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Abstract. Social heterogeneity is embedded within the deterministic models for new product
diffusion. In particular a detailed analysis of the effects of heterogeneity on the " classical” models for
external and internal diffusion is provided. Measures of the aggregation biases which appear when
an heterogeneous situation is wrongly treated as homogeneous are given. Results from the recent
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which may result of critical interest for marketing science.
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1. Introduction'. This paper aims to start a systematic discussion of the role of
social heterogeneities within the classical deterministic mathematical models describing
new products and/or information diffusion. As it is well known, the backbone of the
deterministic theory of marketing of new products, the Bass model (Bass, 1969), super-
imposes the effects of two classical” forces operating during the adoption process: those
due to "innovation” and those due to imitative behaviours, well described since longtime
ago in the classical papers by Fourt and Woodlock (1960) and Mansfield (1961). These
two forces describe the action of the two basic communication mechanisms operating
during the adoption process: the mass-media and word-of mouth, sometimes referred
as the "external” and ”internal” diffusion mechanisms (Mahajan et al. (1990,1993)).2
Well recognised merits of these ”classical” maodels for new product diffusion are, first,
that of providing simple empirically testable predictions, and second, that of introduc-
ing parameters which give invaluable insight on the nature of the diffusion process itself:
the intensity of diffusion by the external source and the imitation coefficient (denoted
respectively as o and ¢ in the sequel). '

All the previously mentioned models postulate homogeneous situations: the social
environment (i.e.: the population) in which the information spreads is homogeneous
in that i)all the individuals are assumed to be homogenequsly exposed to the action

! Even if this paper is the outcome of the joint discusgsion of the three authors, P. Manfredi is respon-
sible for sections 3,4; A. Bonaccorsi is responsible for section two, and A. Secchi for the applications
presented.

2 Throughout the paper, following Mahajan et al. {1990}, we talk about "external” and”internal®
models.



of the public sources of information, ii)all the individuals mix homogeneously, i.e. are
homogeneously exposed to internal communications.

This paper investigates what’s happen when social heterogeneity exist in the popu-
lation, i.e. when, on the contrary, individuals are exposed in an inhomogeneous manner
to the action of the media and/or individuals do not mix homogeneously. Typical ques-
tions we pose are: are the individuals in the population exposed in the same way to the
information source? Do these individuals share identical imitation patterns? Which are
the actual patterns of interaction among and their relation with the social process of
imitation? And, finally, which consequences arise when we wrongly treat as homoge-
neous an underlying heterogeneous situation? Classical new product diffusion models,
being homogeneous, do not have answers to such questions, the relevance of which is
indisputable. This may be realised from some lixuit case, such as the case of”isolated”
groups, i.e. groups excluded from information in pure external diffusion world, or not
mixing with the rest of the population in an internal diffusion world. In both cases these
isolated individnals would not adopt the product, but a statistical apparatus of market,
surveys based on a wrong homogenecus model would hardly discover the problem in
real time.

To our knowledge, up to the eighties the only serious tentative to embed social
heterogeneities within the classical models for new product diffusion and/or models for
the diffusion of news is the classical Bartholomew (1967} (see also Dimitri (1987)). Both
these contributions, largely based on the epidemiological paper by Rushton and Mautner
(1955), took place before the ”heterogeneity revolution” in theoretical epidemiology.
The heterogeneity revolution has started at the beginning of the eightiees, more or less
closely tied to the need to understand the peculiar features of the spread of AIDS, and
is still very active. Several results produced during this intensive debate, such as the
development of a social mixing theory, proved to be of extreme fecundity in theoretical
and applied epidemiology and constitute nowadays cornerstone results of social sciences.

Nonetheless the spread toward allied fields, such as that of the marketing of new
products has been, quite limited, compared to the development of the concept of het-
erogeneity in other fields.

The main goal of this paper is that of investigating the effects of social hetero-
geneities on the two basic models for new product diffusion, i.e. the model for external
diffusion and the model for internal diffusion, which are the constitutive ingredients of
the Bass model (the effects of heterogeneities within the Bass model will be the object
of a separated paper). Our basic assumption is that the "population” within which
the diffusion occurs, is stratified in subgroups, which differ in the magnitudes of their
« (in the external case) or ¢ (the internal case) coefficients following some prescribed
distribution of behaviour.

To this end the paper is subdivided in three parts. In the first we review the existing
literature on heterogeneity within new product diffusion models. In the second the im-
pact of heterogeneity within the model for external diffusion is considered: individuals
are assumed to acquire the informations from the external source at different speeds.
Both discrete and continnous heterogeneities are considered. The treatment is rather
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complete, and the results are, to our knowledge, new in marketing research. Finally, in
the third part, we consider the role of heterogeneities within the epidemiological model
which describes "pure imitation” processes. This part is quite articulated. First we
consider the effects of heterogeneities in the speed at which individuals acquire internal
information and some new results are given. Then we introduce to the main topic of
the work, i.e. heterogeneity in the social interaction process (the "mixing problem”).
This topic has represented a priority in the recent epidemiological research and has pro-
duced important theoretical results (most of which related to the dynamics of sexually
transmitted diseases, especially HIV). As a first step we introduce those notions from
mathematical epidemiology, i.e. the "heterogeneity and mixing toolbox”, which are of
first concern for marketing research. Then we show how the classical internal model for
new product diffusion would be modifed taking into consideration heterogeneity and
mixing. Some results are provided for some special mixing assumption. These results
are obtained in a simple manner as they constitute special cases of more general result
of mathematical epidemiology. For this reason we conclude the work by reviewing some
more advanced epiderniological result concerning a more general model for new product
diffusion, i.e. the internal model with removal. This seemed to us a good occasion to
rediscover to marketing science the model with removal which despite its conceptual
relevance never played a substantial role in marketing science. The conclusions stress
the need for opening a serious field work on the problem.

2. Heterogeneities in models of innovation diffusion: a review. Since the
notion of heterogeneity in diffusion models is not simple, it requires a careful review.
The starting point is the absence of heterogeneity in the three classical models of Fourt
and Woodlock (1960), Mansfield (1961), and Bass (1969). Our discussion starts with
the later, more comprehensive model.

The Bass model assumes homogeneity in at least two different respects: with respect
to characteristics of members of the population and with respect to the information
diffusion mechanism. In the former sense, all members have the same probability to
adopt the new product at the time defined by a stochastic allocation to various timing
classes; in the latter sense all members are exposed homogencously to external influence
(advertising) and to internal influence (word-of-mouth of previous adopters). Let us call
behavioral homogeneity the former, social homogeneity the latter. In both cases there
have been attempts to incorporate heterogeneity in the basic model, but, as we shall
see, in an unsatisfactory way.

In the former sense it has been correctly noted that the mathematical formulation
of the Bass model requires the population to be homogeneous, in the sense that the
distribution of adopting time is merely an aggregate property, while individuals are
behaviorally homogeneous at the microlevel. The distribution of individuals across
timing of adoption proposed in the early work of Rogers (1962) may for example be
easily obtained from a Bass diffusion model (Mahajan, Muller and Srivastava, 1990)
without any specification about intrinsic differences among members of the population.

