Report n.166

Estimating the Drift Parameter in Diffusion
Processes more Efficiently at Discrete Times:
A Role of Indirect Estimation

Eugene M. Cleur

Pisa, Marzo 2000



Estimating the Drift Parameter in Diffusion
Processes more Efficiently at Discrete Times:
A Role of Indirect Estimation

Eugene M. Cleur
Facoltd di Economia, Via Cosimo Ridolfi 10,
56124 Pisa, Italia.

email: cleur@ec.unipi.it

Abstract

The main aim of this paper is to illustrate how an indirect simu-
lation based procedure might be exploited to improve the properties
of a maximum liklihood estimate of the drift parameter in 2 class of
diffusion processes sampled at, discrete time. This is achieved through
a serics of Monte Carlo experiments conducted on the Square Root,
the Ornstein-Uhlenbeck and a Geometric Brownian Motion process
which are among the most widely used examples, especially in finan-
cial economics, of the class of processes considered.
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1 Introduction

Consider the following one-dimensional Stochastic Differential Equation (SDE)
model:

dX, = k(¥ — X,)dt + o X, dW; 1)

(1) implies a mean reversion towards the long-term mean, ¥, with speed of
adjustment given by k. ¢ is a scale parameter and 3 is the variance elasticity
parameter which measures the sensitivity of relative changes to the level of
the stochastic process X. k, ¥ and o are strictly positive and ¢ € [0, T]. The
parameter k also establishes the degree of convexity of the mean solution of
the process. W, is a scalar Wiener process.

The aim of this paper is to illustrate how simulation based indirect infer-
ence may be used along with a maximum likelihood estimator in an attempt
to estimate more efficiently the drift parameter, &, when discrete data ob-
served at equidistant time points tg , t1 = to+ A , tp +2A, ... , T are
available. To do this, a Monte Carlo experiment is conducted on the Square
Root (SR) process, for which 3 = 0.5, on a Geometric Brownian Motion
(GBM) process, for which 8 = 1.0, and on the Ornstein-Ulhenbeck (O-U)
process, for which 8 = 0, using the maximum likelihood estimator studied
in Cleur and Manfredi (1999) and the simulation-based indirect estimator
presented in Gourieroux et al. (1993). Various sample, or observation, steps
A are considered in order to evaluate their importance on estimation. Al-
though the three processes considered in this paper are extremely simple
versions of the general clags (1), the problems encountered when estimating
them and the results reported below are common to the whole class.

2 Generating data from SDE processes

This paper reports results from various experiments carried out on simulated
rather than real data. A word should be said on the generation of the re-
quired data. Suppose that data from the underlying continuous process are
required at an observation step A. If the SDE has a so-called “exact solu-
tion”, which coukl be in the form of either a conditional distribution function
or a dynamic time domain model, such data may be generated “exactly” for
any A. Unfortunately, very few SDE processes possess an exact solution.
Thus, a widely used practice (see for ex. Bianchi and Cleur (1996}, Ball and
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Torous (1996), Shoji and Ozaki (1997) and Calzolari et al (1998)) consists
in generating the process, using a low-order numerical scheme (see, for ex-
ample, Kloeden et al. (1992) and Prakasa Rac (1999)) on a very fine grid of
equi-distant time points tg , t; = tg+6 , to+26 , ... , T, where A > §, so as to
obtain a good approximation to the trajectory of the underlying continuous
process and then sample the generated values at the required sample step
size A. It is common to call § the generation step. Most often the Euler
scheme approximation has been used for such purposes, which for model (1}
is given by

Xo, = Xey_, + k(9 — Xy, )6+ 0o VEXE_ W, | (2)

