Theorems of the Alternative by way of Separation Theorems

A. Marchi

Theorems of the Alternative by way of Separation Theorems

A. Marchi

Abstract

In this paper we deepen the study of the separation between a cone C and a linear subspace W, a study just outlined in a recent paper [2]. Our attention is concentrated on the inclusion of the face of the cone C, containing $W^o = W \cap Fr$ C, into separating hyperplanes in order to obtain a separation theorem between W and C and its geometric interpretation. Based on this theorem, we suggest a new approach to the proof of the alternative theorems; this approach allows us to prove the general theorem of the alternative, recently given in [1], for a wide class of linear systems.

1. Preliminary results

Consider a convex cone C in \Re^{m}_{+} such that $C \neq \{0\}$ satisfying:

$$(1.1.a)$$
 int $C \subseteq C \subset cl\ C = \mathfrak{R}^{m}_{+}$

$$(1.1.b)$$
 cl C + C = C

and a linear subspace W of the m-dimensional space \mathfrak{R}^m . Let $M = \{1,2,...,m\}$, $e^{(i)}$ $i \in M$ be the unitary vectors of \mathfrak{R}^m_+ , set $W^* = W$ - cl C the conic extension of W with respect to cone clC and denote by F the minimal face (with respect to the inclusion) of \mathfrak{R}^m_+ containing $W^o = W \cap clC$.

Set $I = \{i \mid e^{(i)} \in F\}$. It is easy to prove the following theorem which points out the role played by W* and F in the disjunction between W and C (the proof is given for sake of completeness):

Theorem 1.1: It results:

- i) $W \cap C = \emptyset$ if and only if $W^* \cap C = \emptyset$,
- ii) $W \cap \text{int } C = \emptyset$ if and only if $F = W^* \cap Fr C$.
- iii) $W \cap C = \emptyset$ if and only if $F \cap C = \emptyset$.

Proof: i) \Leftarrow Directly since $W \subset W^*$.

⇒ Suppose that W* \cap C ≠ \emptyset , then there exists a $x^o = x^r - h \in W^* \cap C$ such that $x^r \in W$ and $h \in C$ so that from conditions (1.1.a,b), $x^r = x^o + h \in W \cap C$ and this is absurd.

ii) \Rightarrow Since F is the minimal face containing W° there exists an element $x' \in W$ with $x' = \sum_{i \in I} \lambda_i e^{(i)}$, $\lambda_i > 0$, so that $e^{(k)} = x' - \sum_{i \in I, i \neq k} \lambda_i / \lambda_k$ $\lambda_i > 0$, for every $k \in I$ so $e^{(i)} \in W^*$. Since W* is a convex cone it follows $F \subseteq W^* \cap Fr$ C. Now we prove $F \supseteq W^* \cap Fr$ C. We suppose that there exists an $x^\circ \in W^* \cap Fr$ C such that $x^\circ \notin F$. Then $x^\circ = x' - h = \sum_{i \in M} \lambda_i e^{(i)}$, $\lambda_i \ge 0$ and $\lambda_k > 0$ k \neq I where $x' \in W$ and $h \in Cl$ C. As a consequence $x' = x^\circ + h + \sum_{i \in M} \lambda_i e^{(i)} \in Cl$ C\F, so that $x' \in W \cap Cl$ C and $x' \notin F$. This is absurd since $W^\circ \subseteq F$. \in Since $W^\circ \subseteq F \cap C$ the thesis holds.

iii) \Rightarrow From i) and ii) we have $F \cap C = (W^* \cap Fr C) \cap C = (W^* \cap C) \cap Fr C = \emptyset$. \Leftarrow Since $W^{\circ} \subseteq F$ then $W^{\circ} \cap C = \emptyset$, so that $(W \cap cl C) \cap C = W \cap C = \emptyset$.

The following example points out that condition (1.1.b) is necessary in order that i) in Theorem 1.1 holds.

Example 1.1: Let us consider $C = \inf \mathfrak{R}^m_+ \cup \{(z,0,0) : z > 0\}$ and $W = \{(1,1,0) : t \in \mathfrak{R}\}$. We have $W \cap C = \emptyset$, cl $C + C \neq C$, $W^* \cap C \neq \emptyset$.