The most challenging efforts to introduce heterogeneity have been developed in
response to a related criticism to the epidemic models, namely the indeterminacy of
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its behavioral foundations. Why are some people more inclined to innovate than oth-
ers? Which is the microfoundation of their adoption behavior? As it has been noted
(Gatignon and Robertson, 1986; Griibler, 1992) epidemic models are empty of substan-
tive theory regarding the adoption process of individuals. In response to this weakness
of the basic model, there have been several attempts to develop microfounded models;
it is in this context that heterogeneity is included into the basic framework. It is impor-
tant to underline this point: heterogeneity is a major concern of the new generations of
diffusion model builders, but only inasmuch as it is defined as behavioral heterogene-
ity, or heterogeneity of parameters that enter into the adoption decision process. In
some sense, therefore, heterogeneity arises as an internal theoretical problem within an
intrinsically epidemic approach. It is also considered one of the frontiers of research.
Let us give a brief review of these developments, following the reviews of Sultan, Farley
and Lehmann (1990), Mahajan, Muller and Bass (1990; 1995), Bass, Krishnan and Jain
(1994) and Cestre (1996).

In general, heterogeneity is allowed in the population with regards to tastes and
income, the initial perception of the quality of the new product or the expected benefit
from the use, the price-performance trade-off, the perceived risk and risk propensity
(Cestre, 1996; Le Louarn, 1997).

Kalish. (1985) develops the idea that potential adopters differ with respect to tastes
and income. Each consumer has his own valuation of the intrinsic value of the new
product, which is expressed in monetary terms, and is willing to adopt it only if this
value is larger then actual market price. Given some uncertainty regarding the true
quality of the new product, the reservation price can he considered as a function of the
expected value of a distribution of quality outcomes. Therefore only those consumers
whose risk-adjusted valuation exceeds the product’s price will be potential buyers.

A model which tries to develop formally the idea of heterogeneity has been proposed
by Chatterjee and Eliashberg (1985). Consumers are allowed to be heterogeneous with
respect to a large number of parameters: risk aversion, initial perception of product
quality, relative weight of price and quality in the evaluation of product, information
sensitivity.

Heterogeneity is also used to cope with another major shortcomings of the original
model. Deterministic diffusion models require the size of the market, or number of
potential adopters, to be fixed during all the diffusion process. This means that the
market potential is fixed at the initial time and remains at that level during the entire
process. This assumption has been relaxed in several dynamic diffusion model (e.g.
Mahajan and Peterson (1978)), in which the size of the market grows over time. A
related avenue is to make the size of the market dependent on price. This is an im-
portant strategy for incorporating heterogeneity in a parsimonious way. It is assured
that individuals have a distribution of reservation prices. The reservation price is the
maximum price an individual is willing to pay for a product, given his budget constraint
and prefererices for other products. A natural way to obtain a dynamic demand model
is to assume that price is decreasing over time (for example due to experience curves),
so that an increasing number of individuals find the market price becomes smaller than
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the reservation price. The parameters of the distribution determines the rate of growth
of the potential market (Dolan and Jeuland, 1981; Feichtinger, 1982; Kalish, 1985).

Heterogeneity is also accounted for in models of diffusion that explicitly incorporate
stochastic elements. As an example, agents may be associated to different probabilities
to be exposed to advertising, to be influenced by advertising and word-of-mouth, to
purchase or to repeat the purchase (Tapiero, 1983; Boker, 1987, Wheat and Morrison,
1990; Mahajan and Peterson, 1978). In all these cases, heterogeneity is again obtained
by representing agents as drawn from an appropriate distribution.

One of the striking features of this stream of literature is the complete independence
of behavioral heterogeneity from social heterogeneity. Individuals that differ by income,
tastes, quality perception or risk attitudes are otherwise entirely similar in their social
behavior: they do not differ in the speed they acquire information from public sources,
nor in the intensity with which they communicate interpersonally regarding the new
product. Works that claim they have reached a truly microfounded theory of diffusion
exhibit a remarkable incompleteness in the characterization of human behavior.

The problem of social heterogeneity is perceived as a separate weakness of the Bass
model, but again the responses available in the literature are rather weak. As an exam-
ple, in the model by Mahajan, Muller and Kerin (1984}, it is taken into consideration
the possibility that word-of-mouth has a negative, instead of positive, sign (i.e. dissatis-
fied customers). The population is therefore divided into groups according to the stage
of the adoption process they are in (non aware, aware, adopter or non-adopter) and
to the sign of the information they produce for other members of the population. The
flows between these groups determine the aggregate dynamics of diffusion. However,
heterogeneity is admitted only for senders of messages, not for receivers. All members of
the population have the same probability of receiving any given piece of information, so
that the aggregate probability is proportional to the relative size of the message sender
groups.

Our statement of the state of the discipline is that the concern with heterogene-
ity is a genuine one in diffusion literature, but it receives an inadequate treatment.
Heterogeneity is assumed in the distribution of economic variables affecting individual
adoption decisions, but the emphasis is then on aggregation into market-level proper-
ties. As it is clear from the surveys of Mahajan, Muller and Bass (1990} and Mahajan
and Muller (1993), heterogeneity is not really on the research agenda.’

To our knowledge, the only paper that explicitly uses the epidemiological concept
of heterogeneity in marketing by means of a deterministic model is Putsis, Balasub-
ramanian, Kaplan and Sen (1997). They study mixing behavior in several European
countries and analyze the rate of contacts between individuals both intra- and cross-
country and find that mixing is indeed an important consideration in new product
diffusion.

An earlier paper introducing heterogeneity can be found alse in the literature on

3 A partially different situation can be found in several streams of stochastical product diffusion mod-
els, such as the avalanche model proposed by Steyer (Le Nagard and Steyer, 1995) or the information
contagion model of Arthur and Lane (1993), in which social heterogeneity plays a role.
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technology diffusion. Gore and Lavaraj (1987) proposed a model of diffusion via internal
communication of a breeding innovation within a spatially stratified population. Diffu-
sion among the population of rural villages depends on the number of previous adopters
in villages themselves and the number of adopters in town, the centre of innovation.
The structure of intermixing between members of villages and citizens is not specified;
villages are located at a distance of 2-15 kilometers from the town and communication
is not eagy. The authors show that estimates obtained nsing two separate models of
diffusion improve slightly the fit statistics with respect to an aggregate logistic model.
What is interesting, however, is that the logistic model applied to all data (i.e. with-
out considering the heterogeneity) severely overestimates the saturation level (a level
of 10,07% of all families in villages was estimated, while the model with heterogeneity
delivers a value of only 5,9%). Consequently, the rate at which diffusion takes place is
overestimated when homogeneity is wrongly assumed.

2.1. The empirical relevance of the heterogeneity hypothesis. Interest-
ingly, while heterogeneity seems to play a minor role in the mainstream diffusion theory,
and there are only limited and very recent attempts to take it into account, its empiri-
cal importance is out of discussion in consumer behavior. A rather impressionistic tour
into the large, qualitatively heterogeneous literature on personal influence and opinion
leadership on consumer behavior shows a remarkably consistent pattern.

Since the early ‘60s several researchers underlined how large is the amount of social
communication that goes around products (Dichter, 1966). Word-of-mouth is generally
considered a reliable and trustworthy type of information, whose influence on consumer
behavior is high because it allows two-way communication, is associated to strong so-
cial support and is often backed up by social-group pressure. Arndt (1967) carried
ous a survey among members of a large community (a campus for married students}
and found that product-related word-of-mouth closely follows the pattern of social re-
lations, so that those individuals that are more central in the social network are also
those that generate more communication about the new product. This is an important
finding, since it shows that, product-related conversation follows the (relatively) invari-
ant channels of communication that individuals open and keep active in their social
life.

