) RH determinants. A more powerful necessary
condition comes from the fundamental theorem of algebra which shows that in order F; be LAS
all its coefficients a; must be strictly positive. The proof is immediate (Gantmacher 1959): under
stability P;(}) may be written as a product of factors of the forms (X + u) or ()\2 +vA + w) ,
with > 0, » > 0, w > 0.7 Hence, the set of strictly Hurwicz CP’s is a subset of the set of CP’s
with positive coefficients. This often neglected fact is of great help from many points of view.

"This result gives a simple test: if only one of the coefficients is positive then the system is unstable.



Obviously the converse is not true: positive coefficients are not sufficient to imply stability: this
is why we need RH-type theorems. As a simple instance of the previous statement consider the
3-rd order polynomial:

Pr(X) = X+ ay(11) A% + as () A + as(p)

The RH theorem gives the stability conditions: A; > 0; Ay > 0; Az > 0. Clearly a3 > 0 (as
also implied by Az = agAg). Moreover A; = a4 implying the positivity of the second coefficient.
Finally, from Ay = aja3 — a3 > 0 it follows: ag > £ > 0 implying the positivity of a; as well.
This shows that in the set of the parameter space in which the CP is LAS , all the coefficients
a; are "forced” to be strictly positive.

REMARK 1. If all the coefficients a; are strictly positive Descartes rule tells us that there are
no positive real roots. Hence if there are real rools these are always negative. This implies in
turn that if o given CP has only real roots, then the positivity of the coefficients becomes an IFF
condition for stability, rather then simply o necessary condition.

When all (or at least some) the coefficients of the CP are positive then the n conditions
of the RH theorem are no longer independent and the RH test may be replaced by the more
“economical” Liénard-Chipart (LC) test. The LC conditions may be espressed in any one of the
following four alternative versions (Gantmacher, 1959):

ala, >0; o >0; .5 AL >0; A3>0; ...
b)an > 0; Gug > 0; .; Ag > 0: Ay >0 ...
C)an >0 A1 > 0503 >0; ...; A1 >0; Az>0; ..
d)an, > 0; a1 > 08,3 >0; ...; Ag>0; Ay>0; ...

The implications of the fact that the necessary condition a; > 0 for all ¢ is satisfied are
twofold. On the algorithmic side the analysis of stability is sharply simplified: we use the LC
rather than RH conditions.? On the theoretical side we arrive to the true core of the stability
problem. We may in fact look at the stability conditions in the following way. A given CP
of degree n may admit real roots (at most n) and complex roots (occurring in pairs): at most
n/2 pairs if n is even and, at most (n — 1)/2 if n is odd. The role of the stability condition is
that of ”controlling” the activity of these roots. We may be specific on the way the stability
conditions perform this control: from the necessary condition we know that if a; > 0 for all 7,
then, provided all the eigenvalues are real, then they would all be negative, ensuring stability.
This shows that the necessary condition ”controls” the activity of the real roots in the sense
that if the roots of the CP are real then the necessary condition a; > 0 becomes necessary and
sufficient. Viceversa the necessary condition does not control the activity of the complex roots,
thereby calling for extra conditions given by the LC determinants. Hence, to ensure stability in

8In the end we need the examination of only n/2 — 1 (n even) or (n — 1)/2 {n even) extra conditions. For
instance for n = 6, provided a; > 0 we need to examine: Az > 0, Ag > 0. From the practical point of view it is
highly recommendable to study in advance the conditions for the positivity of the coefficients of the CP.



presence of the necessary condition, which rules out possible disturbances to stability caused by
real eigenvalues, we need a set of independent conditions the role of which is to ensure that all
the possible complex pairs have negative real parts. Hence, we need at most n /2 conditions if n
is even and (n —1}/2 if n is odd, which is exactly the number of LC conditions.

3.3 Routh-Hurwicz and Liénard-Chipart-type theorems for the de-
tection of Simple Hopf Bifurcations

The relation between the RH theorem and the SHB was ﬁsed by modelers since time ago
(McDonald 1989). The following result by Liu (1994) is a Routh-Hurwicz-type theorem for the
detection of a SHB which states this relation in formal terms:

THEOREM 1. (Liu 1994) The conditions al),a2) (see section 2) for a SHB at the point u,
are equivalent to the following conditions:
b1} A1lpe) > 05 Aa(pg) > 0..8n2(pg) > 05 An_y(g) =0
dAn_.1 ' (3)
) (), 0 |

ap H=py

We sketch the basic ideas of the proof by Liu, by showing that the conditions b1,b2) are

- necessary and sufficient for al), i.e. to ensure that a simple complex pair passes through the

imaginary axis while all other eigenvalues have negative real parts. The condition b2) defines the
test for nonzero speed.

