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Abstract

The problem of computing the maximum likelihood estimate of
the parameters of a specific class of stochastic differential equation
(SDE) models with linear drift whose sample paths are observed at
discrete time points is considered. This estimate is obtained as in
Cleur and Manfredi (1999) by discretizing the explicit expressions for
the estimates which maximize the likelihood function in continuous
time, by discretizing the likelihood function through a quadrature ap-
proximation before maximizing it, and by maximizing the likelihood
function of the Euler scheme approximation to the underlying contin-
uous process. Simulation results indicate that for the constellation of
parameter values considered all three approaches lead to very similar
results.
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1 Introduction

Classical time series analysis has dedicated much of its attention to the mod-
elling and estimation of data observed at discrete time points. The much
used Box-Jenkins methodology is just one of many such examples. Of late,
however, continuous time models expressed in the form of a Stochastic Differ-
ential Equation (SDE) have increasingly been considered and their estimation
using data observed at equi-distant discrete time points is currently attract-
ing mmch attention not only in theoretical, but also in applied research (see
for instance Singer (1993), Polson and Roberts (1994), Broze et al (1995),
Overbeck and Ryden (1997), Shoji and Ozaki (1997)).

This paper considers some computational aspects in the estimation, using
maximum likelibood techniques, of the following class of one-dimensional
SDE models:

dX, = k(0 — Xp)dt + o X7 dW, (1)

when ¢ 18 unknown.

Model (1) was estimated, for instance, in Cban et al. (1992) using the
generalized method of moments, and in Broze et al. (1995) and Calzolari et
al. (1998) who both applied an indirect estimation procedure to correct for
a so-called discretizaion bias.

Very often (1) is estimated for given values of 3, such as 3 = 0.00 which
defines the Ornstein-Uhlenbeck process (also known as the Vasicek model in
financial economics), # = 0.5 which defines the Square Root process (Cox-
Ingersoll-Ross model in financial economics) and 3 = 1.00 which defines
a Geometric Brownian Motion process (Brennan-Schwarz in financial eco-
nomics) thereby reducing the computational complexities in the estimation
procedures.We will call such a model a “reduced model”. Instead, equation
(1), when f3 too is unknown and bas to be estimated, will be labelled the
“complete model”. This paper will be concerned with the estimation of both
the reduced and the complete model.

2 Maximum Likelihood Estimation

2.1 Reduced Model
For the following general one-dimensional SDE which includes equation (1)



dX, = a( X, ©)dt + b(X, 0)dW, . )

we may define the log likelihood ratio function in continuous time (see, for

ex., Kloeden et al (1992)):
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For the SDE defined in (1), continuous time maximum likelihood estimates
(CTMLE) of k and ¥ may be obtained conditional on given values of o and
$ by maximising (3) (see Lipster and Shiryayev (1981) and Kloeden et al.
(1992)) or by deriving explicit expressions for the estimators of £ and ¥ as in
Cleur and Manfredi {(1999). For the SR and GBM models these expressions
are given by (see Cleur and Manfredi (1999) for details)
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where the I; are either stochastic or non-stochastic integrals and are defined
in Table L.

log L(©) = (3)
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Table 1.
Integrals in the CTMLE for the SR and GBM models
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On the other hand, when the continuous time path is observed at equidis-
tant time pOiIltS, 0= tg 3 tl = tg +5 N t0+ 26 y wen g T, Where 6= tz - tz—l
is known as the discretization step, various approaches are available for ob-
taining discrete time maximum likelihood estimates (DMLE henceforth) of
k and ¥ for given values of o and 3. For instance, DMLE of k and ¥, for
given values of o and 3, may be obtained as in Cleur and Manfredi (1999)
and which consists in discretizing the explicit expressions for the CTMLE of
k and ¥ by means of a trapezoidal rule as reported in Tables IT and 11I.