The amount of product-related conversation may indeed be huge for some categories
of product: in a study of attendance to movies Mahajan et al. (1984) found that more
than 60% of subjects engaged in movie-related conversation with friends. Interestingly,
“friends were the major source of information”, much more than advertising or reviews
in newspapers.

According to a survey on external search behavior, consumers perceive personal
information sources to be more important than non-personal sources because the former
provide two-way communication, and bring at the moment of communication more
knowledge, generating more attention and interest (Pinson and Roberto, 1988).

One of the most robust findings is that individuals sharply differ in the amount of
information they search for and, moreover, in the intensity of product-related conver-
sation. The concept of opinion leader captures the characteristics of those individuals
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that engage in more information diffusion. A survey of several studies (e.g, Robert-
son and Myers, 1969; see the surveys in Mullen and Johnson, 1990; Loudon and Della
Bitta, 1993} shows that opinion leaders have the same social and class position as non-
leaders, but enjoy better reputation and social status within the group. They have
greater interest in the area of influence, are more exposed to mass media and try new
products relatively early (although they are not innovators but rather early adopters).
They normally develop much more social communication than non-leaders, are more
sociable and more loyal to group values and norms. Because of these characteristics
opinion leaders’ influence is accepted within the relevant group as trustworthy and rele-
vant for other individuals’ consumer decisions. The proportion of opinion leaders out of
the population is of course an empirical matter, but market surveys seem to converge,
approximately, around 10%: the so-called Influential Americans are one of every ten
adults in the United States, while the “must-know men” discovered by the Yankelovich
research company, to whom many individuals refer for problems of mechanics, electron-
ics and car purchase, are one-quarter of the adult male population {(Loudon and Della
Bitta, 1993).

An interesting question that comes about is whether opinion leaders have a general
influence that cut across several product categories or are rather “specialist” in one
product. There are conflicting findings on this question. Specialized opinion leaders
seem to prevail: in studies of product areas, it is generally found that few of the
respondents are opinion leaders for many products, with overlapping strongly related
to similarities in the interest raised by products (King and Summers, 1970).

General opinion leaders are also present, however. Feick and Price (1987) have
developed the label of market maven (where maven is a Yiddish word for a neighborhood
expert) to characterize those individuals that enjoy shopping and collecting information
about products, become aware of new products earlier and engage in product-related
conversation with many others over a large range of product categories. The interesting
finding is that market mavens do not need to be actual users of all products they are
asked about by other individuals. In general, market mavens are women.

The notion of active consumer has recently been proposed to try to link more ex-
plicitly a realistic representation of consumer behavior to the hard core of economic
theory. The basic idea is that individuals enjoy in searching for goods, and particularly
in experimenting novelty and surprise in consumption. In this perspective, search is not
considered a cost (a negative element in the utility function), bur rather an important
part of the utility itself of agents. This idea, fully developed in Bianchi (1998) is consis-
tent with various institutional and neo-Austrian theories of consumption. It has clearly
a linkage with theories of social communication. As the editor explicitly says, “the
social dimension of the consumer- which includes the communication side of individual
choices- must recover a more refined and articulated place in the motivational structure
of consumer decision procedures” {Bianchi, 1998, 8).

2.2, Sales forecast and use of early data. The limitations of homogeneous
models can be shown with respect to an important application of Bass-type models,
namely forecasting of sales. Several studies have found that robust estimates require
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data covering the peak of the noncumulative adoption curve (Heeler and Hustad, 1980).
Which is to say- forecasting is lost. Therefore, how to accurately estimate the para-
meters of a diffusion model from early sales data is considered a crucial problem in
the literature. One of the difficulties lies in the fact that early sales data may be not
sufficient. to provide stable and robust estimates of the parameters.

The analogical approach (Blattberg and Golanty, 1978; Choffray and Lilien, 1986;
Easingwood, 1989} suggests to utilize the parameters of diffusion models of other, as-
sumed similar, products to forecast sales of the new product. A drawback of this
approach is that new products always incorporate some new features that make judg-
ments of similarity unreliable. A large number of case histories have been collected in
which early estimates of diffusion rates have been in fact wildly disconfirmed by actual
experience. A more sophisticated approach involves the use of Bayesian procedures
(Sultan, Farley and Lehmann, 1990). As an example, Lilien, Rao and Kalish (1981)
used Bayesian methods to produce forecasts in a repeat purchase diffusion model. A
modified version of their model was proposed by Rao and Yamada (1988), who found
that parameters of the diffusion model can be estimated using potential adopters’ per-
ceptions of key attributes of families of similar new products (ethical drugs). In both
cases, the value of the market size IV is critical for deriving optimal policies for firms, in
terms of marketing effort to be allocated during the diffusion process. Thus an interest-
ing question is what happens if /V is a collection of heterogeneous potential adopters.
Here Bayesian updating would not solve the forecasting uncertainty, since the problem
would not be the updating of parameters of a correct model, but rather the identifica-
tion of the true model- i.e. with or without heterogeneity. Relying on early sales data
would be dramatically misleading.

Our treatment makes often use of the notion of aggregation bias in the estimation
of diffusion parameters relying on early sales data to display the effects of heterogeneity.
Even if we are not interested in the problem of optimal estimation procedures, we believe
we are offering a broader perspective on how to build reasonable market models.

3. Heterogeneities in innovation due to external information. The basic
model for the diffusion of innovation through external information (Fourt and Woodlock,
1960) is subsumed by the differential equation (ODE):

(1) V() =a(m-Y({#) am>0

plus the initial condition Y'(0) = 0. In (1) Y (¢} denotes the cumulative number of
adopters ("A” individuals: those who already received the new?) at time t, m the mar-
ket size, ie the size of the population of potential adopters (assumed constant), so that
X(t) = m —Y(f) denotes the number of individuals who have not yet been informed

4 As all Bass-type models, the "external” model offers an explanation of the social process of diffusion
of an information, neglecting the decision process leading to the actual decision to adopt. Hence, at
best, the representation of the decision process is the simplest: a constant fraction of those who received
the information will actually adopt the product (i.e.: individuals are homogeneaous on their decision of
adoption).
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("N individuals), and « the innovation rate (assumed constant), which reflects the in-
tensity of the source spreading the information. As it is known (1)} implies a progressive
saturation of the market through a concave dynamies. The formulation (1) is justified
as follows: as a consequence of the acquisition of the new (=adoption), individuals
transfer at constant rate o from the "N” compartment to the " A” compartment. This
transfer of material obeys the pair of differential equations:

X (1) = aX() ; Y () = aX(t)

where X + Y= 0, implying that the total population m = X + Y is constant over time.
Hence Y = m — X which definitively leads to (1).