Only if part. Let us assume that al),a2) hold, i.e. that a simple complex pair passes through
the imaginary axis at u, while all other eigenvalues have negative real parts and prove that 51)
holds. The condition al) implies that in some neighborhood of p, P;()\) may be factored as the
product of two polynomials:

Pr(3) = (X + alw)A + B(1)) Q(A, 1) 4
where the first factor depends on the bifurcating pair of eigenvalues (hence it satisfies S(u) >
0, (i) —48(u) < 0, alu,) =0, (da(p)/du),, # 0), while Q(, 1) has order (n — 2) and all its

cigenvalues have negative real part. Hence all the RH determinants D;, i==1,..,n — 2) of Q(), x)
are strictly positive: Dy > 0, Dy > 0,.., D5 > 0. The relations between the coefficients a; of

Pr(A) and g; of Q(A, u) in (4) is:

a;(p) = Bu)gi() + o) gi—1 (1) + gi—a(n) (5)
By exploiting (5) it may be shown that at the bifurcation point y it holds for the first (n-2)
Routh-Hurwicz determinants of P;()):

A (o) = B (1) D1 (11g) > 0

:432 (o) = B° (19) D2 (1) > 0 (6)

An- (o) = 672 (1) D (g) > 0



while:
Apy =0 o

showing that 1) holds.
1f part. Let us assume that b1,2) holds and prove that al) holds.

If b1 holds, this means that there is a right or left neighbourhood of the point u, in which
the RH conditions for the local stability of E; hold (implying all the eigenvalues of J (E;) have
negative real parts), while this is not true on the other side of y, (thanks to 52)). Hence at g,
there exists at least one pair of complex eigenvalues having zero real part (notice that this does
not depend on real eigenvalues as a,(1,) > 0). To complete the proof of the existence of a simple
Hopf bifurcation we have to exclude the possibility that more than one purely immaginary pair
exists at pp. If this were possible, it would imply that not all the D; are strictly positive, and
hence, in turn, that not all the A; in (5) are positive, having therefore found a contradiction
with 51). Hence al) holds.

The result by Liu is remarkable in that it fills the bridge between the body of theorems for
the local stability of equilibria and the notion of Hopf bifurcation. His criterion for the detection
of a Simple Hopf bifurcation is “isomorphic” to the Routh-Hurwicz criterion. Its usefulness is
evident by itself. For instance we do not need to check for the presence of complex eigenvalues
as a necessary condition for a bifurcation. This fact was repeatedly stressed in Lorenz (1993 and
1994) and Gabisch and Lorenz (1989), who suggest, at the third order, to study the sign of the
discriminant involved in the resolvent formulas of the characteristic equation. Such a Sysiphus
fatigue (totally impossible at dimensions higher than four due to the lack of resolvent formulas)
is bypassed by the Liu theorem.

- As pointed out in section three, the RH theorem is not the most economic IFF condition
for stability, which is actually given by the Liénard-Chipart conditions. The theorem by Liu
can be reformulated by substituting to the whole structure of the Routh-Hurwicz conditions,
the corresponding L.C conditions. A simplified version assuming the strict positivity of all the
coefficients a; is the followmg

THEOREM 2. (LC version of the Liu theorem) Provided a; >_.0, the requirements al), a2) for
a SHB are equivalent to one or another of the following two sets of conditions:

i)
cl) Dalpg) > 0; Ag(pg) > 05 .Bp3(itg) > 0; Apy(pp) =0

@) (%), 70

i)
clbis) Aapg) > 0; As(pg) > 0; ..Ahn—3(tie) > 0; An_1(pg) =
c2bis) ('mw) £0



To prove theorem 3 we exploit the relation between the Routh-Hurwicz and Liénard-Chipart
conditions. '

Only if part. It is trivial that if b1) holds (A;(pg) > 0 ; wBpoa(fig) > 0 Anq(g) = 0)
both c1) and c1bis) necessary hold "a fortiori”.

If part. Let us assume that cl) (or clbis)) holds, and prove that b1) holds, so that al)
also holds. If ¢l holds, this means that there is a right or left neighbourhood of the point u,
in which the L.C conditions for the local stability of F; hold (hence it holds either A,_;(u) >
0,Ap-3(p) > 0,.. or: Ap(p) > 0,A,_2(p) > 0,...), while this is not true on the other side of
py- Let us suppose without loss of generality that it is a Jeft neighborhood V = (g — d, 1)
Clearly if the LC conditions hold in V', the RH conditions hold as well in V, i.e. in V it holds
Ai(p) > 0, i = 1,.,n. But at the point g it holds A,_3(ug) = 0 , while all the other RH
determinants A;(u,), i = 1,..,n — 2 are strictly positive. Hence at the point g, b1) holds,
implying that al) also holds.

The latter theorem is particularly useful since it considerably reduces the computations in-
volved in the detection of SHB, as shown in the following;

EXAMPLE 1. (detection of simple Hopf bifurcations at low dimensions when the necessary
condition a; > 0 is satisfied) At dimension four (Fanti and Manfredi 1998a) a SHB simple occurs

when: A
Ay =0 ; (M) £0
d‘u Fo

At dimension five the LC stability conditions take the two possible forms: a)Ay > 0; Ay >
0; b)Az > 0; Ay > 0. Theorem 3 (let us work with the simpler set of conditions) leads to the
conditions:

dA4(p)

A 0: Ay=0: [ ———= 0

9 > 3 4 ’ ( d‘U ) %
Iy

At dimensions siz a SHB occurs when:

As=0; A3>0 ; (M) #0
#o

and so on.

