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Abstract

In this paper we deepen the study of the separation between a cone C and a linear
subspace W, a study just outlined in a recent paper [2]. Our attention is concentrated on
the inclusion of the face of the cone C, containing W® = W ~ Fr C, into separating
hyperplanes in order to obtain a separation theorem between W and C and its geometric
interpretation. Based on this theorem, we suggest a new approach to the proof of the
alternative theorems; this approach allows us to prove the general theorem of the

alternative, recently given in [1], for a wide class of linear systems.

1. Preliminary results

Consider a convex cone C in R™. such that C #{0} satisfying:

(1.1.8)int Cc Cccdd C=R",

(1.1b)clC+C=C
and a linear subspace W of the m-dimensional space ™. Let M = {1,2,..m}, ¥ ieM be
the unitary vectors of ™., set W* = W- ¢l C the conic extension of W with respect to
cone clC and denote by F the minimal face (with respect to the inclusion) of R™.
containing W° = WnelC.

Set I = §i | e”<F}. Tt is easy to prove the following theorem which points out the
role played by W* and F in the disjunction between W and C (the proof is given for sake
of completeness):

Theorem 1.1: It results;

i) WnC=& ifandonlyif W* nC=(,
i) Wrint C=O if and only if F=W¥~ Fr C,
iii) WnC=C ifandonlyif F~C={.

Proof: i) <Directly since W W*.



= Suppose that W* ~ C # &, then there exists a x°= x’- h € W*~ C such that
x’=W and heel C so that from conditions (1.1.a,b), X’ =x°+h € W n C and this is
absurd.
i) = Since F is the minimal face containing W° there exists an element x’ €W with
x°= Y i €, 10, s0 that €® = x’- T ir i Mk & >0, for every kel so ePeW*.
Since W* is a convex cone it follows FCW*~Fr C. Now we prove F oW*n Fr C.
We suppose that there exists an x° eW#* ~ Fr C such that x°¢ F. Thenx®*=x"-h=
=¥ iem A€ 220 and M>0 kel where x’ €W and hecl C. As a consequence X" =x°+
h+ Xiem A€ ecl CVF, so0 that X’ W ~ ¢l Cand x’¢F. This is absurd since W°cF.
< Since W° — F — Fr C the thesis holds.
iiij) = Fromi) and i) we have FN C=(W*n FrCO)n C=W*nC)nFrC= 4.
< Since W° ¢ F then W° n C=, so that ( W clC) mnC=W N C=&.

The following example points cut that condition (1.1.b) is necessary in order that i)
in Theorem 1.1 holds.
Example 1.1: Let us consider C =int R™. U {(2,0,0) : 220} and W = {(1,1,0) t : teR}.
Wehave W C=, ¢l C+C = C, W~ C= .

It 1s well known that if W m int C = (J then there exists a hyperplane I' which
separates the linear subspace W and R™,. More exactly:

(1.2) 3 o2[0]": <o-w>=0 VYweW, <a-¢>>0,V ceC.

In general, the hyperplane I'={u | <c-u> = 0 } is not unique, that is condition (1.2)
can be verified for many o=[0]. The problem to know when we can ensure the existence of
cz[0] such that its i-th component is positive arises in important topics like, for example,

in optimality conditions [see 2] or, as we will see in the following, in the alternative

"Hx 2 zthenx; 2 z Yy, ifx>zthenx; >z Vj,ifxzz thenx; = z Vj, x 2
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theorems. The answer to this problem is given in the following theorem [see 2,3] which
points out the role of the conic extension W* and F.

Theorem 1.2: Suppose W int C= ¢ . Then i) and ii) hold.

i) For every a > [C] satisfying (1.2) it results o=0 Viel,

it) There exists o > [0] satisfying (1.2) such that o;>0 Vigl

Remark: Theorem 1.2 implies that
1. Every hyperplane Iy satisfying (1.2) contains F, so that F =~y (I'v ¢lC)

2. There exists o=0 satisfying (1.2) withm - | 1| positive elements.

As a consequence of previous remark, since we don’t know F a priori, we are
interested in knowing the least upper bound of dim F; so that if dim F < m-k, then there
exists 020 with at least k positive elements satisfying (1.2). With this logic in mind, we are
going to fix some results. Consider the finite dimensional spaces ®®. , R°,, R.", i=1,...h,
with m = p+s+3 t;, =1,..h, and denote with F,, F; and Fy, i=1,._h, a face of R”,, ®°, and
R." i=1,.h, respectively, so that a face F of ®™ = R*, x K% x ..x R x... is the
Cartesian product (FpxFo<. .. xFux...). We will denote with z= (z,, z,, 21,....,7) an element
of R™..