3.1. Discrete heterogeneity. Let us now explicitly assume that the population
is heterogenous from the point of view of information acquisition, i.e. that the individ-
uals of the adopting population are not exposed in the same ways to the information
source and, as a consequence, are characterised by different time scales in their adoption
process. Formally we will suppose that the population is stratified in » different groups
depending on the intensity of their innovation rate a;. The adoption process is then
described by the following system of n independent equations:

(2) Vi) =a(m; —Yi(t)) i=1,2,..,n

The size m; of the i-th group is assumed to be constant. Intra-groups migrations of
individuals are ruled out by assumption. To fix the ideas let us assume o < ag < .. <
Oy,

The qualitative behaviour of each equations (2) is identical to that of the basic
model (1). What’s happen to the overall population? By adding up all the (2), we
obtain the aggregate equation:

(3) Y (1) = (Zi a?%}:z(%).) (‘m _ Y(t)) = a(t)(m —Y({))
where a(t) is the aggregate innovation rate, defined as:
_—i(m —Yi(t) Xi(t) _
(4) alt) = ;T—W— = Xi:%m = jialt)

Equation (4) shows that the aggregate innovation rate observed during the dynamics,
being the weighted average® of the innovation rates of the various groups weighted with
the noninformed fractions w; = X;/X, is not constant. Obviously®:

5 This implies that the dynamics of «(t) will always be bounded in the set {aq,a,).

81t is to be noticed that the process of external diffusion is ”the other side” of a death process (with
constant hazard rate): heterogeneity may therefore be studied much in the same way of heterogeneity
in the mortality process (Vaupel et al. 1979).



(5) X (8} = —a()X(t)

It is easy to see that:

. . .. Xi(t
Y(#)>0 Vi 5 Y{)=-X({)=(-1)X(t) af;{‘—((;)l<0 Vt;
confirming that the actual gualitative dynamics of the aggregate model is identical
to that of the homogeneous one. Hence any relevant effect of heterogeneity is purely
quantitative and wholly explained by a(t). To see how the dynamics of «(t) influences
the overall dynamics of ¥'(¢) remark that «(0) = m™' ¥ aymy; morever:

2
e The aggregate innovation rate strictly decreases over time:

(6) %(a(t)) = (~1)Vara(t) <0 Wt

where;
U Vara(t) - (Tt 50 - a0

'The result (6) follows straightforwardly by taking the time derivative of a(t),
and using X; (t) = —a; X,(£); X (t) = —a() X(t).

o The asymptotic aggregate innovation rate coincides with the innovation rates
of the slowest group (the true "laggards” of the process):

(8) a(oc0) = Zaiwz-(oo) =

The result (8) is obvious: in the long term the fastest adopters have been elimi-
nated and only the slowest ”survive”. In sum: the aggregate innovation rate decreases
monotonically over time from from its initial value @(0) = > ;™% to its long term

i
value a; =min (o). Consequently the time scale of the market saturation process will
k4

coincide with the time scale typical of the slowest group (proof of (8) and other details
on the dynamics of «(t) and the weights w;(t) are postponed in the appendix).

What are the most relevant phenomenological consequences of these facts? As
we have seen, in the present case, heterogeneity has essentially quantitative effects.
A practical way to illustrate them is through the notion of aggregation bias in the
time scales of market saturation. Let us suppose we are unaware of the heterogeneous
structure of the population and try to estimate from sales data the wrong homogeneous
model (1), even in the simplest case, with m known. Tndependently on the lenght of the
available data set we would unavoidably overestimate the true innovation rate, thereby
systematically underestimating the true time scale of the adoption process, i.e. the true
market saturation time, a quite undesidered effect for management. The explanation is
simply that in presence of heterogeneity the initial dynamics of the innovation process
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Saturated shares | , 5% | 90% | 95% | 99%

o =0, 0278 (Homog.model) | CV=0 49 | 83 | 107 | 165

a; = 0,027 ay = 0,0358 | CV=0,094 | 50 | 83,3 | 109 | 168
oy = 0,025 oy = 0, 0538 CV=0,309 | 52 |88 |[116 | 180
oy = 0,023 ap = 0,0718 CV=0,525 |56 |96 |126 | 196
oy = 0,021 oy = 0,0898 CV=0,740 | 61 105 | 138 | 214

a; = 0,019 ag = 0, 1078 CV=0,955 | 67 116 | 153 | 237
TABLE 1
Times needed to soturate prescribed maket-shares in an “external” model with twe groups; wi=0.9
;w2 =0.1; m=10.000.000,

will exceedingly reflect the role of the groups with faster adoption time scale.” Table
1, reporting the lenght of times needed to saturate prescribed market shares in a set of
heterogeneous populations with a small fastly-adopting group coexisting with a large
slowly-adopting group, is an instance of these effects.

3.2. Continuous heterogeneities. If the innovation rate is a continuous variable
u taking values in some prescribed set U € RT, the relevant formulation becomes:

(9) Yo () =ulmy — Ya(t)) uel

where m,, (with: [ m,du = m) is the absolute (non-normalised) density of individuals

S - . . L (0) .
with innovation rate u at time zero, and: f(u) = m,/m = )}{((0) is the corresponding

relative density. The aggregate equation is:

(10) V() =5 [ Vadu= [ Vi @)= ali)m - ¥(t)
where:
B0 fue ut
(D olf) = /o u= T e g
and:
(12) Ko (t) = —uXolt) welU : X () = —alt)X(t)

Results completely similar to those of the previous subsection hold. In particular:

a(0) = fomufudu LG () = (—1) ( /Oooug—-))i,—“(%)—du~a2(t)) = (- 1)Vary(t)

? Our reasoning has been based on the comparison between a prescribed heterogeneous situation and
the underlying homogeneous model, in which heterogeneity is absent. The problem of the graduation
of the effects of different heterogeneous situations will be considered elsewhere. It is nonetheless easy
to acknowledge that, other things being equal, more heterogeneous situations, measured for instance
by a larger initial variance, imply a faster initial decay of the aggregate innovation rate and a longer
saturation time. These aspects will be deepened in further developments (but see the example of next
subsection).
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A remarkable example: the gamma case. Let us assume that the initial distrib-
ution in the levels of the innovation rate is Gamma-type: f, = 2z ~ Ga(&,n),

X(O)
‘where (£,7) >0, so that «(0) = [7°uGa(f,n)du = /4. As:
£ oo £
—ut _ 77 ] o —ul — ‘f”?
/ fue du = e o ufue " du T
we find:
€ \71 ¢
U £n £
- 0= (k) e
The result (13) leads to the following linear ODE for X (¢):
: 3
)= —af)X({l)=—|—~— | X
X (0= —ax() = - (=5 ) x(9
the solution of which gives the overall market dynamics. By solving we find:
14 Y(t X(t .
(14) ) =m—-X(t)=m Tt 0t

The result (14) (which satisfies all the expected requisites of innavation curves) shows
that the aggregate dynamics is not anymore exponential, as it was in the homogeneous
model.