4 Boundaries of stability and Hopf bifurcations:
” physiology” of the bifurcation process

As already pointed out the two theorems of the previous section were implicitly used in applied
work since time ago. This implicit use was passing through the notions of stability boundary
and of stability switch” indicator, clearly elucidated in Hahn (1967) or in the nice synthesis



on stability analysis by Mc Donald (1989). The present section essentially relies on McDonald
(1989): we extend his discussion on stability to the issue of the detection of SHB bifurcations.”
This allows us: 1) to define a tool-box which, under some conditions often met in macro-economic
models, permits to detect SHB with an amazingly simpler effort, even compared to the theorems
of the previous section (the economic consequences of this fact are deeply illustrated in the
next section); 2) to clarify the distinction between SHB and GHB. To begin let us observe
that, although Theorem 2 permits to substantially simplify the analytical detection of a SHB,
compared to Theorem 1, its usefulness rapidly decays as the dimension of the system to be
analysed increases. Despite this, following McDonald (1989, ch. 4): ”... a major simplification
comes about if we realise that in practise what matlers s to find, in the space of the involved
parameters, the points, curves, or surfaces, that bound regions of stability. Typically, one can
start from some point in the parameter. space in which stability is known to prevail. Then, since
the eigenvalues depend continuously on the parameters, a change of stability can only happen
by way of the appearance of a zero (real) eigenvalue (A = 0)° or of a purely imaginary pair
A= iw.”

The previous considerations, though concerned with stability analysis, straightforwardly ex-
tend to SHB. The key-tools at this stage are the "stability switch” indicators, i.e functions which
changes their sign in correspondence of the stability boundary. The simplest indicator of the
appearance of a zero eigenvalue is a, = (—1)"det J = (—1)[]; A; (the stability boundary cor-
responds to a, = 0). This case is not of interest for us as we are not concerned with stability
losses caused by real eigenvalues: in fact we always assume a, > 0. The simplest indicator of the
appearance of a purely immaginary pair is A,_;, as showed by Orlando’s formula (Gantmacher

(1959)):

G | ) Y ®)
i=j j=i+1
(8) shows that the equality A,_; = 0 holds in one-and only one of the following cases: ) P;(\)
has a zero real root with algebraic multiplicity at least two; i) P;()\) has (at least) two real roots
of identical absolute value but opposite sign; #7)P;(\) has (at least) a purely imaginary pair;
iw)P;(A) has two complex pairs having opposite real parts and immaginary parts of identical
absolute value.

REMARK 2. If the necessary condition for stability is satisfied (a; > Q for all i) then non
negative real roots are impossible and cases i) and ) are ruled out. Hence only possibilities iit)
and iv) remain. '

Let us now, still following Mc Donald (1989), follow an “operative” approach, in which
stability is always the starting point of the story. Let us therefore consider an ”initial® parameter
constellation yig in which the system is stable, i.e. in which a; > 0 for all i holds, and all the
relevant LC determinants are strictly positive. In this case losses of stability can only occur
through the crossing of the imaginary axis by one (or more) previously stable complex pair (the

% In the bifurcation jargon this problem leads to another type of bifurcation, the fold bifurcation, see for instance
Guckenheimer and Holmes (1984), and Lovenz (1893) for economic applications.



aforementioned case 444)). Hence to detect how stability can be lost due to movements of the
system parameter(s) from the initial” constellation ug, we only need to find the position of
tts with respect to the locus defined by A,_; = 0: no instabilities due to the crossing of the
imaginary axis by a complex pair may occur without first causing A,_; = 0. But this makes
it easy the problem of the detection of instability. Mac Donald (1989, 74) is enlightening on
this point. Let us consider fig. 1a,lb reporting two distinct forms of the locus A,y =0 for
a two-dimensional parameter space labeled, just to fix the ideas, as (p,q). Let us assume that
in both cases the point P represents the ”initial” parameter constellation tig at which stability
prevails and that a, > 0 in the whole parameter space. Case 1a is unambiguous: the whole
external region is a region of stability, while the whole inner region is an instability region. In
this case the investigation of the stability of the system is complete with the only knowledge of
the behaviour at P. Viceversa case 1b is ambiguous: instability certanly prevails in the area
comprisen between the two curves but the crossing of the inner curve does not necessarily implies
a reswitch to stability (in other terms the inner curve is not necessarily a true stability boundary,
although satisfying A,_; = 0). In case 1b the characterisation of stability is complete only once
we have checked the stability nature of the points inside the inner curve.

