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Abstract

We provide a characterization of Pareto efficient allocations in a continuous time economy with
agents’ preferences represented by stochastic differential utilities. Taking the endowment process
and the discounted weights as state variables, the vector of stochastic differential utilities can be

viewed as the viscosity solution of a highly degenerate parabolic PDE.



1 Introduction

This paper is devoted to the characterization of Pareto efficient allocations in a contimious
time economy under uncertainty, when the agent’s preferences are represented by a stochastic
differential utility (SDU). For a characterization of this type of utility functional we refer
the reader to [Duffie, et al., 1992].

The topic was addressed in [Duffie, et al., 1994], where the authors showed that the clas-
sical result obtained in the finite dimensional case, that is a Pareto optimal allocation is char-
acterized by the fact that the agents’ marginal rates of substitution, coincide, carries forward
in the infinite dimensional setting. In the same paper, by extending some ideas employed in
a deterministic setting ([Lucas and Stokey, 1984], [Epstein, 1987],[Dana and Le Van, 1990])
and in a discrete time stochastic environment ([Kan; 1995]) to a continuous time stochastic
economy, the authors showed that a Pareto Optimal allocation can be viewed as a function
of the trajectory of a dynamic system determined by the utility processes and the agents’
discounted weights. The system is backward-forward, in the sense that the utility processes
have a backward evolution,while the agents’ weights a forward one.

In the present work, we use these results as a starting point to show that the vector
given by the utility processes shows a functional link to the agents’ discounted weights and
to the economy endowment process, when the latter ones are taken as state variables. Thig
function is characterized as the viscosity solution of a highly degenerate parabolic Partial
Differential Equation.

The results we obtain are related to [Dumas, et al., 1997], where efficient allocations are
characterized through the value function of a social planner.

Here we draw inspiration from the work [Schroder e Skiadas, 1999], to define the optimal
consumption policy through a SDU. In their paper, Schroeder and Skiadas consider a single
agent problem, which leads them to consider a system with only one forward equation (ob-
tained from the first order conditions for the optimal process) and one backward equation (the
recursive utility process). This problem associates with a parabolic partial differential equa-
tion, to exploit in order to solve the stochastic system with the aid of the theory developed
in [Ma et al., 1994]. The critique to this approach carried forward by [Dumas, et al., 1997
is that it is not very tractable and does not account for the multidimensional case.

Instead here we address the multidimensional case, which we are able to characterize by
means of a highly degenerate parabolic PDE. This approach was to some extent already
indicated in the work of [Duffie, et al., 1994], even though no explicit method to solve the



system was given. As a matter of fact, the structure of the equations gives rise to some
technical problems as to the solvability. We prove that those can be avoided by restricting
appropriately the time interval appropriately and, under this condition, we provide the PDE
characterization. As for the complexity of computation, it seems to be comparable to that
of [Dumas, et al., 1997].

This note is organized as follows. In the next section we recall the results obtained
in [Duffie, et al., 1994], characterizing the Pareto Optimal allocations of the economy. In

section 3 we analyze the dynamics of the Pareto efficient frontier and allocations.

2 The Economy and the Pareto Efficient allocations

Let [0,7] be a finite time interval and (£, F,p) a complete probability space, endowed
with a filtration F = {F }ej01) of o—algebras of F, satisfying the usual hypotheses (see
[Protter 1990]). Later on, we will specify this filiration as generated by a Brownian motion
defined on our probability space.

For any p € [l,00), we denote by D, the space of all processes X : Q x 0,7 —
R measurable with respect to the predictable o—algebra on € x {0, 7] generated by the

F—adapted, left-continuous processes, such that
T Y
X1l = (B [1XlPan)? < oo.

"This will be the space of the consumption process ¢. We may consider R%-valued processes,
rather than only real valued, but all the proofs remain the same and we prefer to keep the
dimensions low for ease of exposition. Finally we denote by D} the positive cone of D,.
Again for simplicity, we will prove our results for ¢ € D,, since the techniques are identical
for any p > 1. The case p = 1 would actually require a separate treatment, as the spaces
where the solution processes live change slightly. Nevertheless an adaptation of the methods
goes through, so, when needed, we will point out the main differences rather than running a
complete separate proof for this case.