It is well known that if $W \cap \text{int } C = \emptyset$ then there exists a hyperplane Γ which separates the linear subspace W and \mathfrak{R}^m_+ . More exactly:

(1.2)
$$\exists \alpha \geq [0]^1 : \langle \alpha \cdot \mathbf{w} \rangle = 0 \ \forall \mathbf{w} \in \mathbf{W}, \langle \alpha \cdot \mathbf{c} \rangle \geq 0, \ \forall \ \mathbf{c} \in \mathbf{C}.$$

In general, the hyperplane $\Gamma = \{u \mid \langle \alpha \cdot u \rangle = 0 \}$ is not unique, that is condition (1.2) can be verified for many $\alpha \geq [0]$. The problem to know when we can ensure the existence of $\alpha \geq [0]$ such that its i-th component is positive arises in important topics like, for example, in optimality conditions [see 2] or, as we will see in the following, in the alternative

 $^{^{1} \}text{ If } x \geq z \text{ then } x_{j} \geq z_{j} \ \forall j, \text{ if } x \geq z \text{ then } x_{j} \geq z_{j} \ \forall j, \text{ if } x \geq z \text{ then } x_{j} \geq z_{j} \ \forall j, \ x \neq z.$

theorems. The answer to this problem is given in the following theorem [see 2,3] which points out the role of the conic extension W* and F.

Theorem 1.2: Suppose W \cap int $C = \emptyset$. Then i) and ii) hold.

- i) For every $\alpha \ge [0]$ satisfying (1.2) it results $\alpha_i = 0 \ \forall i \in I$,
- ii) There exists $\alpha \ge [0]$ satisfying (1.2) such that $\alpha_i > 0 \ \forall i \ne I$.

Remark: Theorem 1.2 implies that

- 1. Every hyperplane Γ_k satisfying (1.2) contains F, so that $F = \bigcap_k (\Gamma_k \cap clC)$
- 2. There exists $\alpha \ge 0$ satisfying (1.2) with m | I | positive elements.

As a consequence of previous remark, since we don't know F a priori, we are interested in knowing the least upper bound of dim F; so that if dim $F \le m$ -k, then there exists $\alpha \ge 0$ with at least k positive elements satisfying (1.2). With this logic in mind, we are going to fix some results. Consider the finite dimensional spaces \Re^p_+ , \Re^s_+ , \Re^t_+ , \Re^t_+ , i=1,...h, with $m=p+s+\sum t_i$, i=1,...h, and denote with F_p , F_s and F_{ti} , i=1,...h, a face of \Re^p_+ , \Re^s_+ and \Re^t_+ i=1,...h, respectively, so that a face F of $\Re^m_+ = \Re^p_+ \times \Re^s_+ \times ... \times \Re^t_+$ is the Cartesian product $(F_p \times F_s \times ... \times F_{ti} \times ...)$. We will denote with $z=(z_p, z_s, z_1,...,z_h)$ an element of \Re^m_+ .

Let W be a linear subspace of the m-dimensional space \Re^m and consider a paretian subcone $C = (\Re^p_+ \times \inf \Re^s_+ \times \Re^t_+ \setminus \{0\} \times ... \times \Re^t_+ \setminus \{0\})$. Obviously, C verifies condition (1.1). The following theorem holds.

Theorem 1.3: W \cap C = \emptyset if and only if i) or ii) holds.

- i) $\dim F_s \leq s-1,$
- ii) dim $F_s = s$, dim $F_{ti} = 0$ for some $i \in \{1, 2, ..., h\}$.

Proof: Set $F = (F_p \times F_s \times \ldots \times F_{ti} \times \ldots) = W^* \cap clC$. If dim $F_s \le s-1$, the thesis follows. From iii) of Theorem 1.1 $W \cap C = \emptyset$ if and only if $W \cap F = \emptyset$. If dim $F_s = s$ for every hyperplane separating W and C, since F_s is a convex cone, there exists a $z \in F$ such that $z_s \in int \, \Re^s_+$. As a consequence $z \notin C$ that is $F \cap C = \emptyset$ if and only if $z_i = 0$ for some $i \in \{1, 2, ..., h\}$. The thesis follows.

2. Linear separation between W and C

Taking into account the previous results, we propose in this section a separation theorem which allows us to further specify the sign of the vector of the coefficients of a hyperplane separating a linear subspace and a cone.