Fig. 1 (reprinted from Mac Donald 1989) The notion of

stability boundary; a) the unambiguous case; b) an ambiguous case

The previous considerations on stability losses straightforwardly extend to the detection of
Hopf bifurcations. In fact, as long as we start from ”initial” parameter constellations in which
the system is stable, we are necessarily concerned with stability losses caused by the crossing
of the imaginary axis by previously stable complex pairs'®. Clearly the equality A,_; = 0 in
general cannot discriminate whether this occurs because just one previously stable pair, rather
than more than one, crosses the boundary. In other terms the only use of A,_; == 0 cannot
discriminate between a SHB and a GHB unless in very simple cases. For instance, in the "trivial”
three-dimensional case GHB aie not possible. Similarly, at dimension four, the positivity of the
coefficients of the CP implying A; = a; > 0, again prevents the possibility of a GHB.

In higher order cases to make sure that we are faced with a SHB we should control that
all the remaining LC determinants remain strictly positive for those parameter values causing
A,—1 = 0. But of course this is a little worrying fact: the simultaneous crossing by several roots
is certainly a "less likely” event (less generic). From the practical point of view this dramatically
reduces the complexity of the problem of the detection of the bifurcation, even compared to the
LC test developed in theorem 3. The example of fig. 1a is enlightening on this profile: provided
the initial point P is stable, all the points of the curve are Hopf bifurcation points.

Y Of course we should also apply the test for nonzero speed, in order tc ensure the existence a Hopf bifureation,
but in the spirit of footnote five this is again a minor problem.



Clearly, if the "initial” parameter constellation y, is not a stable one the condition Ap =10
is less powerful. In the example of fig. 1b all the points on the external curve are Hopf bifurcation
points. If stability prevails in the inner region as well (as previously pointed out we need further
information on the stability behaviour), and provided a, > 0 still holds everywhere, then also
the points on the inner curve are Hopf bifurcation points (for instance at dimension three this
new Hopf bifurcation would be caused by a re-switch of stability due to the activity of the same
complex pair). In the event the inner region is not a stable one, the equality A,,_; = 0 still detects
a Hopf bifurcation, namely a GHB, only provided that the possibilities £), i) (for instance by
assuming a; > 0 for all £) and iv) aforementioned, are ruled out. The nature of this GHB may be
very wide (especially at "really” high dimensions) depending on how many pairs have negative -
real parts and how many have positive real parts.!!

The present approach is particularly useful for systems for which the ”initial”® parameter con-
stellation pg in which the system is stable, "naturally” exists and is identifiable. This situation is
not unfrequent: modellers usually study the effects of ” complications” on known models (which
are very often stable), and these complications are usually obtained by adding extra-terms de-
pending on some extra-parameters ¥. These enlarged models usually reduce to the old simpler
model when 9 = 0 or so. Hence we often know a "natural” initial parameter constellation. But
parameter perturbations of this type usually inflence not only the stability conditions, but also
the structure of equilibria, and this is a further complication. From this latter point of view, a
remarkable case in which a natural "initial” parameter constellation in which the system is stable
exists, i that of delay systems. Standard formulations of delayed models (i.e. by introducing
delays in a previously unlagged model) usually do not change the equilibria: the effects of th
delay are purely on stability. '

Now, a standard question in science is the following. Consider a dynamical system having
a stable equilibrium in absence of time-delays. Which is the action on stability played by the
mtroduction of delays? In this case the "natural” initial parameter constellation to in which the
system is stable corresponds to the case in which the delay is absent. This corresponds to the
case in which the parameter tuning the delay, let us call it T, is set equal to zero. These aspects
are illustrated in the next section by means of some higher order ODE models derived from an
underlying distributed delay model.

11Fig. 1 reports quite abstract forms of possible bifurcations: their meaning is intended to be purely exempli-
fying. The next section reports two sound economic illustrations.



5 Economic illustrations

5.1 The system is stable in absence of the delay: insights from a
delayed Solow-type model

Here we consider the following delayed Solow- model introduced elsewhere (Fanti and Man-
fredi, 1999a): g

k : sk® — bk.~ ( f ; n(k“(T))..G(t — 'r)dr) k (9)

where k =capital-labour ratio, & the output per unit of labour under a Cobb-Douglas production
function (0 < o < 1), s=the saving rate (0 < s < 1), § =rate of capital depreciation. Compared
to th standard Solow’s model, the constant exogenous rate of growth of the supply of labour
(usually denoted by n), has been replaced by an integral term dependent on the past income k*
through a prescribed map n (for simplicity we assume that n is linear.) The purpose of this term
is that of mimicking the effects of past wage-related fertility, along a malthusian mechanism, on
the current rate of change of k through the delayed entrance of individuals into the labour force
(for details see Fanti and Manfredi, 1999a). As pointed out in the literature time-delays represent
good approximations of the age structure mechanisms (Mac Donald 1978, Manfredi and Fanti
1999a) in that they permit simpler representations of age structure while often preserving the
same richness of dynamical results. ' ' :

Finally, the function G(t — 7) is the delaying kernel, usually taken as a probability density
function. The dynamical properties of (9) crucially depend on the structure of the delaying kernel
G. When G belongs to the erlangian family the equation (9) may be reduced to an ODE system
via the so called linear trick (Mac Donald 1978). A kernel is erlangian-type with parameters
(r,a) when its density function follows an erlangian density!2 (r, a): ‘

(r—1)!