Thus, for ex., in Ball and Torous (1996) daily interest rate data are generated
from the SR process by setting 6 to 1/360 which are then sampled every 30
observations in order to obtain so-called monthly data, i.e. data correspond-
ing to time points with a sample step A=1/12, and in Calzolari et al. (1998)
who consider the estimation of the SR. and the O-U processes, in order to
have data at time points t = 1, 2, ... , T, 1. e. with an observation step
A=1, the approximation is generated with § = 1/20 which is then sampled
every 20 observations. The correctness of such an approach is supported by
numerous empirical findings which suggest that when the generation step is
small (in Cleur and Manfredi (1999), but also from unpublished results of
the same authors, a value of 0.01 was found adequate although in Shoji and
Ozald (1997) a value of 0.005 is applied) the Fuler scheme provides a good
approximation to the underlying continuous process. If, on the other band,
the generation step is not sufficiently small, in Cleur and Manfredi {(1999) it
was shown that a higher order aprroximation such as the Taylor 1.5 strong
order scheme should be used. This approach of approximating (generating)
the process on a fine grid of time points and then resampling it is also ap-
plied in this paper although the SR and O-U processes have a so-called exact

solution.

3 Estimation Methods

The estimation, using maximum likelihood and indirect inference procedures,
of the drift parameter in the O-U and SR processes for known o and data
available on a fine grid of time points with § = A = 0.01 was considered in
Cleur and Manfredi (1999). In the present paper, o is taken as unknown and,
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hence, the problem of estimating it along with the remaining parameters of
the underlying process from data available at various time steps A > 6 must
be examined.

3.1 An Indirect Estimator

Roughly speaking, given an observed series from which a certain model has
to be estimated, the indirect estimator consists in simulating a series of data
from that model such that the difference between the real data and the
sinulated data is as small as possible according to some statistical criterion
{see, for example, Duffie and Singleton (1993), Gallant and Tauchen (1996),
Gouricroux et al. (1993)). The indirect estimator used in this paper was
presented in Gourieroux et al. (1993) and has been widely experimented (for
details, see also Bianchi and Cleur (1996), Broze et al. (1995), Calzolari et
al. (1998), Cleur and Manfredi (1999) and Pagan et al. (1997)).

3.2 A Discrete Maximum Likelihood Estimator

When the continuous process is observed at equidistant time points 4 , t;
=tg+ A, tg+ 24, .. , T, various approaches are available for obtaining
Discrete Maximmum Likelihood Estimators (DMLE henceforth) of k& and
for given values of o and 3. In Cleur (2000), it was shown that the maxi-
poum liklihood estimator used in Clenr and Manfredi (1999), the maximmmm
likelihood ratio estimator of Yoshida (1992) (see also Shoji (1997 and Shoji
and Ozaki (1997)) and the maximum likelihood estimator derived from the
Fuler scheme approximation produce very similar results even for processes
observed over relativly short time intervals although they are only asymp-
totically equivalent (see, for example Shoji (1997)). Thus, in this paper, the
first of the three methods mentioned was chosen for the computational illus-
trations for the simple fact that the explicit expressions for the estimates of
k were already available from Cleur and Manfredi (1999) thereby rendering
unneccesary the maximization of a likelihood.

Now, in the SR, the GBM and the O-U processes considered, 3 is fixed and
hence does not have to be estimated, but at least a preliminary estimate of
o must be available in order to compute the maximum likelihood estimate.
When the discretization step is sufficiently small, the following quadratic
variation estimate has often been proposed in the literature on SDEs (see,



for ex., Pedersen (1995), Polson and Roberts (1994), Prakasa Rao (1999),
Shoji and Ozaki (1996)) and will be used in this paper
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The behaviour of the maximum liklihood estimator of the drift parameter
is highly dependent on ¢ as underlined in Prakasa Rao (1999) (Chapter 3)
and it is this aspect of the estimation of a SDE process which is studied in
this paper.