Table 11.
Trapezoidal evaluation of the non-stochastic integrals

Model Iy Iy Is
SR A n—1+Xﬂ ASTT Xn-14Xn ]+Xn T
Zn—l -]-X _a Z . o +X”1
GBM A an Tmel TR T AdT el
Table 111.
Ito’s formula evaluation of the stochastic integrals
Model I, I,
SR log—l—l—"f XT—X()
GBM 2%l — (fl; —~ —J—;‘E) log L4 & e

This estimator will be labelled “DMLE-Ito”.
Alternatively, if the discretization step is sufficiently small, & quadra-
ture approximation to {3) may be applied (see, for example, Florens-Zmirou

(1989), Kloeden et al (1995), Pedersen (1995), Polson and Roberts (1994),
Shoji (1997), and Shoji and Ozaki (1997) leading to

o _ a(Xy, ,,0) B
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The estimator obtained by maximizing (5) is called the likelihood ratio max-
irmm likelihood estimator in Shoji (1997) and Shoji and Ozaki (1997), but
in this paper it will be labelled, for short, the “DMLE-Quad”. It is, un-
fortunately, inconsistent as shown in Florens-Zmirou (1989); consistency is
assured if § — 0 and T — oo . Simulation results reported 1 this paper,
however, indicate that the inconsistency is noticable only when the drift pa-
rameter k is relatively large, i.e. when there is an increase in the degree of
convexity of the mean solution of the underlying continuous process.

In order to estimate the vector of parameters @ = {k,J}, both the
“DMLE-Quad” and the “DMLE-Ito” require a preliminary knowledge of
o as well as of 3 which is assumed known in the reduced model. If the
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diseretization step is sufficiently small, the following quadratic variation es-
" timate, although inconsistent, has offen been proposed (see, for ex., Polson
and Roberts (1994), Shoji and Ozaki (1997))

ey P T )’ (6)
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The inconsistency in this estimate, which is greatly dependent on the dis-
cretization step (in the lLimit, as the discretization step tends to zero the
diffusion parameter ¢ is identified with probability one) as well as on the de-
gree of convexity of the underlying process, could have negative repercussions
on the properties of & as illustrated in Cleur (1999). In other words there
is a vicious circle in act: when k is high, and only a finite number of data
points are available, the quadratic variation estimate of o substituted in (5)
is more markedly biased and inconsistent, and this leads to a more markedly
inconsistent estimate of k. The crucial role played by & in the estimation of
the drift parameter from discrete data is underlined in Prakasa Rao (1999),
page 145.

The estimation procedure applied to the reduced model is as follows:

(a) the quadratic variation estimate defined in (6) is used as a preliminary
value of o,

(b} k and ¥ are computed by maximising (5) to obtain the DMLE-Quad
and by applying the formulae in Tables 2 and 3 to obtain the DMLE-Ito,

(c) the final estimate of ¢ is obtained, for each of the two estimators in
(b), by using the calculated residuals from the Euler scheme:

Xy, = Xo_, + k(9 — Xy,_, )6+ 0XE_ W, (7)

where W;, ~ N(0, v/6 ) and 8 is explicitly defined in the estimated reduced
model. This final estimate of ¢ was also suggested in Shoji and Ozaki (1997),
and Pedersen (1995), with reference to the Ornstein-Uhlenbeck process, con-
siders it as an improvement over the quadratic variation estimate given by
(6) in that it corrects for the influence of the drift.

The “DMLE-Ito” needs knowledge on solving Ito integrals and is, there-
fore, mathematically more demanding as against the “DMLEF-Quad” which
is much simpler to define and only needs a good computer program for op-
timizing a user supplied function. This paper also addresses the problem as
to whether the disadvantage of the “DMLE-Ito” in terms of mathematics is
offset by an advantage in terms of bias and efficiency.
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2.2 Complete Model

In the reduced model above, 3 was known and this was motivated by the fact
that often one has in mind the estimation of a model defined by a specific
value of 3. One might, however, decide to estimate 3 as well, for instance as
a preliminary step in testing whether the observed time path was generated
by a known model characterized by a specific value of 3. In this case, an
approximate Maximum Likelihood Estimator for the complete model may be
derived as follows:
(7) can be rewritten as