Gra(®) = e x>0,a>0,r=1,2. (10)
By varying the parameter r the erlangian family describes a flexible family of density functions:
for r = 1 we have the classical exponentially fading memory (i.e. a negative exponential kernel),
while for r = 2,3 and so on we have typical "humped” memories. In particular the mean
delay of an erlangian density (r,a) is given by: T = r/a, while its variance is Var = r/a2.
Moreover, under (10) when we let 7' — 0 in (9), the unlagged formulation is recovered (for
instance Invernizzi and Medio, 1991). The passage to ODE’s under erlangian kernels is obtained
by introducing the new variable:

s =[ v -rr (11)

-0

2More generally we define as erlangian a kernel which is a linear combination of erlangian densities.



A time differentiation of (11) transforms' the system (9) into its ”augmented” ODE form, in
which the delay is replaced by a a ”cascade” of r adaptive equations characterised by the same

speed of adjustment a.

It is easy to show that for r = 1 the positive equilibrium E; of the model (9) (we recall that
(9) has the same equilibria of the unlagged Solow’s model), remains LAS independently on the
delay. More interesting things arise for » = 2. In this case the model takes the form

7 =02 (SZQT_I - nX)
):( = a(R — X) (12)
_ R=a(Z - R)
where Z = k®. The third order characteristic polyndrn.ial at By: P(X) =X 3y a1 X% 4 03X + ag
has the coeflicients:

a1 =28+ (1—a)nZ; aa=28(1—-a)nZ+ f%; ag = f*nZ,

which are strictly positive. The necessary condition for stability is therefore always satisfied.
The stability boundary is defined by the locus: Ay = ajaz — a3 =0, i.e.

202 +nZ; (4 -5a)a+2((1—a)nZ)* =0 - (13)

Fig. 2, which depicts the locus A,_1 = 0 for the unique positive equilibrium of model
(12). The necessary condition is always satisfied. The A,.; = 0 locus is represented in the
2-dimensional parameter space {n,T'), where T is the average delay (I = 2/a) and n is the
fertility rate in the population. All the points of the n-axis (I" = 0) can be chosen as our ”initial
parameter constellation”: as well known the positive equilibrium in the classical unlagged Solow’s
model is (globally) stable. Hence in all the points of the (n,T) space below the line L, stability
prevails. The line L; necessarily is a locus of SHB points. The region comprisen between the
lines Ly and L, is an instability region (in Fanti and Manfredi (1999) it is shown that stable limit
cycles exist in the whole region). It is of interest, at this stage, to understand the role played
by the L curve. As the necessary condition is satisfied in the whole parameter space, also the
locus Ls is a stability boundary, at which a stability reswitch occurs, due to a further crossing
of the previously unstable pair. Hence, the acknowledgement of a realistic pattern of change
of the labour supply leads to a stahility reswitching, i.e. to two distinct bifurcation values of
the delay. The smaller bifurcating delay occurs on a typically demographic time scale, whereas
the larger one occurs on a very long time scale. This result, which appears a counterintuitive
consequence of the mathematical analysis of the model, reveals the existence of an unexpected
influence of the fertility behaviour of generations more ancient than that of the parents (we called
it a "supergenerational echoe”), which could be an interesting issue for demo-economists.

Fig. 2. The locus A,,_; == 0 for the positive equilibrium of a 3-dimensional Solow’s model

13A further forma) requirement is needed, in order to make compatible the "distributed” initial condition of
the original IDE system, with the "concentratecd” initial condition of the ODE system.



5.2 The system is only neutrally stable in absence of the delay: a
Goodwin-Kalecki-type model

We discuss now the bifurcation problem arising in a delayed Goodwin-type model expanded
to take into account of kaleckian effects. Its economic foundations and results are discussed in
Manfredi and Fanti (1999b). This example is of interest in that it shows how to treat the case
in which the system is only neutrally stable in absence of the delay. The structure of the model
is given by the following integro-differential (IDE) system: :

via = =(a+7)+pU

28 = (c+k)m(1-V) = (a+n) - km (1~ [L V(1)G(t - 7)dr)

(14)