4 Simulation Experiments

For the SR, the GBM and O-U processes, a Monte-Carlo experiment is car-
ried out by generating the data using the Taylor 1.5 strong order scheme
with the following parameter values: k¥ = 0.8, ¥ = 0.10, o = .06, and gen-
eration step § = 0.01. These data are subsequently sampled by taking every
fifth, tenth, twenyfifth, fifticth and hundreth generated value; in other words,
the effects of five different sample steps, 1.e. A = 0.05, 0.10, 0.25, 0.50 and
1.00, are evaluated. It was decided to apply a low-order numerical scheme
approximation for the generation of the data instead of the exact solutions
when these were available mainly for uniformity with other published works.
Processes of length T = 100 and T = 2000 are considered. Each combina-
tion of the above parameter values, series lengths and observation steps is
replicated 10,000 times.

The starting value for each replication, Xy, is always set to the long-term
mean of the process, i.e. Xp =9 = 0.1.

The parameters are estimated using the procedures outlined in the pre-
vious Section.

Since the behaviour of the maximum liklihood estimator of the drift pa-
rameter in the three processes considered was very similar, to save space only
the results for the SR. process are reported.

4.1 Estimation of the SR process with known o

In this Section, the importance of having a good preliminary estimate of
o in the DMLE is evidenced by first considering the performance of this



estimator in the special case when o is known. These results will then serve
as a benchmark for evaluating the effects of an estimate of 0.

The estimation of ¥ does not, pose any problems as seen from the published
literature (see, for example, Calzolari et al. (1998) and Cleur and Manfredi
(1999)) and will therefore not be the object of any further interest in this
paper.

Tables 1 and 2 summarize the results when the generated process is sam-
pled at regular intervals, and k is calculated from the expressions in Cleur
and Manfredi (1999). The standard errors reported in brackets refer to the
10,000 estimates, i.e. what is commonly known as the Monte Carlo standard
error, so that if confidence intervals are desired, these should be divided by

+/10000 = 100.

Table 1. DMLE of the SR process. T = 100
True Values: k = 0.8, 9 = 0.10. & = 0.06 taken as known,
6 = 0.01 (standard errors in brackets). 10,000 replications
A-onn A=o0s A=010 A=0x A=050 A=100
k 8403 8403 8407 8406 B414 8490
(1319) (1319) (-1339) (.1339) (1877) (.1521)

Table 2. DMLE of the SR process. T = 2000
True Valves: k = 0.8, § = 0.10. o = 0.06 taken as known,
§ = 0.01 (standard errors in brackets). 10,000 replications
A-omn A-ooss A-o010 A=oz A=os0 A=10
k 8018 8019 8019 8010 8019 8022
(2862E-1) (.2856E-1) (.2862E-1) (.2820F-1) (.2010E-1) (.3188E-1)

The differences in the estimates of k for varying sample steps, A, are
very limited thereby suggesting that, when o is known, it does not really
matter whether the process is observed on a fine or relatively large grid of
time points. This result has not been particularly evidenced in the existing
literature although it may be argued that ¢ is generally unknown.

Table 1 conveys the message that, even if ¢ were known, maximum like-
lihood methods will not be able to produce unbiased estimates of the drift
parameter for short series of data.



4.2 Estimation of the SR process with ¢ unknown
4.2.1 The Maximum Likelihood Estimate

As mentioned above, in the published literature the quadratic variation es-
timator of o (3) has often been suggested for obtaining maxinum kikelihood
estimates of the drift parameter in SDE processes. A simulation experiment,
based on 10,000 replications was carried out in order to evaluate the bahav-
iour of this estimator for data sampled at fixed time intervals. The results
for the SR process are reported in Table 3.