Graduating the effects of heterogeneity. For a U random variable having a density
Ga(§,n), its mean and variance are: p (U) = ¢/m; Var(U) = £/n%. Hence:

Var(U)
1 (U)

showing that 7" represents a measure of dispersion (even if not adimensional). This
permits to write:
§ _&.m

(15) a(t)zn—lrt nn+f

The last relation suggests the appropriate ordering of the effects of a whole family of
heterogeneous models in which a background homogeneous model defines the origin of
the scale. By keeping fixed the ratio £/n = p = «(0), and by considering diminishing
levels of 7, i.e. increasing levels of B = ™' we are automatically considering initial
distributions characterised by the same mean, i.e. by the same initial aggregate innova-
tion rate, and by increasing levels of heterogeneity, as measured by an increasing ratio
variance/mean. As:

Var(Uy=n"'u(U) or: n'=

af0) (1 + 5 ) ™!

da(t) —t
B Oy <O

we see that the aggregate innovation rate is, at any time, a decreasing function of the
level of heterogeneity. In other terms: a larger initial heterogeneity is responsible, other
things being equal, of a faster time decay in the aggregate innovation rate.
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Twme lenghts needed to saturate preseribed market shares. In the homogencous case
the time needed to absorb the first (1—g)% of the market, is the solution of the equation:
m(l —e ™) = m(l — q) given by:

- /—1
(16) TI:!‘-ID’g?, = (?) logq - THom

When heterogeneities follow the Gamma distribution we have the corresponding equa-
tion:

nt_
(n+ 1)

(17) q
which may be solved analytically for ¢ (on the contrary of the discrete case). To com-
pare the heterogeneous case with the homogenous one let us consider a heterogeneous
situation with a(0) = &/n = « (the innovation rate o of the corresponding homogeneous
population). From (17) we find:

]
n+t

,r] -
n+t

== TH om

1
-1 - 1 ~1)nl
(—1)nlog oy ose — (1) nlog
By solving for ¢ the last equation we get the following relation between the time unit
in the heterogeneous model, Ty, and its homogeneous counterpart Trrom:

1
(18) Tret =f (eTﬁ'om./»@ N 1)

It is not difficult to show that Ty.(3) is a monotonically increasing function of the
degree of initial heterogeneity, as measured by 81, which reduces to Ty in the limit
case in which heterogeneity goes to zero (other things being equal).

4. Heterogeneity and mixing within the internal adoption process. The
basic model for 7internal” ("word of mouth”) diffusion of innovation (dating back to
Mansfield, 1961) is subsumed by the following logistic ODE:

(19) V() = LY m - Y(0) =Y (m - V(1) r=L

plus the initial condition ¥Y'(0) = 1 (needed to start the transmission process). The
q coefficient (¢ > 0) has been defined by Bass as the imifation coefficient. In view
of our subsequent developments the most useful justification of (19) is based on the
following epidemiologic argument: at every time ¢ further spread of information totally
depends on the rate of encounters between ”A” (let us call them now infected”) and
"N” ("susceptible” to the acquisition of the information) individuals. Let’s make the
following assumptions: A)each individual in the population encounters €' individuals
p-u.t (independently on the fact he already adopted or not). € is the meeting rate, or
the rate of social activity, defining the total rate of "social partners” encountered per
unit time, B)the pattern of encounters is perfectly at random; C)there exists a constant
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probability 2 that a meeting beetween an ”A” individual and an ”N” individual gives
rise to a new infection, i.e. to a new "A”.

The previous assumptions describe a population of (homogenous) individuals mix-
ing homogeneously. The absolute rate of change in the number of infectious individuals
(whose who received the information), i.e. the number of new infections per unit time,
can be computed as follows. The single infected individual meets C individuals p.u.t.
As individuals mix homogeneously, a fraction S(t) = X{t)/(X(t) + Y (t)) of these C
encounters will take place with susceptibles (0 < S5(t) < 1 is the susceptible fraction).
A fraction 3 of these encounters will end in new infections. The quantity SCS(t) hence
defines the load of new infections caused by a single infected individual per unit time.
By adding up the actions of all the infected individuals we find the total load of new
infections p.u.t: -

e = st - voaost o N0

By defining ¢ = ¢, and using: X(¢) + Y (¢) = m (population size is constant), the
equation (19) is obtained. In the epidemiological jargon model (19) is called an SI
(” susceptible-infective” ) model. The epidemiological foundation followed here leads to
define the imitation coefficient q as the product between two constitutive parameters,
the meeting rate C' and the probability of infection per single encounter 3. Let’s remark
that the imitation coefficient is the rate of growth of the initial exponential phase of
the dynamics of (19).

4.1. A preliminary: heterogeneity in the acquisition of information. Let
us consider first a simplified situation in which individuals are still assumed to mix
homogeneously, as in the basic model (19), but differ in the speed at which their ac-
quire the information from encounters. This situation is quite similar to that of the
previous section: epidemiologically we would say that individuals have different degrees
of susceptibility. This leads, assuming a discrete pattern of heterogeneity (extension to
continuous heterogeneity is straightforward.), to the following extension of (19)%:

(21) Yi() =rim; —Y;(1))Y(t) i=1,2,...,n
where: m; — Yj(#) = Xi(t),r; = q;/m, Y (t) = T, Yi(t). Obviously:
Xi(t) = =ri(m; ~ V@)Y (t) = —n X))V (1) i=1,2,..n

The equations (21) are, compared to external diffusion, more difficult to treat an-
alytically. Nonetheless the main qualitative feature of the homogeneous model (19),
L.e. asymptotic saturation to m, is preserved. Moreover, considerations quite similar to

8 In this case the overall susceptible [raction at time t is: (X; +.. + X,,) /m. Hence each single
infective individual leads to SO(X; + ... + Xn)/m new infections p.u.t., etc.
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those developed for the model for external diffusion hold. Let us assume for simplicity
f1 < ... < gn. The aggregate dynamics is described by:

@ vO=YOXnm v = Uxaye

where the aggregate (time-varying) imitation coefficient g(t) is given by:

(23) a(t) = . qf:% =D qiw; = p,(t)

Hence, similarly to the external case, the aggregate imitation coefficient is the average
of the ¢; weighted with the susceptibility weights. In particular: ¢(0) = ¥, gw;(0) =
2 9. The following facts, which straightforwardly extend results from the case of
external diffusion, hold:
e The rate of growth of the initial exponential phase is: r(0)X(0) £ ¢(0), which
is exactly by the initial innovation rate. Moreover:

(24) (g;qm) — (LY ()Var(t) < 0

i.e. the aggregate imitation coefficient is strictly decreasing over time.
¢ The time scale needed to the saturation of the whole market is the time-scale
of the slower group.
Hence the same type of aggregation bias observed for external diffusion is observed
in model (21) as well.

4.2. Heterogeneities in social activity: the mixing problem. The introduc-
tion of heterogeneities in the rates of social activity makes the internal mechanism much
more complex and interesting of the external one: a new problem, the so called mixing
problem, largely investigated in the recent epidemiological literature, arises. Hetero-
geneity and the mixing problem ("who mixes with whom?”) have represented a core
problem of mathematical epidemiology in the last 15 years. A key motivation to the
birth of a general theory of heterogencity and mixing (HMT since now on) in epidemi-
ology has been the need to provide flexible tools for the mathematical analysis of HIV .
and other sexually transmitted diseases (STD), where a central aspect of the dynamics
is 7...the marked heterogeneity in degrees of sexual activity within the overall popula-
tion” {Anderson and May 1991, 228). A huge literature has been developed since then,
of which we may quote here only a very small, although highly representative, subset.
Even if an overall HMT in theoretical epidemiology is still far from being complete,
several quite general problems are nowadays quite well understood.

Altough most of the efforts produced up to now have been cormected with the
analysis of STD, the HM approach is completely general and it may be applied to
practically any type of social interaction. In recent times several tentatives (Castillo-
Chavez et al. (1995), Edmunds et al. (1997)) have been made aimed to extend the
basic framework for STD to other areas, ranging from nonsexually transmitted diseases
to general contact patterns in biology.
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Along this direction we will try to show how the recent epidemiological develop-
ments fit into the area of marketing models. We will first introduce the mixing theory
tool-box, by showing how the HM approach provides a convenient framework for the
investigation of the effects of heterogeneity within internal diffusion models, in that
it clarifies which are the crucial parameters in the representation of social interaction
processes: activity levels plus mizing functions.