Xe,—Xe oy — k(0 — Xy, )0 = 3 (8)
for which
IOgL(ZL'T; k‘, 19:0-7 ﬁ) = mTloga mﬁzlogxtiml - (9)
2
Z Xt@ - X3¢—1 - k('ﬂ - Xtﬁ—l)&
VX

Noting that the Euler scheme gives a reasonably good approximation to
the time path of the underlying continuous process provided the discretiza-
tion step is sufficiently small, the estimates of &, 9, o, and 3 could be obtained
by maximizing (9). This estimator, whose asymptotic properties have been
considered in Shoji (1997), will be labelled "DMLE- Euler”. The advantage
with such an approach derives from the possibilty of estimating, simultane-
ously, all the parameters of the process.

An initial value for ¢ may be obtained from equation (6) as in the reduced
model.

A simple procedure for obtaining an initial value for 3 could be based on
the well known information criteria as follows:

Let Ly(zr; i?:; 5‘; o ;80) represent an estimate, using the data vector xr
of the log likelihood function defined in (9) conditional on 3 = 3°. In the
present context, the information criterion statistics AIC and BIC both reduce
to finding that value of 3° which maximizes Lp(x; k0 &; 3%). Hence, given
a discrete approximation of the process, xr, an initial estimate of 3 may
be obtained by computing Lr(zr; k; 9; 6; 3°) over a wide range of values of
(" and choosing that value which maximizes the likelihood. In simulations
based on the values of 8 = 0.3, 0.5, 0.7 and 1.0, using values for 3° in the
range J+ 0.3, the AIC statistic always identified the true value.
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As for k, starting values set casually in the interval (0.2, 1.0} all led to
the same estimate upto the fourth decimal point, so this does not appear to
pose any substantial computational problem.

The starting value for ¥ was the calculated mean of the observed process.

The DMLE-Euler may be calculated for the reduced model as well; in
this case a comparison with the DMLE-Quad and DMLE-Tto defined above
is made possible. Shoji (1997) (see also Prakasa Rao (1999), Section 3.4) has
shown that the DMLE-Quad and the DMLE-Euler for the reduced model
are asymptotically equivalent; they are consistent if § — 0 and T -~ 00.The
following Monte Carlo experiments should, therefore, enable us to evaluate
the validity of this result for processes observed over a relatively short time
interval.

3 Monte Carlo Experiments

3.1 Reduced Model

A series of computational experiments via simulation were undertaken to
evaluate the performances of the three maximum likelihood estimators de-
scribed above. Discrete time approximations of length T=100 and T=2000,
with a fixed discretization step § = 0.01 and X, = 0.10, are sinmilated for the
following constellation of parameter values using the order 1.5 strong Taylor
scheme: 9 =01;0=006;%k=0.3,08and 1.5 ; § = 0.5 and 1.0 in the
reduced model. Each combination of these values is replicated 1000 times.

The standard errors of the estimates, reported in brackets, are the stan-
dard errors calculated from the 1000 estimates obtained for each parameter.

A preliminary control on the quadratic variation estimate of ¢ was carried
out in the context defined by the constellation of parameter values used in
this paper; the results are reported in Table I'V. As can be seen, the estimator
apparently provides very good starting values.

Table I'V.
Quadratic Variation Fstimate of o in the SR process
& = 0.01(standard errors of estimates in brackets).

T k=0.3 k=0.8 k=15
100 .0800 (.0004) .0369 (.00G4) .0598 (.0004)
2000 0600 (.0N01) 0599 (.0001)  .0598 (.0001)
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In this and other studies, the estimation of 4 has never posed a problem
and hence any mention to this parameter will be avoided in order to save
space, especially in the Tables. Tables V and VI allow us to compare the
estimates for the SR process.