Table 3. Quadratic Variation Estimate of ¢ in the SR process
True values: k == 0.8, 9 =0.10, 0 = 0.06, 6 = 0.01
(standard errors in brackets). 10,000 replications
T A=001 A=005 A=010 A=025 A=050 A=1.00

100 5088F-1 5Q41E-1 BBSEE-L ETLOE-1 5A55E-1 A49948-1
(4230E-3)  (.9802E-3) (1351E-2)  (.2120F-2)  (.2860E-2)  (4017E-2)

2000  .5080F-1 BO43E-1 5886T-1 BT22E-1 B4BOE-1 5010F-1
(O451E-4)  (.2178E-3) (9451E-4)  (.4687E-3)  [6534E-3)  (.9149E-3)

The underestimation of the true value of o increases with the sample step,
but the bias does not appear to depend from the length, T, of the observed
process.

Tables 4 and 5 report the estimates of & calculated from the expres-
sions in Cleur and Manfredi (1999) with o substituted by the corresponding
quadratic variation estimate defined in (3) and reported in Table 3. As could
be anticipated, the substitution of a badly biased estimate of ¢ has notable
repercussions on the estimate of .

Table 4. DMLE of the SR process. T = 100
True Values: k = 0.8, % = 0.10, 0 = 0.06, é = 0.01
(standard errors in brackets). 10,000 replications
A=omn A=ocos A=ow0 A=025 A=050 A=100
k 71 8241 8080 7616 6934 5705
(1314) (-1293) (.1289) (.11909) (.1090)  (.9320E-1)




Table 5. DMLE of the SR process. T = 2000
True Values: k = 0.8, ¥ = 0.10, ¢ = 0.06, 6 = 0.01
(standard errors in brackets). 10,000 replications
A=oon A=005 A=010 A=02 A=050 A=10
k  .7ess /7868 7718 7297 6658 5588
(2844E-1) (.280TE-1) (.2719E-1) (.2570E-1) (.237T3E-1) (.2056B-1)

4.2.2 An Indirect Estimate

In recent years, indirect simulation-based estimation procedures have been
increasingly applied. Such procedures, based on repeated approximations
to the underlying model to be estimated, are computationally intensive, but
have provided very promising results in the estimation of SDE processes (see,
for example, Bianchi and Cleur {1996), Broze et al. (1995), Calzolari et al.
(1998), Cleur and Manfredi (1999) and Gourieroux et al (1993)). In this
Section, for completeness in the presentation, the capability of the indirect
estimation procedure defined in Gourieroux et al. (1993) in correcting for the
heavy bias due to the sampling of the underlying process is evidenced. Table
6 summarizes the results for the SR process when T=100; we can expect a
general improvement for larger T. Calibration, which is an integral part of
the procedure, was carried out on the DMLEs of k, ¥ and ¢ although we
report results only for k.

For details on the computational procedure followed, the reader may refer
to Bianchi and Cleur (1996) or Cleur and Manfredi (1999). Identical results
were obtained by calibrating the estimates of a “paive” model defined by
the Euler scheme approximation (see Bianchi and Cleur (1996), Calzolari
(1998)).

Table 6. Indirect Estimates of the SR, process. T = 100
True Values: k = 0.8, 9 = 0.10, ¢ = 0.06, § = 0.01.
(standard errors in brackets). 10,000 replications

A-oms A=010 A=02 A=050 A=10
k 208 8048 8062 8078 8072
(.1874) (.1938) (.2019) (.2224) (:2616)




The overall capability of the indirect estimate to correct for bias is clearly
evident in Table 6. It may be noted that, although the bias in k increases
by almost 50% when passing from A = 0.05 to A = 1.0, in absolute terms
it remains small and insignificant. This suggests that if we are prepared
to apply a simulation-based indirect estimation procedure, the continuous
diffusion process does not have to be observed on a fine grid of time points
which, from a practical point of view, is encouraging.

On the other hand, the standard errors in Table 6 are markedly high and
this is a defect inherent in any indirect estimation procedure; i.e., the indirect
estimator could be very inefficient.