Let W be a linear subspace of the m-dimensional space \mathfrak{R}^m and $C = (\mathfrak{R}^p_+ \times \operatorname{int} \mathfrak{R}^s_+ \times \mathfrak{R}^{t_1}_+ \setminus \{0\} \times \ldots \times \mathfrak{R}^{t_n}_+ \setminus \{0\})$

Theorem 2.1: W \cap C = \varnothing if and only if there exists a hyperplane $\Gamma = \{(u,v,w_1,...,w_h): \langle \alpha \cdot u \rangle + \langle \beta \cdot v \rangle + \langle \gamma_1 \cdot w_1 \rangle + ... + \langle \gamma_h \cdot w_h \rangle = 0\}$ separating W and C with $(\alpha,\beta,\gamma_1,...,\gamma_h) \geq [0]$

and at least one of the following relations holds:

- i) $\beta \geq [0]$ or
- ii) $\beta=[0]$ and a $\gamma_i>[0]$ for some $i \in \{1,2,...,h\}$.

Proof: Directly from Theorems 1.2 and 1.3.

With the aim to give a geometric interpretation of the previous results (Theorems 1.3 and 2.1) we consider some particular cases of C. For instance,

W \cap int $\mathfrak{R}^s_+ = \emptyset$ if and only F \cap int $\mathfrak{R}^s_+ = \emptyset$. This happens when F = F_s for every F_s such that dim F_s \leq s-1. This means that W may lean to a generic face of \mathfrak{R}^s_+ ; as a consequence of Theorem 2.1 there exists a hyperplane separating W and C with $\alpha \geq [0]$.

 $W \cap \mathfrak{R}^{t}_{+}\setminus\{0\} = \emptyset$ if and only $F \cap \mathfrak{R}^{t}_{+}\setminus\{0\} = \emptyset$. This happens when $F = \{0\}$, i.e. dim $F_{t} = 0$. This means that W may lean to no generic face of \mathfrak{R}^{t}_{+} as a consequence of Theorem 2.1 there exists a hyperplane separating W and C with $\alpha > [0]$.

 $W \cap (\mathfrak{R}^p_+ \times \mathfrak{R}^t_+ \setminus \{0\})$ if and only $F \cap (\mathfrak{R}^p_+ \times \mathfrak{R}^t_+ \setminus \{0\}) = \emptyset$. This happens when $F = (F_p \times \{0\})$ for every F_p , This means that W may lean to a generic face of \mathfrak{R}^p_+ but to no generic face of \mathfrak{R}^t_+ , in fact $(F_p \times \{0\}) \notin (\mathfrak{R}^p_+ \times \mathfrak{R}^t_+ \setminus \{0\})$ while $(\{0\} \times F_t) \in (\mathfrak{R}^p_+ \times \mathfrak{R}^t_+ \setminus \{0\})$ as a

consequence of Theorem 2.1 there exists a hyperplane separating W and C with $\alpha \ge [0]$ and $\beta > [0]$.

With similar arguments we can state the following particular cases:

$$\begin{split} W &\cap (\text{int } \mathfrak{R}^s_+ \times \mathfrak{R}^t_+ \backslash \{0\}) = \varnothing \iff F = (F_s \times F_t) \ \forall \ F_s, \ F_t \colon \text{dim } F_s \leq s\text{-1 or } F = (\mathfrak{R}^s_+ \times \{0\}), \\ W &\cap (\mathfrak{R}^p_+ \times \text{int } \mathfrak{R}^s_+ \times \mathfrak{R}^t_+ \backslash \{0\}) = \varnothing \iff F = (F_p \times F_s \times F_t) \ \forall \ F_p, F_s, F_t \colon \text{dim } F_s \leq s\text{-1 or } F = (F_p \times \mathfrak{R}^s_+ \times \{0\}). \end{split}$$

3. Alternative Theorems

By means of Separation Theorem 2.1, we are able to propose a new approach to the proof of the Alternative Theorems. First of all, we will use this approach for a generalization of Motzkin's Theorem of the Alternative.

Let A_i is a matrix of order $m_i \times n$, $i \in \{0,1,2,...,h+2\}$ and $x \in \Re^n$.

Theorem 3.1: The linear homogeneous system S:

$$\begin{cases} A_0 x = [0] \\ A_1 x \ge [0] \\ A_2 x \ge [0] \\ A_{j+2} x > [0] j \in \{1,...,h\} \end{cases}$$

has no solution if and only if system S':

$$\begin{cases} y^0 A_0 + y^1 A_1 + y^2 A_2 + \dots y^{j+2} A_{j+2} = [0] \\ y^0 \in \Re^{m_0}, y^1 \ge [0], y^2 \ge [0], y^{j+2} \ge [0], j \in \{1, \dots, h\} \end{cases}$$

and at least one of the following relations holds:

i)
$$y^2 \ge [0]$$
 or

ii)
$$y^2 = [0]$$
 and a $y^{j+2} > [0]$, for some $j \in \{1, 2, ..., h\}$

has solution.