Table V.
Estimates of the Square Root process. T = 100
§ = 0.01 (standard errors of estimates in brackets)

k a
Truek DMLE-Quad DMLE-Ito DMILE-Euler DMLE-Quad DMLE-Tioc DMLE-Euler
0.3 3420 3416 3419 0509 0599 0599
{.0864) (.0862) (.0864) (.0004) (.0004) (.0004)
0.8 8368 8368 8367 0598 0598 L0598
{.1275) (.1275) (.1275) (.0004) (.0004) (0004}
1.5 1.5268 15271 1.5267 0595 0595 0595
(.1703) (.1703) (.1703) (,0004) (0004} (.0004)

In this paper we are particularly interested in the comparative perfor-
mances of the three estimators and not. only in the entity of any bias present.
Tables V and VI indicate a very similar behaviour of these three procedures
of estimation which goes in favour of the DMLE-Euler and of the DMLE-
Quad, both of which are very simple to define, over the DMLE-Ito which, as
illustrated above, is more mathematically demanding,.

Two principal conclusions may be drawn from these Tables: for a small
T (T=100) the three estimates of the drift parameter are scriously biased
and an increase in the degree of convexity of the process, i.e. in &, leads to
an increase in the standard errors.



Table VL
Estimates of the Square Root process. T = 2000
& = 0.01 (standard errors of estimates in brackets)

=

k &
Truek DMLE-Quad DMLE-Ito DMLE-Euler DMLE-Quad DMLE-Tio DMLE-Euler
0.3 3015 3016 3018 L0560 0599 0599
(.0171) (.0171) (.0171) (.0001) (.0001) (.0001)
0.8 7988 7990 7988 0598 0598 0508
(.0276) (.0276) (.0276) (.0001) (,0001) {.0001)
1.5 1.4906 1.4909 1.4906 0596 0585 0596
(.0375) (.0375) (.0275) (.0001) (.0001) (.0001)

These assertions are backed by the contents of Tables VII and VIII, where
the corresponding results for the GBM process are reported, as well as by
the results for the well known Ornstein-Uhlenbeck process which, in order to
save space, are not reported here.

Table VIL
Estimates of the GBM process. T = 100
& = 0.01 (standard errors of estimates in brackets)

k o
True ¥ DMLE-Quad DMLE-Ito DMLE-Euler DMLE-Quad DMLE-Tto DMLE-Euler
0.3 8420 3419 3419 0599 0599 .0599
(.0BET) (.0867) (.0867T) {.0004) (.0004) {.0004)
0.8 8289 8369 .8368 0598 .0598 0598
(.1116) {1277 (.1277) (.0004) (.0004) (.0004)
1.5 1.5273 1.5270 1.6269 0595 0595 0695
(.1704) (.1705) (.1704) (.0004) (.0004) {.0004)




Table VIIL
IEstimates of the GBM process. T = 2000
& = (.01 (standard errors of estimates in brackets)

k o
True ¥ DMLE-Quad DMLE-Tto DMLE-Euler DMLE-Quad DMLE-Ito DMLE-Euler
0.3 3016 016 .3018 05699 0599 0599
(.0173) (.0172) (.0172) {.0001) (.0001) (.0001)
0.8 7989 7989 7988 0598 0598 0598
(.0278) (0277 (-0275) (.0001) (.0001) (,0001)
1.5 1.4907 1.4907 1.4906 0596 0596 0596
(.0376) (.0375) (.0374) (.0001) (0001} (.0001)

In Tables VI and VIII, it is clear that as k mcreases, its estimate appears
to converge towards a value less than the corresponding true value, 1.e., an
asymptotic bias is becoming increasingly evident. Infact, in an ad hoc simu-
lation experiment conducted on the SR model where & = 1.5 and T = 20,000,
all three procedures lead to k& = 1.4880 with a standard error of 0.1204E-1.
Since the estimates of k are very sensitive to the mitial value of ¢, there are
two possible solutions to this problem: the first consists in substituting the
inconsistent quadratic variation estimate of ¢ with a consistent estimate if
it exists (see Cleur {1999)), and the second involves a reduction of the dis-
cretization step which might not always be possible in practice, but whose
positive effect; through a better initial value for o can be seen in Table IX
where a partial result for the SR model is reported.