During this phase we will systematically exploit background materials derived from
the recent epidemiological literature (for instance Anderson and May (1991), or Jacquez
et al. (1989,1995)).

Some highly stylized prototype models of mixing patterns will then be presented.
We will subsequently show how the basic simple model (19) for internal diffusion modi-
fies when heterogeneity and mixing are considered and discuss the effects of some special
mixing assumption. We finally review a noteworthy result, taken from the recent epi-
demiological literature, cooncerning the model with removal.

4.3. Mixing frameworks; mixing parameters. To formulate the internal model
with heterogeneity in social interaction we will not merely assume that the individuals
of the involved population are subdivided in groups depending on their different imi-
tation coefficients. This is not a fruitful approach. Rather, as suggested by the recent
epidemiological approaches (and implicit in the epidemiological foundation of (19)), we
will assume that individuals are stratified on the basis of their rates of social activity.
More precisely we assume that social activity within the population is characterised by
a prescribed (discrete) distribution of activity levels:

C, Co .. Gy

mp; Mo ... Mg

(25) C=

where C; is the number of "social” partners ® p.u.t. of individnals belonging to group 4
and 3>m; = m is the total population. Extension to the continuous case is straightfor-
ward. Once this heterogeneity has been recognised, the definition of the rate of change
over time in the number of adopters requires the specification, at the very least, of the
Junctions of social interaction or mizing funciions (Jacquez et al. 1989, Blythe et al.
1991) pi;, denoting the fraction of his C; social partner p.awt that the generic individ-
ual of group i has with individuals belonging to group j. Provided all the groups are
socially active, the mixing functions satisfy the following properties:!?

J:

lpé‘j =1 ] zm)O,m,p” = ijjquj

"The ” probabilistic” propertiesi) and ii) quickly follow from the process of allocation
of the social activity of the various groups. For the i — th group we have the obvious

? It is assumed that these social relations are of a, type which is adequate for the transmission of
information. In the theory of STD this quantity typically represents the mean number of (new or total)
sexual partners p.u.t. of an individual belonging to group i.

10 The mixing properties are sometimes called the mixing axioms in the more theoretical treatment
of the subject (Blythe et al., 1991, Busenberg and Castillo-Chavez, 1991).

16



relation: Cips + Cipin + ... + Cypie = C,. Property iii) has a more substantive nature:
it represents a law of conservation of social activity. The physical meaning of iii):
Cimpi; = Cymypy, is that the social activity (i.e. the number of relations) of individual
type "i” with individuals type ” 57 cannot be different from the total number of relations
of 75" individuals with "3 individuals. As these relations involve quantities which are
not necessarily constant, they represent concrete restroint operating at every time during
the social process. Let us assume that for some reason the number m; of individuals in
group j should diminish, being fixed the numbers in the other groups: this necessarily
implies that all the restraints involving group j are not anymore satisfied and that,
therefore, something has to change to preserve the restaints satisfied. To stress the
dynamical nature of the mixing axioms it is useful to write therefore: C;(t)m; (t)ps; (t) =
Cy(t)m; (1)pia(t).

REMARK 1. In compact terms the overall process of social interaction may be
represented by the so called mizing matriz: P = [py] (which is obviously o markov
matriz).

Heterogeneities in social activity do not exhaust the range of possible heterogeneities
in our framework. A further possible source of heterogeneity is represented by the
probability of "infection” per single encounter which should be written as Bi; to reflect
possible effects of heterogeneity from the sides of both partners of a social relations.
For simplicity we will only consider heterogeneity in social activity and Bi; will always
be taken as constant. ‘

REMARK 2. The approach to social mizing presented here, in which the unique
source of heterogeneity considered is the level of social activity, measured by an index
of speed in social circulation, is as simplest as possible. More involved treatments are
possible, for instance introducing explicit dependencies of miring parameters on socio-
economic or demographic variables and so on (Castillo-Chavez et al. 1995).

4.4. Special mixing structures. The analysis of special mixing cases is of great
help in defining the boundaries of the problem. Noteworthy examples of mixing struc-
tures employed in the recent epidemiological literature (Jacquez et al.(1989), Uche and
Anderson (1996)), are the following:

1. Restricted mizing (perfect assortativeness or “like with like”): 100% of the
social activity of the individuals of a given group is confined within their own
group. The corresponding form of the mixing maftrix is the identity matrix 7.

2. Proportionate mizing (P.M.): the concept of PM (for instance Nold 1980),
extends to heterogeneous situations the notion of homogeneous mixing with
random selection of social partners. To understand this notion let us first
consider the special case in which all individuals in a]l groups have the same
number of relations C per unit time. In this case, provided individuals choose
their relations at random, the mixing functions would have the form: Py =
N;/N = p; as the probability for a *3” individual to encounter a ” 47 individual
would only depend on the relative frequency of 757 individuals. In the more
general case in which individuals have different C; the relative frequencies need
to be weighted with the rates of social activity. Let us consider a (large)
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community compounded by two groups of identical size; individuals of the
first group have a low rate of social activity, while individuals of the second
group have a large rate of social activity. This means that the group of "very
social” individuals contribute more than the other group to the the overall
social activity of the community. In other words: if an individual choose a
relation at random, he will have a larger probability to meet an individual
from the "very social” rather than from the *unsocia)” group. This leads to
the following definition:

DEFINITION 1. (proportionate mizing) Given the distribution of activity levels

C' = {Ci;m;}, the corresponding proportionate mizing function is:

Cymy is clearly a measure of the social activity by ”#” individuals, while ¥~ Cym; is
a measure of the tofal social activity taking place in the overall community.

L Preferred mizing: in this type of mixing (Jacquez et al. 1989, 1992) an arbitrary
fraction ; of each group’s contacts are reserved for within-group contacts; the
remaining contacts of each group (given by: (1 — h;)CyN;) are subject to the
proportionate mixing rule. Hence:

(1= hy)O;N;
Tii (1 — hy)CO5N;

(27) Pij = hibij 4+ (1 — hy)
where 6;; = 1 for i = j and by =0fori# 7.

2. Perfectly disassortative mizing: a mixing pattern is perfectly disassortative
when all the social activity of a group is allocated within a unique different
group. The ensuing mixing matrix is therefore a non-identity zero-one matrix.

The matrix;
01
(1 3)

is the simplest example of a fully disassortative pattern.