Proof: Let us substitute $A_0 = [0]$ with $A_0 = [0]$ and $A_0 = [0]$ and set $W = \{[A_0] - A_0 = A_1 = A_1 = A_1 = A_2 = A_1 = A_2 = A_2 = A_1 = A_2 = A_2 = A_2 = A_1 = A_2 = A_2$

and C with $(\alpha, \beta, \gamma_1, ..., \gamma_h) \ge [0]$ and at least one of the following relations holds: i) $\beta \ge [0]$ or ii) $\beta = [0]$ and a $\gamma \ge [0]$, for some $j \in \{1, 2, ..., h\}$. Since $\mathbb{W} \subset \Gamma$ [1] for all $x \in \mathbb{R}^n$, set $u = [A_0: -A_0: A_1]^T x$, $v = A_2x$, $w_i = A_{i+2}x$, $j \in \{1, 2, ..., h\}$ we have: [$(\alpha^0 - \alpha^1) A_0 + \alpha^2 A_1 + \beta A_2 + ... + \gamma_j A_{j+2} + ...$] x = 0, so set $y^0 = (\alpha^0 - \alpha^1)$, $y^1 = \alpha^2$, $y^2 = (\alpha^0 - \alpha^1) A_0 + \alpha^2 A_1 + \beta A_2 + ... + \gamma_j A_{j+2} + ...$] β and $y^{j+2} = \gamma_j \ j \in \{1,2,\ldots,h\}$ we have a solution of system S' and viceversa.

Remark: It has to be underlined that the solution of the system S' becomes $y^1 = \alpha$, $y^2 = \beta$ and $y^{j+2} = \gamma_j$, $j \in \{1,..,h\}$ when system S does not contain equations of the type $A_0 x = 0$. From a geometrical point of view, as a consequence of this result we have that every vector $(\alpha, \beta, \gamma_1, ..., \gamma_h)$ of the coefficients of the hyperplanes separating W and C is a solution of system S' and viceversa.

Now we can use the proposed approach for proving the general Theorem of the alternative given in [1]. Let a real matrix A of order m \times n and a column-vectors $\mathbf{b} \in \mathbb{R}^m$ and $x \in \mathbb{R}^n$ be partitioned in the form:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \dots & \mathbf{A}_{1q} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \dots & \mathbf{A}_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}_{p1} & \mathbf{A}_{p2} & \dots & \mathbf{A}_{pq} \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_q \end{bmatrix} \mathbf{e} \ \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_p \end{bmatrix}$$

with A_{ij} of order $m_i \times n_j, \ b^i \in \Re^{mi}$ and $x_j \in \Re^{nj}$, i =1,2,..,p, j =1,2,..,q. We consider the standard form of a linear non homogeneous system S given in [3]:

$$\begin{cases} A_1 \ x = b^1 \\ A_2 \ x \le b^2 \\ A_3 \ x < b^3 \\ A_i \ x \le b^i \ i \in \{4,...,p\} \\ x^1 \in \Re^{n_1} \\ x^2 \ge [0] \\ x^3 > [0] \\ x^j \ge [0] \ j \in \{4,...,q\} \end{cases}$$
where $A_1 = [A_1, A_2, ..., A_n]$ where $A_n = [A_1, A_2, ..., A_n]$ is a forth-

where $A_i = [A_{i1} \ A_{i2} \ \ A_{iq}]$ is of order $m_i \times n$, i =1,2,..,p. -6 -

We will prove that the linear system in alternative is the following one:

System S'
$$\begin{cases} y^T A^1 = [0], \ y^T A^j \ge [0] \ j \in \{2,...,q\}, \ -y^T b \ge 0 \\ y^1 \in \Re^{m_I}, \ y^i \ge [0] \ i \in \{2,...,p\} \end{cases}$$

and at least one of the following relations holds:

i)
$$y^T A^3 \ge [0]$$
 or

ii)
$$y^3 \ge [0]$$
 or

iii)
$$y^Tb \le 0$$
 or

iv)
$$y^T A^3 = [0], y^3 = [0], y^T b = 0 \text{ and } y^T A^j > [0] \text{ for some } j \in \{4, 5, ..., q\} \text{ or } y^i > [0] \text{ for some } i \in \{4, 5, ..., p\}$$

where
$$y^T = [~y^1~y^2~\dots~y^p] \in \mathfrak{R}^m$$
 and $A^i = [~A_{1i}~A_{2i}~\dots~A_{pi}~]^T$, $i=1,2,\dots,q$