Table IX.
Estimates of the Square Root process. T = 2000
6 = 0.001 {standard errors of estimates in brackets)

k o
Truek DMLE-Quad DMLE-Ito DMLE-Euler DMLE-Quad DMLE-Tto DMLE-Euler
15 1.5006 1.5001 1.5006 0600 0600 D600
(.0389) (.0374) (.0389) (.0000) (-0000) (.0000)
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3.2 Complete Model

Consider now the estimation of (1) when the variance elasticity parameter,

3, is unknown. Only the DMLE-Euler is applied.

Table X.
DMLE-Euler of dX; = k(¢ — X;)dt + o X{ dW;.
T =100, 6 = 0.01 (standard errors in brackets)

True § Truek k Y o 3
0.5 0.3 3425 (.0864)  .0999 (.0064) 0603 (.0043) 5012 {.0308)
0.8 8868 (.1276)  .1000 (.0024) .06G1 (.0067)  .4997 (.0483)
1.5 1.5267 (.1703) .1000 (.0G13) .0800 (.0091) 4982 (.0655)
1.0 0.3 3420 (.0878)  .1000 (.0020) .0616 (.0141)  1.0001 (.0991)
0.8 8369 (,1278)  .1000 (.0008) .0638 (.0220) 1.0013 (.1538)
1.5 1.5268 (.1704)  .1000 (.0004) 0663 (.0322) 0088 (.2049)
Table XI.

DMLE-Euler of dX; = k{8 — X;)dt + o X[ dW,.
T = 2000, 6§ = 0.01 (standard errors in brackets),

True 8 True k k U & g8
0.5 0.3 3020 (OL71)  .A00O (.0014) 0601 {.0009) 5004 {.0064)
0.8 8021 (.0277)  .1000 (.0005) 0601 (.0015) 5005 (.0105)
15 15018 (.0876) .1000 (.0003) .0601 {.0020} 5005 {.0143)
1.0 03 8016 (.0172)  .1000 (.0005)  .0600 (.0028)  .9998 (.0208)
0.8 7989 (.0278)  .1000 (.0002) .0596 (.0046) .9973 (.0333)
15 1.4606 (.0375) 1000 (.0001) .0501 (.0062) .9939 (.0456)

The estimates of k in the complete model are almost identical to those in
the reduced model, both in terms of bias as well as in terms of standard errors.
The estimates of o, however, undergo important changes when passing from
the reduced model to the complete model; briefly, for a small T (T = 100)
there is a notable increase in the standard errors which, when 8 = 1.0, is
also accompanied by the presense of a large positive bias. This bias reduces
considerably when T increases to 2000, but the standard error of ¢ continues
to be between ten to sixty times the corresponding values in the reduced
model.
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4 Computer time

The simulation experiments carried out in this paper indicate that the three
maximum likelihood estimators considered, which are asymptotically equiv-
alent, have a very similar behaviour even for processes observed over a rel-
atively short time interval. The above results also show that estimation of
stochastic differential models from discrete data is not difficult, but estima-
tion performance is a more important issue. Selection between the methods
considered must therefore be made in terms of computation time and math-
ematical convenience.

The DMLE-Tto in terms of computer time is the most efficient, but it is
mathematically the most demanding in that it is based on the derivation of
the explicit expressions which also involve stochastic integrals for the esti-
mates of the unknown parameter. The DMLE-Quad overcomes this difficuity,
but is much slower since it requires the maximization of a likelihood func-
tion. The DMLE-Fuler procedure which is also based on the maximization
of a likelihood function is the least efficient proceduze in terms of computer
time, since convergence is reached after a significantly greater number of
iterations, and therefore cannot be recommended for the estimation of the
reduced model.

Overall, the above results tend to suggest that the DMLE-Quad might be
a candidate for estimation in situations which are analytically difficult such
as a nonlinear drift function.
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