We consider an economy with n agents. Given a consumption process ¢ € DF, the i~th
agent 18 characterized by a SDU U'(e) = Vj(c), where V' solves the backward stochastic
differential equation

(1) Vi=B([ fie,ViislF), 1,1,



Each f*: R, x R — R is a continuous function satistying a growth condition in the first
argument and uniformly Lipschitz in the second one. We assume that each f*, and therefore
U, is strictly increasing in the first argument. Thanks to [Duflie, et al., 1992], when p > 1
we know that a p—integrable solution to (1) in the space

S” = {X semimartingales : E( sup !X,?) < +o0}
£€[0,T]

exists, the case p = 1 was covered in [Antonelli, 1993].
We denote by e € D} the total endowment and we denote the feasible allocation set by

A={c=(c* .. " e (DH®": e =3 ¢ >0},
=1

Definition 2.1 : A feasible allocation c is said Pareto Optimal if there is no other feasible
allocation & such that U*(&') > U(c'), i = 1,...,n, with strict inequality for at least one
agent.

Given a set of positive weights & € R}, we define U, : (DH)®* - R as

(2) Unlc) = il o, U (7).

An allocation in (DF)®" is a—efficient, if it mazimizes U, over A.

In [Duffie, et al., 1994, Proposition 1] it is shown that if the aggregators f* are all concave,
then c is Pareto Optimal if and only if there exists some non zero « such that ¢ is a-efficient .
The classical result establishing a one to one connection between a set of weights and a
Pareto Optimal allocation is therefore confirmed in this setting.

The first order conditions characterizing Pareto optimality are obtained by imposing
that the gradient of U, is negative along any feasible direction. More precisely, given a fixed
consumption process ¢ € D, we define the set of feasible directions F(z) = {h € D,
¢+ h € Df} and the Gateaux derivative of U* at @ in direction % as the linear functional

VUi @)h = lim L+ €M) = V()

E— £

. heF@,

whenever this limit exists. :
Moreover we say that VU’(¢) admits a Riesz representation if there exists a process
mi{2) € D,, with % + % =1, such that

Vi) = B[ Chri@dl) for he F().
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From now on, we assume that f* are differentiable in both variables in the interior of the
domain.

[Duffie, et al., 1994, Proposition 2] guarantees the existence of the Gateaux derivative of
U and of its Riesz representation, if p > 2 and either f? satisfies a uniform growth condition
in the first argument, or if f* is concave and @ is bounded away from zero. Besides, it is

straightforward to prove that

wi©) = exp{ || fi(e Vi)ds) i, V7).

Restricting our attention to Pareto optimal allocations (¢',¢?,...,c"), so that the consump-
tion process for each agent is bounded away from zero, then the allocation is o—efficient and

therefore the following first order conditions are verified
(3) am(cy = aym? (), ae (tw), 4,5=1,...,n

In [Duffie, et al., 1994] a set of sufficient conditions ensuring that the Pareto Efficient allo-
cation is bounded away from zero is provided. The set includes Inada conditions and calls
for an endowment process bounded away from zero and strictly positive weights.

Iixtending the reasoning developed in a deterministic setting in [Lucas and Stokey, 1984,
Epstein, 1987, Dana and Le Van, 1990], in [Duffie, et al., 1994] it is shown that the Pareto
Optimal allocation associated with a given vector of weights & can be viewed as a function of
the solution of a backward-forward stochastic differential system, where the backward com-
ponents are the agents’ utility processes (1) and the forward ones are the agents’ discounted
weights.

In other words, for any vector of Pareto Optimal consumption processes ¢ = (ch,....c%)
and vector of weights & = (o,...,@,), we define the vector of the discounted weight pro-
cesses A = (A, ... A" by

. o .
Vo= aen([ L V), i=1,.n
With this notation, the first order conditions (3) become
(4) MNEE V) =N V) ae (tw), ii=1,...,n.