In (14) U = U(t)=employment rate at time ¢, defined as the ratio between the total labour force
actually employed L(t) and the supply of labour N(t), V = V(&) = the distributive share of
labour, given by the ratio w(t)L(t)/Q(t), where w is the real wage and ) the total product. V'
can be expressed also as: V = w/A where A is the average productivity of labour. Obviously:
1 — V =the profit share. Moreover m=the (constant) output-capital ratio, a=the (exogenous)
rate of growth of the average productivity of labour, n=the (exogenous) rate of growth of the
supply of labour, c=the saving rate of the capitalists; finally v, p are characteristic parameters
of the (linear) Phillips curve governing the labour market (0 < v < p). All the aforementioned
parameters are those characteristic of the original Goodwin’s model. The model (14) embeds
kaleckian effects via the lagged term, embedding past profitability; in particular £ > 0 and the
delaying kernel G tune the "rashness” of investors. When ¢ = 1,k = 0 (14) collapses in' the
classical Goodwin’s (1967) model, which, provided a positive equilibrium exists, exhibits the
classical Lotka-Volterra-Goodwin (LVG) conservative oscillations. If we keep ¢ = 1 the model
(14) has the same equilibria of the original Goodwin’s model'*, namely the zero equilibrium £y =
(0,0), and the positive equilibrium E; = (U*,V*) = (7/p, (m — & — n) /m). E, is economically
meaningful provided that m — a —n < m.

The .dynamical properties of (14) essentially depend on the structure of the delaying kernel
G. For r = 1, i.e. the case of the exponentially fading memory, the original system becomes:
v =—(a+7)+pU
g—((%:(c+k)m(1—V)—(a+n)—~km(1——3) (15)

S=a(V -39

It is easy to show that in the model (15) (which preserves the equilibria of (14)) the positive
equilibrium E; is always LAS independently on the delay. In other terms a kaleckian expo-
nentially fading memory always stabilizes the conservative center of the Goodwin’s model. By
passing we notice that this is a nice instance of the fact that delays can also be stabilising, and
not only destabilising, as often claimed in the literature (Farkas and Kotsis 1992). It is of interest

M Notwithstanding the introduction of the distinction between rash and cautious behaviours of the capitalists.



to check whether this stability is preserved under different forms of the delaying kernel. In ma;ny

cases systems which are stable under an exponentially fading memory are destabilised under .
the simplest type of "hump” memory, i.e. under a kernel erlangian (2,a). An instance of such

» effect is Fanti and Manfredi (1998a). This effect is usually explained with the strongly different

qualitative action played by a humped memory a$ opposite to an exponentially fading one.

5.3 The effect of the simplest humped memory

Under the simplest humped memory, i.e. a kernel erlangian (2, e), the system (14) becomes:

%% —(a+7) + pU

U(?_ a((ZC+ ?) m(l -V) =~ (a+ n) - k@ (1 - 9) (16)
Zmav—m

(having the same equlhbna of (14) and (15)) The local stablhty a,na.lysm at F) leads to the
characteristic poynom1al _

Pi, (X) = X* +2aX® + (a> + Bk) X* + 2aB (1 + k) X + Ba?

whose coefficients are always positive (we denoted B = mpU*V*). The LC test for stability
requires A; > 0 (always satisfied as Ay = a,) and A; > 0. But:

As =4a4Bk > 0 :

Hence E) remains stable independently on the delay in the simplest humped case as well. It is
‘therefore of interest to look for the pos31b111ty that destabilisation is caused by delays of higher.
order.

5.4 Effects of more concentrated humped memories

Let us consider the effects of the next element of the erlangian famlly Under a kernel erlangian
(3 a), the reduced ODE system has the form: '

%— —(a+y)+ pU | -
(I+k)m(l—V)—(a+n)—km(1-S5)

g(t-)—a(z 8) - | | - QA7)
Z=a(W ~ Z) - . . -

W =a(V—-Ww)



The jacobian at E; is:

0 pvV 0 0 0

| — (1 +kymU 0 kmU 0 0
JE) = |- 0 0 -a a O
| 0 0 0 —a a

1) 0 0 0 -—a

The correspondlng fifth order characterlstlc polyomial has the coefﬁments
o, =3a; a3 =B(1+ k) +3a% a3 =a (a +3B(1+k)); a4 = 3Ba? (c-l—k); as = Ba®
which are always positive. We quickly have: -
Au = Bka® (240’ — B (8 +9%))

Hence, the condltlon Ap_1 = A4 =0 gives:

az\/B (8 + 9k) \/(m o~ n)(o:+’y)(8+9k)

1 .
24 24 (18)

to which corresponds the mean delay T=3/a. The curve (18) expresses in a sharp manner the
bifurcation curve.

Can we now directly assure that the locus (18) is a Hopf bifurcation locus? A difficulty
which apparently prevents the use of the sole condition A,.; = 0 is the fact that the "natural
initia] parameter constellation”, corresponding to the case of no-delay (T = 0), corresponds to
the original Goodwin’s model, for which the E; equilibrium is not (linearly) stable, but only
neutrally stable, The difficulty is solved as follows. It is immediate to check that the system (17)
is the ODE system that would have been obtained by delaying (14) by an erlangian kernel Ga,.