Let W be a linear subspace of the m-dimensional space ‘R™ and consider a paretian
subcone C = (R?, x imtR*x RAfO}x...x R.M{0}). Obviously, C verifies condition
(1.1). The following theorem holds.

Theorem 1.3: W C= 3 if and only if i) or ii) holds.
i) dim F; < s-1,
it) dim F; = s, dim F; = O for some i {1,2,.._ h}.
Proof: Set F = (FyxFex....xFyx...) = W¥ ¢lC . If dim F, < s-1, the thesis follows.
From iii) of Theorem 1.1 W n C=(J if and only if W ~ F=@. If dim F, = s for
every hyperplane separating W and C, since F, is a convex cone, there exists a z <F
such that z. int R°.. As a consequence z ¢C thatisF " C=(J ifand onlyifz =0

for some i {1,2,... ,h}.The thesis follows.
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2. Linear separation between W and C
Taking into account the previous results, we propose in this section a separation
theorem which allows us to further specify the sign of the vector of the coefficients of a
hyperplane separating a linear subspace and a cone.
Let W be a linear subspace of the m-dimensional space R™ and C = (R, x intR".x
RO %, x RM{0})
Theorem 2.1: W ~ C = & if and only if there exists a hyperplane I'= {(u,v,wy,...,wn):
<ou> + <Bv> + <ypwrp> b+ < ypw, > = 0} separating W and C with
(B y,-vm) 2[0]
and at least one of the following relations holds:
i) B=[0] or
ii) B=[0] and a v>[0] for someic{l,2,.. h}.

Proof: Directly from Theorems 1.2 and 1.3.

With the aim to give a geometric interpretation of the previous results (Theorems
1.3 and 2.1) we consider some particular cases of C. For instance,
W nint R, =@ if and only F m int R, = &, This happens when F = F; for every F,
such that dim F, < s-1. This means that W may lean to a generic face of R, as a

consequence of Theorem 2.1 there exisis a hyperplane separating W and C with >[0].

W R\0}= @ ifand only F ~ R'\[0}= @. This happens when F = {0}, i.e. dim F,=
0. This means that W may lean to no generic face of R'. as a consequence of Theorem 2.1

there exists a hyperplane separating W and C with o>[0].

W (3 x R'A{0}) ifand only F ~ (9P x R'.\{0}) =&. This happens when F = (Fpx
{0}) for every F,, This means that W may lean to a generic face of RP. but to no generic

face of R, in fact (Fy x {0}) & (RP. x WA{0}) while ({0}x F,) € (K", x R\{0}) asa
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consequence of Theorem 2.1 there exisis a hyperplane separating W and C with .= [0]
and B>[0].

With similar arguments we can state the following particular cases:

W (int R x RA{ON~T < F=F,xF) VF,, F: dimF,<s-1 or F= (R, x {0}),
W A (9P, x int R x RNON=D < F=(Fx F, x F) V F,F,F,: dimFs<s-l1or F=
(Fp x3°, x{0}).

3. Alternative Theorems
By means of Separation Theorem 2.1, we are able to propose a new approach to
the proof of the Alternative Theorems. First of all, we will use this approach for a
generalization of Motzkin’s Theorem of the Alternative.
Let A; is a matrix of order m; x n, i€{0,1,2,...,h+2} and xeN".
Theorem 3.1: The linear homogeneous system S:
A, x=[0]
A xz[0]
A, x>[0]
A2 x>[0] je{l,. . h}

has no solution if and only if system §’:
{ VA, +¥'A, +y A, +. A, = [0]
y’ e®™,y'2ly?2[o] y*?2[0] je {1, b}
and at least one of the following relations holds:
i) y'=[0] or
ii) v’ = [0] and a y***> [0], for some je{1,2,...,h}
has solution.

Proof: Let us substitute Ao x = [0] with Ay x 2 [0] and - Ag x > [0] and set W = { [Ay: -

xR ™{0}x..., ie{3, ,h+2}. System S is impossible if and only if W ~ C = @,
From Theorem 2.1 WnC=Q if and only if there exists an hyperplane T=

{(u,v,wy,..,wn) © <otu > + < Bov >+ <ypwy >4+ < yewy, > = 0} separating W
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and C with (o,B,y1,-., ¥»)=[0] and at least one of the following relations holds: i)
B=[0] or i) B=[0] and a y> [0], for some je{1.2,...,h}. Since WcI [1] for ali
xeM", set u = [Ao: - Ao Ai]l' X, v=Asx, w;=Ainn %, je{1,2,...,h} we have:

[(@”-a') Ag+ o’ Ayt B A+, Y Aja+... 1x=0, sosety' = (&’-a'), y' = o, ¥ =

and y'2 =y je{1,2, ..,h} we have a solution of system S' and viceversa.
1

Remark: It has to be underlined that the solution of the system S’ becomes y'=o, v"=B
and y*2 = i j€{1,..,h} when system S does not contain equations of the type Ay x = 0.
From a geometrical point of view, as a consequence of this result we have that every
vector (o, B,y1,..., ,y») of the coefficients of the hyperplanes separating W and C is a

solution of system S and viceversa.