Following [Duffie, ef. al., 1994], we assume that each [ is O3 in the interior of its domain
and that the Hessian matrix associated with fi(-,) is everywhere negative definite for all

v € R. Under those assumptions, the implicit function theorem gives the existence of a C?
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function vy : Ry xR} x R™ — R, such that the Pareto Optimal allocation ¢ associated with
o can be written as |

¢ =y e(w, ), X w,1),..., Aw, 1), VHw, ), ..., V™w,t)), i=1,...,n.

Summarizing, the a—efficient allocation ¢ can be characterized as c; = vy(ey, Ay, Vi), where

the couple of vectors (A, V) solves the following stochastic integral system in (R™ x R™)

, o )
(5) At =y eXp{fg folv(es, As, V). Vi )ds}
. T .. .
(6) Vi = B([ £0ienh V), Vs |7,
fori=1,...,n. In conclusion, as we already said, we know that the Inada conditions apply,

that the endowment process is bounded away from zero and that f* is regular, hence a

solution to this system exists, see [Duffie, et al., 1994, Proposition 4].

3 The Dynamics of the Efficient Frontier

In this section our goal is to show that the Pareto efficient frontier (V*(w,t),...,V"(w,t))
obtained as the solution of the system (5)-(6) can be characterized by means of the viscosity
solution of a Partial Differential Equation. In some sense this means to revert to perspective
and to concentrate on the system directly.. We first prove that the solution of (5)-(6) shows
continuons dependence on the parameters, when restricting suitably the time interval

We need to assume that

Al. the filtration F is generated by o one-dimensional Brownian motion W, augmented of
the P—null sets and made right continuous to satisfy the “usual hypotheses”. Besides

the endowment process e satisfies the SDE
(7) es=a+ [ ulredr+ [ o(re)aw,
Jo 0

with coefficients pi, o [0,T] x R — R uniformly Lipschitz with constant ky > 0.

As mentioned before, we are also taking the process e bounded away from zero, that is
es > & > 0 all (s,w). An example of such process might be e, = EW), + 6 (€ denotes the
stochastic exponential, see [Protter 1990]), with & a strictly positive constant. Clearly the

process is bounded away from 0 and it verifies the equation
de, = (e; — 6)dW, ep=1+6,
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that has uniformly Lipschitz coefficients.

Furthermore we recall that we based the existence of the functions v on the Inada
conditions, thus we know that Eli% File,v) = oo and lim fic,v) =0,V v € R. These imply
that also the Pareto efficient allocations (and hence the v’s) are bounded away from ZET0,
so when the functions f* are acting on those, they are actually Lipschitz (globally) in the

first argument. Therefore, from now on, we assume

A2. there exists a constant vy > 0 such that
Yle,,v) >y t=1...,n,

for all (e,1,v) € R, x R" x R";

A3. the coefficients f* are all differentiable and there erists a constant k > 0 such that
|file,v)] <k all (c,v) € R xR, |file,v)] <k all (¢,v) € [yp, +00) x R.

Remark 3.1 : Last assumption implies that for a fived v € R, as a function of ¢, each
Fi(-,v) s bounded on [y, +oc), let us denote by M(v) the bound common to ol the functions.
Moreover, when c, > g, for all s,w, we have that

v < B[ 1 vlasiE < ([ [V +17 0l
" T .
< B( [ [kVi+M(©)ds) )

which implies by the stochastic Gronwall’s inequality

ek(T—t) -1

®) Vi) < S—

M@©O)  i=1,...,n.

Also, let us remark that the forward components, due to the assumption A.2, are such
that t
N = asexp{ [ £(ch, Vi)ds} € foue™T, i)

for all (#,w). Besides the weights ¢; are all strictly positive, hence there exist constants
g, Ag > 0 such that oy < a; < Ap, foralli =1,...,n.
In conclusion, by continuity, without logs of generality we may assume that

Ad. y{e,1,v) and f{;(q/ﬁ(e,l;v),q;i) are Lipschitz in all the arguments with constant K > 0,
when (e,1,v), € [§, +00) x [age™7, 4,eT]%" x R”.



Let us take ¢, 2,y = 1,...,y, varying in [0,7] x R x R" and consider, for i =1,...,n,
the following flows associated with our equations

5 k]
(9) et = gz +]f wlr, ek ydr + / a(r, er™YdW,, e’ =g
3 JL
(10) )\iitlmly — y'n‘. _|_ [ )\:':f:m:yf:; (’YT(E?T) A::may, V:;amal")’ W,t,E,Y)d,r. )\i:tam’y — yﬁ

i ™ .
1) Ve = B( [ el A V), Ve g 7).