4.5. The model for internal diffusion embedding heterogeneity and mix-
ing. The explicit use of the mixing parameters C;, ij, 3; lead to the following general
formulation of the internal model:

: Ve
(28) Yi= O?(m’.', - Y;) Z.ﬁz’qu‘,j'_”l" i1=1,2,...,n
3 mj

As for (19), the expression (28) is justified by computing the load of new ”infections”
caused p.u.t by a single infected individual belonging to group j (for instance Jacquez et
al. 1995). This individual encounters C; (new) individuals p.u.t.; of these C; encounters

18



a fraction py, is allocated within group i, i.e. Cp,; relations are with type "¢ individuals.
Therefore, by assuming that the mixing process between 77" and ” 37 individnal is
perfectly at random, our single ”5” infected individual will meet p.t Cipia( Xi/mi)
susceptible individuals in group 4, eausing 3C;p;i(X; /m;) new infections. By cumulating
the previous quantity for all ”5” individuals we find the total load of new infections
caused p.u.t by the infected individuals in group j within group i: B, ;(t) = Y;,-ﬁC’jpﬁ%i
To find the total number of new infections p.u.t in group ”i” we have to add up all the
quantities B; ;(t) with respect to all groups of possible infected ”partners”:

- X

The case of a # variable across groups does not change the point. We simply have:
X
(30) Bilt) =3, Bus(t) = 3 ByCipnYie:

By using the third mixing property m;Cip;; = m;C;p;;,the (30) may also be expressed
as follows (leading to (28)):

(31) Bi(t) = Xi 3 ﬂm%% =CiXi) ﬁijpij%;‘

The (30) or (31) define the total rate of change per unit time in the number of infected
individuals (whose who have received the information) in group ¢. Remembering that:
X; = m; — Y, the equation (28) is definitively obtained.

REMARK 3. (imitation rotes in presence of heterogencity) The contribution to the
rate of change of the number of infecteds of group i in (28) due to encounters with
individuals belonging to group j: B C’ip,;j%(mi —Y:) suggests that the rate of imitation
of 737 indiwiduals by ”i” individuals is given by the quantity:

(32) qi; = Bi;Cipij

In theoretical epidemiology the model (28) is a heterogeneous SI model with con-
stant population. Its qualitative properties are well understood (Lajmanovich and
Yorke, 1976). Two main qualitative situations are of concern: iJall the groups are
connected {i.e. the case of an imprimitive mixing matrix)," ii)isolated groups exist (a
primitive mixing matrix). In the former case, independently on the initial conditions,
the whole community will be reached by the information in the long term, while in
the latter isolated groups will never be informed unless an informed individual reaches
the group at some stage (formally: if the initial condition Y;(0) of an isolated group is
zero, than the epidernics will never take-off). Hence in a community characterised by
restricted mixing, or by the presence of isolated groups, special care should be reserved
by planners to reach isolated groups.

! The connection may be direct or indirect, due to the intermediate interaction with other groups.
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On the other hand it is hard to provide a synthetic view of the overall quantitative
behaviour of the system (28) for arbitrary mixing patterns. By resorting to special
assumptions on the mixing patterns, valnable information is nonetheless obtained. We
report here two important results concerning respectively the case of restricted and pro-
portionate mixing. A more detailed classification is the target of future work (Manfredi
et al. 1998).

The case of restricted mizing. As abovementioned, when restricted mixing is the
rule the overall behaviour of the market wholly depends on initial conditions: the
information will only spread within those groups which at some stage are reached by
some 1nitial spreader. Although this case is mathematically very simple (the various
groups follow independent time paths) it may give rise to surprising facts such as the
appearance of distinet adoption waves when the imitation rates of the various groups
differ sufficiently in magnitude. This is illustrated in fig. 1 which reports the aggregate
dynamics of a three groups community experiencing restricted mixing.

The case of proportionate mizing. When the mixing patterns are of the PM type,
(28) reduces to (under 3;; = A):

(33) Yi=8"Ci{m: - Y2) 3. CyY;
where: 3* = 3/ 3; Cym;. The aggregate dynamics is described by the equation:
(34) Y=r"(Y (()(m - Y (£)) () = B Cx()Cy(t)

in which the aggregate imitation rate depends on the product between two weighted
averages of the levels of social activity, namely:

Xi B Y;
Cx(t) =2.,Ci% 5 Cr() =3, 0

To characterise the behaviour of (34)'? let us consider again: i)the rate of growth of the
exponential early phase; ii)the time scale relevant for the saturation of the market. For
what concerns this latter the stability analysis of the saturation equilibrium (my, .., M)
shows that, as expected, the saturation time of the overall market depends on the time
to stability of the less socially active group with contact rate . Viceversa, the initial
exponential phase is characterised by the Jacobian matrix .J(0) which characterizes the
stability properties of the (0, ...0) equilibrium of model (33). Since:

?’HIC% mg 0102 [ mlClc'n
moCeC1 maC2 .. meCuC,
J(O):ﬁ* 2:2 1 2 2 ) 2:2
mnCnOl mnCnCQ e m’ncfb

"2 It is easy to show that, similarly to other findings of this work:
dr*(t)

5~ = (08" (32 6%} (Cx(Vark () + Cy()Var¥ () < 0
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we have (notice that the determinants of all the principal minors of orders 2,3, ..., n
vanish) the characteristic equation:

- (8%, Com; ) At =0

It follows that the (dominant) eigenvalue, which lead the initial phase growth is given
by:

¥; Comy ol
35 Ao = 3 2y = g=L 210 =<

where pic and 0% are respectively the mean and variance of the distribution of the
levels of social activity and o%/u% the square of the variation coefficient, which is the
appropriate measure of heterogeneity in the present situation (notice that for o2 = 0
the homogeneous result is recovered). The rate (35) is the rate of growth which prevails
after the initial transient phase (provided no saturation effects take place). In fact at
the very beginning:

Y (0)

o) ~ O —Y(0) = 5 Cx(0)Cy (0)(m - Y (0)) = 5Cy (0)

which essentially reflects the initial distribution of infectives.

The result (35) which has been rederived here in an original manner for the basic
SI model typical of new product diffusion theory, is in effects a cornerstone in theo-
retical epidemiology, where it has been found to hold even in more complex situations
(Anderson and May 1991). It shows that distributions of social activity characterised
by identical mean but larger heterogeneity will lead to faster initial growth.

In sum, remembering that a higher heterogeneity will in general also imply, coeteris
paribus, a longer saturation time compared to situations with lower heterogeneity we
may say that: market situations characterised by larger levels of heterogeneity tend to
(other things being equal) take-off more quickly and to saturate more slowly. This note-
worthy effect is illustrated in fig. 2, which reports the aggregate dynamics of a set
of increasing heterogeneity situations (under PM) grounded against their homogenous
counterpart. The next subsection reviews a more popular epidemiological version of the
last result {Anderson and May 1991) which will add further insight to our understand-
ing.

4.5.1. Internal diffusion: the case of spreaders who cease to spread. The
possibility of permanent removal from the state of spreader in models of diffusion of
news was considered by Bartholomew (1970, 223), borrowing from epidemiclogy the
popular model of general epidemics (Kermack and McKendrick (1927)): ” People may
cease to be spreader for a variety of reasons: they may forget, loose interest, or gain the
impression that every body knows”. The introduction of permanent removal at constant
rate modifies the homogeneous SI model into the following SIR. model:

(36) X=-LIXY ; y= LXY —0Y ; Z=0Y
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where X =susceptibles (who have not yet received the information), Y =infectives (who
have been informed), Z=removed (who cease to spread); v is the removal rate. Typical
initial conditions are X(0) =m - 1;Y(0) = 1; Z(0) = 0.