This result is established in [1], by adopting in a suitable way the Motzkin's theorem of the alternative. In this section, we point out that this result follows directly

from Theorem 2.1. With this aim we set
$$R = \begin{bmatrix} A_1 & -b_1 \\ -A_1 & b_1 \\ -A_2 & b_2 \\ I_2 & 0 \end{bmatrix}$$
, $S = \begin{bmatrix} -A_3 & b_3 \\ I_3 & 0 \\ 0 & 1 \end{bmatrix}$,

$$T_{k} = [-A_{k} \ b^{k}]^{T}, k = i-3, \text{ with } i \in \{4,5...,p\}, V_{k} = [I_{k} \ 0]^{T}, k = p+j-6, j \in \{4,5...,q\} \text{ and}$$

$$z = \begin{bmatrix} x \\ t \end{bmatrix} \text{ where } I_{2} = [0 \ I_{n2} \ 0 \ .. \ 0]^{T}, I_{3} = [0 \ 0 \ I_{n3} \ ... \ 0]^{T} \text{ and } I_{j} = [0 \ 0 \ 0...I_{nj}..]^{T}, j \in \{4,5...,q\},$$

where I_{nj} is the identity matrix of order n_i . We may rewrite the linear system S in this way:

$$\begin{cases} R \ z \ge [0] \\ S \ z > [0] \\ T_k \ge [0] \ k \in \{1, \dots, p+q-6\} \end{cases}$$

Consider the linear subspace $W = \{ [R:S:T_k]^T \ z \ | \ z \in \mathfrak{R}^{n+1} \} \text{ and } C = \mathfrak{R}_+^T \times \text{int } \mathfrak{R}_+^s \times ... \times \mathfrak{R}_+^{mi} \setminus \{0\} \dots \times \mathfrak{R}_+^{nj} \setminus \{0\} \times ..., \quad i \in \{4,5...,p\}, \quad j \in \{4,5...,q\}, \quad \text{where} \quad r = 2m_1 + m_2 + n_2, \quad s = m_3 + n_3 + 1.$

Theorem 2.1: System S is impossible if and only if System S' has solution.

Proof: S is impossible if and only if $C \cap W = \emptyset$. For Theorem 2.1 there exists a $\Gamma = \{(u,v,w_1,...,w_h): \langle \alpha\cdot u \rangle + \langle \beta\cdot v \rangle + \langle \gamma_1\cdot w_1 \rangle + + \langle \gamma_{p+q-6}\cdot w_{p+q-6} \rangle = 0\}$ separating W and C with $(\alpha,\beta,\gamma_1,...,\gamma_{p+q-6}) \geq [0]$ and at least one of the following relations holds: i) $\beta \geq [0]$ or ii) $\beta = [0]$ and $\gamma_i \geq [0]$ for some $i \in \{1,2,...,p+q-6\}$. This hyperplane is such that $[\langle \alpha\cdot R \rangle + \langle \beta\cdot S \rangle + + \langle \gamma_k\cdot T_k \rangle +]_z = 0$, k=1,...,p+q-6. From the definition of the matrices P, S and T_i we have the following system:

with $(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\beta_1,\beta_2,\beta_3,\gamma_1,...,\gamma_{p+q-6}) \ge [0]$ and at least one of the following relations holds: I) $\beta \ge [0]$ or ii) $\beta = [0]$ and $\gamma_i > [0]$ for some $i \in \{1,2,...,p+q-6\}$. Set $y_1 = \alpha_2 - \alpha_1$ (y_1 is sign unrestricted), $y_2 = \alpha_3$, $y_3 = \beta_1$, $y_i = \gamma_{i-3}$, i=4,...p, we obtain a solution of problem S' and viceversa.

References

- [1] M.E.De Giuli, G.Giorgi, U.Magnani, "A General Linear Theorem of the Alternative: how to get its special cases quickly", P.U.M.A. vol. 8 (1997) n° 2,3,4, 215-232;
- [2] A.Marchi, "A Separation Theorem in Alternative Theorems and Vector Optimization", Dept. of Statistics and Applied Mathematics, Univ. of Pisa, report n.160, 1999;
- [3] L.Martein, "Some Results on the Regularity in Vector Optimization", Optimization 20, 787-798, 1989;
- [4] M.J.Panik, "Fundamental of Convex Analysis", Kluwer Acad. pub, Dordrecht, 1993;
- [5] R.T.Rockafellar, "Convex Analysis", Princeton Univ. Press, New Jersey, 1970.