J g

For any fixed 1,2 € [0,T], 21,25 € [8, +-00) and vectors y* = (y,...,4}),y% = (42,. c12)
in [ape™, Ape*T]%" we denote

i 15,5
e“? = 8_(’,,5 ’

i iF _ yieliEg,y
;A= A-th

73 — ’:1tj1mj=yj s s
V’ _V\/f:j ) ’3’_11"'1”‘! .?_1721

?

where s V 1 stands for max(s, ).

Theorem 3.2 : Under assumptions Al. - Ad., for T small enough, the flows (9), (10),
(11) are continuous in (f,z,y) € [0,T] x [, +00) % [age™ T, Age* 8™ More specifically, for

given ty and x,, there exists a constant Cy depending only on ky,t1,21, u(r,0), o(r,0), such
that

(12) ‘ E(sup |e; —ej[*) < Culmy — 21 + |t — ta).
s€[0,T

Further, if T is such that

(13) T'(k +nK)max(k,e™) < 1,

then there exists a constant Cy, depending only on k, ky, K, T, t1,x1,y* ond M (0) such that
14) Kl S}é@l[llAz = Al IV = VI < Callzs — a2 + [ly? = v |2 + [tz — ).

g€ (0,1
Proof: Without loss of generality we may assume {; < t,. By the Lipschitz property of p
and @, it is easy to verify that

|6§~—€1|2 <_': 5|$2—$1|2+5(8\/t2—t2)f
1

5
I

VB e g bahs 1y).2,12
BYlef — e} P+ [ | Ju(r, eb)ldr]
Jii1hs
sVia taAa
£ 80 ol ) = ol e aW 4+ ([ (o, )W
) JiiAs

taking expectations and applying Doob’s inequality we get

0<a<t #

: iVl
E(sup fe5 — €]*) <5lay — 21 |* + 5K (1t — ta] + Uf, E(sup el — e;*)dr
2 0<s<r

+ Blto—t1|(1+ [ta—ta]) [E( sup feg|*)+ max (|u(r,0)* + |a(r, 0)]?)

t1<s<iy
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and using Gronwall’s inequality, we are able to derive (12).
Let us look at the other two equations. We remind the reader that in R” the euclidean

k13

norm is equivalent to the norm |[x|| = »|z;| which we will use to prove (14), as the
i=1

calculations follow more smoothly.

Let us analyze the forward components. Keeping in mind the previous remarks, exploiting
our hypotheses, for each i we have

; i 2 g i i 41 pig i i
N2 =X = g [ N AL VL VE) — AR e AL V), V) dr
SN2 it i ir 1 Al vy prid
[ R AL VE, v

<2 -l Lk sV A2 Nilig
-—-!y'.- y1J+ s |r T‘T

sVig o T ) . n . ,
F KT [T [S R < X 4 SV e - ] ar
' i=1

=1
+ keleS /\tg — 8N t]_|
As for the backward components, we have that by the martingale representation theorem,
there exist two predictable vector processes Z} and Z2 such that
. T S , , - T . T
Vi [ P MV Ve — [ Zaw,, with E ( [ 1z97ar) < +oo
sVt aVi; J0

foreachi=1,...,nand j =1,2.

Taking conditional expectations with respect to F,, the martingale parts disappear and
by the Lipschitz property of the coefficients, we have
VA=V < B( [ 1P AL VAL V) — £ el AL VI, Vi) dr

JaViE
5Vt2v 2. ir 1 Al /1 .
* Vi [fl(f}/z(e’”’AT’Vr)v‘/:’l)ldﬂfe)
. | | | | .
= E(/.;Vtz k[’ﬂy?(e?)Aﬁ}V?) — ’}’?(Gi,Ai5Vi)‘ + IV:’Q . ‘/Tz,l’] dr

sVt 1 gl Al oyl
+ [ IV 17, AL V), 0)Jdr| 7,
< B[, [ER(e2 = el + 30 = N4 Y102 - Vi + BV — v ar
FVta i= i=
s\Vig 1 i '
+ [ VA b (0)arl )
< AV

T no | "o | | |
SE( [, [RK(2 = ell+ Y IN2 = N 30V = V) KV — v ar
R =1 i=1
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+ M O)]ez — 1]|7),

where we used inequality (8) in the last passage.