Now we can use the proposed approach for proving the general Theorem of the
alternative given in [1]. Let a real matrix A of order m x n and a column-vectors b &R"™

and xeR" be partitioned in the form:

Ay A L Ay Xy b,

A, An L A X b
A= :21 :22 . 2q x= 2| o p= :2
A Ay e Ay Xq b,

with Ay of order m; x nj, bt eR™ and x eRM  i=12_.p,j=12,.q. We consider the
standard form of a linear non homogeneous system S given in [3]:
(Ai x=b!
A, x<b?
A, x<p’
Ax< blie {4,...,p}
x! e |™
x* 2[0]
x* > [0]

| xI>[0]jef4,. .q}

where A; = [Ai Az ... Ayl isof order m; x n,i=1.2, p.
-6 -
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We will prove that the linear system in alternative is the following one:
y'A'=[0], y'A 2[0] je {2....q}, -y D20

y' e®™, y'2[0]ie{2,.p}
and at least one of the following relations holds:

i) y'A*=[0] or
ii) y* =[O} or

System S’ {

iii) y'b<0or
iv) y' A’=[0], y’=[0}, y'b=0and y" A’> [0} for some je{4,5...,q} or
y' > [0] for some i {4,5....p}
wherey =[y'y . yleRmand A=[A; Ay ... A ', i=1.2,....q.

This result is established in [1], by adopting in a suitable way the Motzkin's

theorem of the alternative. In this section, we point out that this result follows directly

Ay -
A b A; by
from Theorem 2.1. With this aim we set R = L L', 8= I, o1,
0 1
I, 0

Tie=[ -Ax b*1%, k=i-3, withic{4,5..,p},Vi =[ &k 01", k= p+j-6, je{4,5...,q} and
_|X T T T .
z= L} where I=[0 L; 0 .. O], 1;=[0 0 L ... 0]" and T;=[0 0 0..1;..1", je{4,5.. .q},

where 1; is the identity matrix of order n;. We may rewrite the linear system § in this way:
Rzz[0]
Sz>{0]
Ty 2[0jke{l,...,p+q-6}
Consider the linear subspace W= { [R: S : T\]" 2] 2eR™! } and C = R.” x int R3x...
X 9%+"'i\{0} xRN0, ie{4.5.. p}, j€f4,5...,q}, where r=2mytmytn, s=

m3+n3+1.

Theorem 2.1: System S is impossible if and only if System S’ has solution.



Proof: S is impossible if and only if C » W = . For Theorem 2.1 there exists a I'=

(1]

[2]

{(v,wi,..,Wp): <ou >+ <Bv>t<yy owy > < Vg6 Wprgs = = 0} Separating
W and C with (o,8,71,.., Ypie6)> [0] and at least one of the following relations holds:
i) = [0] or 1) P=[0] and v;>[0] for some ie{1,2,...,p+q-6}. This hyperplane is
such that [<ot - R>+ < B - 8>+ +<y - Te >+...]z = 0, k=1,..,p+q-6. From the

definition of the matrices P, S and T; we have the following system :

(0t =02) Any = o3 Ay - B1 Ay ~YiAg .- Vo3 Ap =[0]
(@02 ) Az -~ a3 Ax + oy - B Asp -NAn..... - Yp3Ap = [0]
(o1 -0z) Ags- o3 A ~B1Ass + B2 -viAs . -YeaAp = [0]
(o -02) Ara- 03 Ana - B1 Az ViAo~ Ypa A Yoo = [0]
(ot -0tz ) Agg- o3 Agg - B1 Asg “V1Aaq ...~ V3 Ay Hprgs= [0]
—((11-U.2)b1 + 3 by +B1b3 +B3 *i“'ylb‘; .....+’Yp.3bq ={,

with  (001,00,003,00,B1,B2,B3,71,- . Ypres )= [0] and at least one of the following
relations holds: T) f= [0] or ii) B=[0] and y; > [0] for some ic{1,2,...,p+q-6}. Set
y1= Oz -0 (y11s sign unrestricted), y» = o, y3 = B1, vi = Vi3, i=4,..p, we obtain a

solution of problem S’ and viceversa.
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