" In general we may say that the application of a delaying kernel Gy i8 equwalent to r sequential
apphcatlons of a kernel G1 a: see the appendix for detauls 15

In other words: from the practical point of view of the analysis of stability and bifurcation,
we do not need to necessarily refer the "natural” initial parameter constellation in which the
gystem is stable, to the original unlagged system. Let us reconsider our problem. We have to
perform the stability analysis of the fifth order system (17) obtained by delaying with a kernel
(i3, the original conservative Goodwin’s system. But the stability analysis of (17) is equivalent,
for instance to the stability analysis of the system (15), which is stable, when the S variable
therein is furtherly delayed by G,.2. It is also equivalent to the stability analysis of (16), which is
stable, when the S variable therein is furtherly delayed by Gr,1- This implies that both systems
(15) or (16) pr0v1de an initial parameter constellation in which the system is stable. Therefore,
once the stability boundary(16) is crossed, a umque switch between stablhty and mstablhty

15Thxs result may be furtherly extended: the application of a delaying kernel G, is equivalent to the sequenual
application of a kernel G 4, followed by that of a kernek Gy—; o (s in an integer < ).



occurs: this implies, without the need for any further i 1nqu1ry, that all the points of the stablhty
bounda.ry are SHB pomts

Just to check thls point let us use "in toto” the theorem 2 of section 3 and compute A,. We
have:

Ay=oajay—ag=3a(B(1+k)+3d*) —a(a’+3B (_i +k)) = 8a°

which is always satisfied for a > 0. We can thus say that all the points of the line a =
(24)_1_ B (8 4 9k) are, on the basis of the discussion in section 3, simple Hopf bifurcation points
for E]_. ' h : : .

| Getting back to more substantive facts, we remark that:

'a) our bifurcation toolkit allows a clear interpretation of the bifurcation process and the role'_
played by the rashness parameters with respect to the original Goodwin’s ones. In other words:
the bifurcation process in our 5-dimensional model (14) is perfectly interpretable in terms of the
: underlymg economic theory. '

b) we have showed that, although the Slmplest type of hiumped memory is not able to desta-
~ bilise the basic model, this can be caused by a sufficiently concentrated humped memory. This
result is of interest by itself in that (see Manfredi and Fanti 1999b) it proves that (distributed)
- delays may not only stabilise a conservative LVG system for slightly concentrated delays, and
destabilise it for highly concentrated memories, but they may also lead the conservative LVG
systern to persistently oscillate (Manfredi and Fantl 1999). '

) the analysis of the conservative LVG model has showed that, compared to the stability
boundary analysis, we do not necessarily need that the underlying undelayed system is sta-
ble. - Also conservative systems, in which the LV family constitute a leadmg model in apphed
mathematics, seem to be easily tractable by the same toolkit.

-6 Conclusions

The detection of the existence of endogeneous stable fluctuations (or, mathematically speak~
ing, of stable limit cycles) is a first concern in macro-dynamics. This problem is intimately
related to the notion of Hopf bifurcation. - ‘ :

Practically all the papers concerned with the detection of Hopf bifurcations in the macro-
" economic literature are concerned with systems of very low dimension. The number of papers
investigating dynamical systems of dimension four is very small. One of the possible reason for .
tlus state of things is the lack of a unified treatment of the subject. '

This paper aims to provide thls umﬁed treatment We first try to clarify the dﬂferent typolo- _



gies of detectable Hopf bifurcations (i.e. the notions of Simple and General Hopf bifurcation).
Starting from this distinction we then discuss how the stability theorems, such as Routh-Hurwicz
and Lienard-Chipart, can be used to detect Simple Hopf bifurcations. A Liénard-Chipart-type
result for the detection of Hopf bifurcations is given which appears of considerable usefulness in
applications. -

Moreaover, by relying on the notion of "stability boundary”, we show that in some cases the
conditions for the detection of the existence of the Hopf bifurcation can be stated in an aston-
ishingly parsimonious way, especially compared to the standard “belief”. This result appears
to be of a critical usefulness to treat special classes of problems. One of these is the class of
distributed delay problems reducible to ODE’s, which are more and more common in macro-
dynamics, for instance when we postulate the existence of delayed, but heterogeneous, reactions
of the economic agents.

Our economic illustrations finally show how the notion of stability boundary can be used to
detect SHB, both in the case of an underlying stable unlagged system (the Solow-type example),
and in the case of an underlying neutrally stable unlagged system (the LVG example).
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8 Appendix: some relations between delayed systems

Here we show that the application of a delaying kernel G, , is equivalent to r sequential ap-
plications of a kernel G ,.}® This result is the deterministic counterpart of the know probability
theorem defining the erlangian density G, , as the sum of r independent and identically distrib-
uted exponential densities G1,. We prove the result for » = 2. The completion of the proof
follows by induction. Let us consider the quantity

5= ;X(T)Gl,a (t—7)dr = f X (r)ae—2C-"dr

— —QQ

obtained by delaying the quantity X (%) through a kernel G, Let us now consider further
applications of the delay same operator, i.e. consider:

¢
S (t) =f S1(r)ae=t="dr
We have:

t H T ‘
Sy = [ Sy(T)ae~ " dr = f ( f X (u)ae‘“(r‘“)du) ae” T dr =
—tOO . =00 —00
= f f X{(u)ae~ N Wae =) dudr
—0 J—00 :
By interchanging the order of integration we get:
t T
Sy, = / f X (u)ae~ " g~ dudr =
)
- [ x@ (f ‘ et~y s =

oo
_ ft X(u)azema(t“u) (/t e..a,(rmu) e-"a.(uw‘r)d,r) du =

16T his result may be furtherly extended: the application of a delaying kernel G, , is equivalent to the sequential
application of a kernel G, ,, followed by that of a kernek Gr—,, (s in an integer < r).



i

[ Xaret ([Car)u~

L
= j X{u)a® (t — u) ey =

£
= j[ X ()G odu

which proves our statement,



9 Appendix. Multiple convolutions
By definition the convolution of two functions fq, fo defined on the real line is

fial®) = fix fa= [ Filr) ot = i
Let us now consider the convolution of f; 2(t) with a third function:
(fixfa)*xfs = faxfs= fot Fr2(u) fa(t — w)du =
. [ U Y ' .
= /0 (/0 fi(r)folu — T)d’?’) fg(t.— uyduy =
= Jy Jy Rl e = whdrd

By interchanging the order of integration we find:

fieferds = [ 2@ ([ falu-fale - win)ar
= f FUPK(,7)dr

Notice that the delaying kernel K in (3) is not of the difference type:

K(,) = | " h(u = 7) fa(t ~ u)du

Let us introduce the change of variable (¢ —t) = a with du = da. The new integration limits
are: (0,t — 7). We obtain: :

K(t,7) = 'f: Jou—7)fa(t — u)du =
_ fot“r Fa(a) fa [(E = 7) — (u — 7)) du =
= [T R@plt-r)—dda=K«(t~7)
which is really a difference kernel. This finally proves that:
fixfaxfz = f:fl('r)K(t ~ 7)du =
£ U
= ./0 (fo fi(7) falu — T)d‘l') falt — u)du =

= /:fl('r) UOM fl@)fal(t—7)—d] da] dr



i.e exactly that, as expected, the 3-level convolution can be expressed as a convolutlon between
the first variable and the convolution of the remaining two.

The general expression for an n-th order convolution is then:

ik fox fa= JEA(MKE—1)du = .
G T e — 7)) folt —w = f Fu() [ Fola)fo (6 = ) — o] da] i

9.1 A Goodwin-type model with profit-sharing

Here we consider a Goodwin type model (Fanti and Manfredi 1998b) in which it is assumed
that the rate of change of the wage-share also depends on the lagged profit:

~(o-+)+ pU +em (1 ~ L V(PG (¢ —T) dT) (19)
=m—-—a—n—mV

SISESES

The parameter £ > 0 reflects the action of the profit-sharing effect on the rate of change of the
wage-share. Fanti and Manfredi (1998b) showed that under the action of the simplest humped
memory (erlangian (2,a)) persistent oscillations appear in (19) via a Hopf bifurcation of the
unique positive equilibrium Ey. Here we consider the problem of the detection of Hopf bifurca-
tions under a kernel erlangian (3, a).

4 (@+4) + U +em(1 - 8)

%zm—a—n—mv

S =a(Z - S) (20)
Z = a(W —Z)

W=a(V-W)

Notice that in this case the underlying unlagged model:

= —(a+v)+pU +em(l-V) (21)
=m—-a—n—-mV

S

has a unique positive equilibrium F; which, provided it exists, it is always LAS. The underlying
unlagged model correponds to the case T = 2¢! = 0, where T is the mean-delay. Hence we know
the stability "status” of the model at a prescribed "natural” initial parameter constellation po
and can apply the considerations of the previous section. If we study the stability the equilibrium
point E; we get the characteristic polynomial with the coefficients:

a1 = 3a; a3 =3a>+mUpV; as=a (a2 + 3mUpV)
as = a*mV (3Up <+ ac) ; as =mlpVa®



which are all positive. Hence the condition A,,_; = 0 gives:

3a a(a®+ 3mUpV) mUpVa® 0
_ 1 3a2+mUpV  a*mV (3Up + ac) 0
Ag=det| 3a a(a?+ 3mUpV) mUpVa’ >0

0 1 32+ mUpV  a¥mV (8Up + ag)

ie. _
Ay =mVa' (85&2 ~9ImVela — 24mVU pe) =0

The locus defining the stability boundary is:
8ca® ~ 9mVela — 24mVUpe =0

which is a simple line in the (a,¢) plane. Therefore once the stability boundary is crossed a
unique switch between stability and instability occurs: this implies, without the need for any
further inquiry, that all the points of the stability boundary are SHB points. Just to check this
point let us use ”in toto” theorem three and compute A,. We find:

Ay = 3a (3a2 +mU pV) —a (a2 + 3mU pV) = 8a®

confirming our previous finding.'?

17Tt is easy to check that the condition for the crossing with nonzero speed is satisfied.
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