Summing the components for ¢ = 1,...,n we may summarize the above inequalities as
2 1 2 .1 R 1
1A = ALl < ll? = 9l 4k [ (1A2 — Al jar

sViag
KT [ (A2 AN+ ([VE = VI + |62 - elf]dr 4 nke Tty — 1
2

T

V2= Vall < B[ [nkk(jel — el + [|AZ = A2 + [V = V) + K|IVE = V| |]dr|F,)
J8Vig

+ ﬂekTM(D)ltg - tll
Summing the two inequalities together, we finally obtain

IAZ = ALl] +]IV2 = VY| < l5? = y'|| + Ralts — 1]
T.
 RoB( [ [l = el + [1A2 = A +1IV2 = VA arf),

where 12y = n.max(k, M(0))e*” and Ry = (k+nK) max(k, e”). Squaring both sides, apply-
ing Cauchy-Schwarz inequality and Doob’s inequality, we obtain

E( sup [HAﬁ — Al + V2 ”"V;H]Q)

0<s<T
4Hly* — y'lI> + 4R3|E, — 11]2 + AT REE (supge, o €2 — €l )
= (1 — RT)

which gives our thesis, by virtue of onr hypotheses, condition (13) and inequality ( 12). O

By hypothesis, all the coeflicients occurring in the previous equations are deterministic
and differentiable. By the standard technique of time shift and because of Blumenthal’s 0-1
law, it is possible to show that the functions

¢(t7 m) = ei,mi wt(t? '1:1 yl! ey yﬂ) = A?t’m)yl’”',yn? ez(ti :EJ yl: e 7y’f’l:) = Wz’t‘m’yl""’y"‘

are all deterministic. Proposition 3.2 tells us that these functions are locally Lipschitz in
T, Yi,...,Yn and Holder of order % in ¢, consequently their derivatives are defined a.s. and
bounded on compacts.

Our next goal is to prove that
g(tﬂ :L" Y) = g(t?mﬁyll e 7yn~) - (gl(ti :Eﬂ yl? " )y’n)) v 79n(t? :Bﬂ yl’ st yn))*

10



where * denotes the transpose, is a viscosity solution of a system of degenerate semilin-
ear parabolic PDE. First we would like to remind the notion of viscostty sohition for sec-
ond order operators. (For a detalied study of viscosity solutions we refer the reader to
[Fleming, Soner, 1993))

Definition 3.3 : Let L = L(¢,0, D9, D*0) be an elliptic (possibly degenerate) operator and
let us consider the PDE problem in a certain domain O C {0,T) x R™

—@- — L(t,0, D8, D*6) = 0
(15) ot

f(t,z) —g(z) =0 (t,z) € BO.
8 € C(O) is said to be a viscosity sub- (resp. super- ) solution of (15) if for any function

¢ € CY*(O), taken any (£,7) € O, which is a global mazimum (resp. minimum,) point for
¢ — @, we have

—E(t,rfz) — I{t,2,0(1, %), Dp(t, %), D*p(f, 7)) < (resp. >)0
(16)
0(f,z) — g(z) < (resp. )0 whenever (f,%) € JO.

6 is said to be a solution of (15) if it is both a viscosity sub and super-solution.
Remark 3.4 : By the previous proposition, we have that the functions 0i{t, z,y) = Vit

are indeed continuous in [0,T] x [§, +00) X [age™ ', Age"™|®", answering the first condition

of viscosity solutions.