5 Improving the DMLE

The above results indicate a badly biased maximum likelihood estimator
and a bias correcting, but ineflicient, simulation-based indirect estimator
when the sample, or observation, step is large. Clearly, a solution which
reduces, not only the bias, but keeps low the standard errors of the estimate
would be most welcome. Calzolari et al. (1998) use control variates in an
attempt to reduce this inefliciency in the indirect estimate. The solution
works reasonably well, but requires additional computations. An alternative
solution, if one is interested in estimating the drift parameter, is prompted
by the above results themselves. The DMLE of the drift coefficient, k, was
obtained conditional on a preliminary quadratic variation estimate of o. It
was noted that when the sample step is large, this preliminary estimate
was heavily biased and, as a result, so too was k. Hence, in practice, if the
real data are available at a large observation step they cannot be used to
obtain a good estimate of ¢ needed for estimating the drift parameter using
maximun likelihood techmiques. However, since the indirect estimates are
obtained from a series of simulated data which are initially generated on a
very fine grid of time points, with generation step J, before being sampled
at the same observation step as the original real data and before proceeding
to the calibration phase, suggests that the whole series of simulated values,
before sampling, might be used to obtain the required preliminary estimate
of 0. If such a procedure is followed, for a small T the resulting DMLE will,
in any case, be biased as is evident from Table 1, but for a large T there could
be very marked improvements in terms of bias over the DMLE reported in
Table 5 and in terms of efficiency in terms of the indirect estimator. We note



from Table 7 that the proposed procedure appears to provide some promising
results when the sampling step is not too large, say < (.5; the variance of
the DMLE with respect to the variance of the indirect estimate passes from

approximately 50% when A = 0.01, to approximately 67% when A = 0.5.
Overall, the resulis for the DMLE are very close to those of Table 2 where
the true value of & was used.

Table 7. DMLE® and Indirect Estimate of the SR
process. True values: k = 0.8, 9 =0.10, 0 = 0.06, 6 = 0.01
T = 2,000 (standard errors in brackets). 10,000 replications
Awoor A=00s A=010 A=o03s A=0s0 A =100

DMILE L8018 RO18 8019 8019 .8023 8037
(2867E-1)  (.2065E-1) (.3079E-1) (.B447E-1) (.4138E-1) (.5762E-1)
Indirect L8002 8008 8000 8002 8005 8018

(3986E-1)  (4060-1)  (A141E-1) (A4430E-1) (.5ODBE-1}  (.6374E-1)

(a) initial estimate of @ obtained from the simulated data used in the indirect procedure

A comparison of Tables b and 7 clearly illustrates the advantage in ap-
plying a combination of the indirect and maximum likelihood procedures in
estimating the drift parameter of the SDE models considered here.

Since the indirect estimation procedure used provides also an estimate
of o, one might be led into using this estimate in the same manner as the
quadratic variation estimate above, but the results obtained are slightly less
encouraging than those reported in Table 7 for the simple reason that the
indirect estimate of ¢ suffers from a relatively larger variance with respect
to the quadratic variation estimate.

6 Conclusions

In order to estimate the drift parameter of a SDE model from sampled
discrete data using standard maximum likelihood methods a preliminary
quadratic variation estimate of the diffusion coefficient, 7, is often used. This
preliminary estimate is heavily biased when the discrete data are observed
at large time intervals and, as a result, so too is the maximum likelihood
estimate of the drift parameter. Sirulation based methods like the one de-
fined in Gourieroux et al (1993) contemporaneously correct for the bias in
all the parameters of the SDE model as evidenced in various Monte Carlo
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studies among which Bianchi and Cleur (1996), Broze et al. (1995}, Calzolari
et al. (1998) and Cleur and Manfredi (1999). Indirect estimators, however,
suffer from relatively large sampling variations and hence the desire for more
efficient estimates remains. A possible solution, proposed in this paper and
which produces interesting results, could involve the use of an indirect esti-
mate of ¢ in calculating a maximum likelihood estimate of the drift. The
gain in terms of efficiency is comparable to that produced by the control
variate approach proposed in Calzolari et al (1998) and has the advantage of

being computationally less expensive.
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