Theorem 3.5 : Under Assumptions Al. - Ad. and condition (13), the vector function
0(t, z,y) is a viscosity solution of the PDE problem in [0,T] x [8, +00) X [age™T, AgehT]®",
;o) PN e Iy i i i

_Ht - Tgm:n + #‘(t: ‘T")g'r: - Zyjfv (f}/ ('I: ng)': 0 )g'yj - f (f}/ (x,y, 9)19 ) =0
(17) _7:1
84T, z,y) = 0,
fori=1...n.
Proof: First of all, we would like to remark that theoretically we are missing the boundary

conditions in problem (17), but we could actually consider it in the whole of R x R”, since

our solution processes automatically live in the considered region.
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By consiruction, the processes b, A4Y and V=¥ have all continuous paths and are
adapted with respect to the filtration generated by the Brownian motion. Therefore, becanse
of the Markov property and the pathwise uniqueness of the solution, it is possible to show
that actually VL™ = f(s, eb® ALTY) a5,

To show our statement, we need to prove that 8 is both a sub and a super-solution of
(17). As a matter of fact, we only show the sub-solution inequality, since the proof of the
other one goes along the same lines.

Let. us consider a point (¢,z,y) € [0,7] x R x R” and & family of smoath functions ¢,
1 =1,...,n, such that

0=6(tz,y) - ¢'lt,2,y)
is a global maximum for 6 — * (without loss of generality we can assume this maximum to
be zero).

This means that for any stopping time 7, necessarily

(18) 0 (7, eb® ALYy — 7, eb® ALYy < 0.

y Ly 157

From now on, for ease of writing we will omit the superscripts. Because of their regularity,

we can apply It6’s formula to the functions i'’s in the interval [t, 7], obtaining

ap":(Tv e, Ar) = gp’:(t,x,y) +/t o(r, e,q)(pfﬂ(’r', er, A YdW,

0_2

+ [ [eitrentn) + 5 en)pha(ry en, Ar) + ulr, e )ik (ry e, A,) | dr

+ f [Z)\ifg(’yj(e,.,/\r,vr),Kj)w;j('l‘, eraAr)}d”"-
S :
On the other hand, because of (6), using the martingale representation theorem, we have
bi(t,z,y) = Vi = v,f+/ Filvier, A, V), V) dr—f ZidW,
= 6'(r, e, A +/ Pt (er, A, V), V) dr—/ A
for each i = 1,...,n. Substituting these last two equalities in (18), we obtain

0

IV

& (r,e., A,) — goi(f er, A7)
O (t,z,y) — @' (t, @, y) +/ Zi —olr,c. )l (r, e, A, )}dWT

[ ens ) el ers M) ) er, )| dr

I
= [ IR e 8 V)V 1000 £ e A Vo), T,

12



By the uniqueness of paths, we know that V, = 0(r, e,, A.), therefore substituting in the
former expression we ohtain

ﬁT {Z: — a(r, e )i (r, eT,A,,)]dWT
“/WkﬁwmA%fgﬁwdﬁdh%ﬂﬂ+M&&J%W£MMHw
/ ¥ (er, Ap, O(r, €0, A)), 8, e, Ar))igy (7,60, Ar)
-/ fi(v*(er,f\r,e(r, er, ), 8 (1, e, A))dr < 0.

Taking expectations, the martingale parts give no contribution and we can summarize the
inequality by writing

T .
(19) E(/ S {r, e, A)dr) < 0,

t

where X'(-, -, ) = —¢} — Li(-, 0(+ ), ¢ (-, ) and
L%mmﬁmmwwmﬂwnzéﬁuxw;amw+ﬁwm@maw
+ Zyﬂ” (z.y,6(t,2,¥)),0°(t,z,¥)¢}, (t, 2,y)
+f1)( (@,y,0(t,2,¥)),0(t,2,y)

To say that 0 is a subsolution of (17) means that we must verify that Yt z,y) <0, each 3.
By contradiction we assume there exists an ¢; > 0 such that X (t,x,y) > ¢ and we define

the stopping time
=inf{s > ¢t : 3(s,e,,A,) < %} AT.

Since Y'(¢,z,¥) > ¢, we have 74 > ¢ a.s. Inequality (19) holds for any stopping time,

therefore also for 77 and we have

0<%( )<E(/ Ti(s, €s, As)ds) < 0

which is a clear contradiction, hence we proved that 8 is a subsolution of (17).
Analogously we can prove that @ is a viscosity super-solution of (17) and complete the
proof. a
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