The introduction of permanent removal makes predictions about market dynamics
more complex, compared to the ”classical” models of innovation. The dynamic of these
latter, summarised in the Bass model, is qualitatively simple, unavoidably ending with
the agymptotic saturation of the whole population. This is a necessary consequence of
homogeneity and of the fact that the spreading source and word-of-mouth spreaders
never cease to spread (i.e.: they circulate for an infinitely long time compared to the
diffusion time scales). In the model with removal the following remarkable facts hold:

o The epidémi(:s/ new will not necessarily spread. This will actually happen only
when the removal rate is not too large compared to the imitation rate. This is
intuitive: if the removal rate is larger, compared to the imitation rate, spreaders
will get exhausted before being able to ”infect” a relevant part of the susceptible
population. This fact is expressed via a remarkable threshold theorem {dating
back to Kermack and McKendrick (1927)), leading to a central epidemiological
parameter, the basic reproduction ratio (BRRE) Ry. The BRR expresses the
number of secondary infections caused by a single infected individual during
his whole infective period (i.e.:before being removed) in a wholly susceptible
population. Hence Ry naturally acts as a threshold parameter: when Ry < 1
we expect the disease dies out, while when K, > 1 the disease will invade the
population. For model (36):

(37) Ry="2

All relevant facts concerning (36) are driven by Ry. In particular the rate of
growth 7o of the initial exponential phase of the epidemics is related to Ry by:

(38) ro=uv(Ry—1)=p0C—v

e Even if Ry > 1 (so that the disease invades the host population), the disease
will not be able to ”reach” the whole population. In the long term the disease
dies out: without having infected the whole population. The fraction eventnally
infected, which may be significantly smaller than unity, is an increasing funetion

of Rg.

4.5.2. Proportionate mixing in the heterogeneous model with removal.
The classification of the overall effects of heterogeneitiy on (36) is not an easy matter.
Complete results are nonetheless available (Anderson and May 1991} for the case of
proportionate mixing. The heterogeneous version of (36) is:

(39) Xi= —Bi(t) ; Yi=Bit)—vY; ; Z= foYi
Let PM be assumed: B;(t) = 5*C X; Zj C;Y; . The two following results by Ander-
son and May (1990, 1991) nowadays constitute a classical theorem of mathematical
epidemiology:
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* For the model (39) it holds: Ry = SC*/v; 1o = v(Ry — 1) where:
(40) C" = po(1+ oz /u)

The (40) extend our previous findings: ” This result stmply reflects the dispro-
portionate role played by individuals in the more (socially) active groups, who
are both more likely to acquire the infection and more likely to spread if’ (An-
derson and May 1990, 287). This variance effect has proven to be valuable
in the study of the transmission dynamics of STD, where the patterns in the
distribution of levels of sexual activity usually generate very large variances,
compared to their mean. In terms of diffusion of news, we may observing that
heterogeneity exagerates the role of the more socially active groups (the ”su-
perspreeders”) who are both more likely to acquire the new and to retransmit
it.

e The asymptotic fraction of the population which experiences the disease in
the long term, is a strictly decreasing function of the degree in heterogeneity
in social activity: ” This is essentially because, other things being equal, the
epidemics tend to burn itself out among those in the highly active classes, thus
driving the effeclive value of the BRR below unity before a large fraction of
those n the low activity classes have been infected” (Anderson and May, 1990).

The substantive meaning of the last result is crucial for new products diffusion:
when within the population there are very socially active groups, the information tends
to spread very quickly among them. But if removal exists, these individuals will also,
soon or later, cease to spread the new, leaving the charge to continue to spread the
information to the less active groups, those characterised by lower degrees of social
activity. This fact will reduce the actual reproduction ratio, and finally, in the long
term, will lead to a smaller final prevalence. In other terms: markets characterised
by the same initial aggregate imitation coefficient may lead to completely different final
prevalences, depending on the magnitude of their heterogeneity.'®

5. Beyond models: conclusions and data issues. The fact that a wrong
homogenous treatment of an underlying heterogeneous situation may give rise to dra-
matically wrong predictions, i.e. that ”heterogeneity matters”, raises perhaps the main
questions of the present paper: how do individuals miz in the actual processes of so-
cial diffusion of innovations? which are the social interactions patierns relevant for the
diffusion of new products’?

13 The results presented here do merely constitute instances of the consequences that heterogeneity
may generate. They are in fact derived under special assumption on mixing patterns and hence do not
exhaust the problem of classifying the effects of heterogeneities in epidemiological models. At present
the understanding of the properties of SIR models (39) in presence of general mixing patterns is far from
being complete (Jacquez et al. 1988, Jacquez et al. 1995; Jacquez and Simon1992). Nonetheless several
important problems have been quite fairly well understood, such as the theoretical foundation and
computation of the basic reproduction ratio in presence of general heterogeneity patterns (Diekmann
et al. 1990, Heesterbeek and Dietz,1996 and refs.), and the problem of the general representation of
mixing patterns (Busenberg and Castillo-Chavez (1991a,b}), Blythe et al. (1991, 1995), Castillo-Chavez
et al. (1995)).
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This central question, which is just a part of the more general question of how
do individuals actually socially mix, has been largely neglected in classical new prod-
uct diffusion models, essentially based on a traditional homogeneous apparatus. The
heterogeneity and mixing approach provides a powerful and flexible theoretical frame-
work. Its empirical applications are non-trivial: a hunger of data and not irrelevant
statistical problems arise, particularly in comparison with the original Bags model and
of many of its modified versions which require which require the estimation of only
three parameters, In contrast, our model requires the estimation of many independent
parameters, depending on the assumptions on the number of heterogeneous groups of
potential adopters. One possible line of defense is that if the underlying phenomenon
is truly heterogeneous, the modelization strategy must take it into account, even at the
cost of loosing effectiveness in the estimation.

Since the beginning of the heterogeneity revolutions theoretical and applied epi-
demiologists have tried to start to anwer the analogous questions, but remaining mainly
confined within the domain of sexual interactions (Shu-Fang ef al. 1994). Hence on the
empirical side there are no ready anwers for fields different from the original one. We
believe if is now time to seriously fill this gap.

A. Dynamics of the sum of independent exponentially evolving popu-
lations. Let us consider a population compounded by » non interacting subgroups
exponentially decaying at different constant rates oy < .. <

(41) X = —0; X5(t) ;>0 i=1,..,n

The dynamics of the total population X(t) is given by the ODE:

(42) X(t) = [Z:, af?-,wi(t)] X(t) = a(t) X (t)

where the w; define the survivors weights w; = X (t)/ X (t). We have:

(43) Wi (t) = w;(t) [—)}((’T%) — %%} = —w;(t) {oai — iajwj]

The system (43) formally defines a Lotka-Volterra n-species cooperative system on the
unit simplex. The dynamics of (43) is easily ascertained: the system will converge to
the long term globally stable equilibrium (1,0, ..,0)** where the only nonzero element

14 Use the Liapunov function:

V(t) = (w; — 1)2 + 2:22 'w?
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pertains to the fastest population (the one characterised by the highest growth rate.i.e.
by the smallest decay rate). This “competitive exclusion” result totally rests on the
existence of a group which is fastest compared to others. In practical terms: the fastest
population will in be, in percentage terms, more and more important as times goes on.
More insight is obtained by writing: a; = o + 2;; where £; > 0, g5 < .. < &, We find:

iy (t) Cow(t)  un() . Wa{l)
m—;ﬁj?b‘j>0 ; ’L[)j(t) wi(t) —E&; m—‘;sjwj<0

showing that the fastest group always gains weight during the dynamics, the slowest
one always looses weight, while the other groups may experience an initial phase in
which they gain weight. In the case n = 2, the ODE for w is a simple logistic equation,
showing that the weight of the faster population, which is initially determined by the
initial size of the two subgroups, will saturate to unity with an s-shaped dynamics.
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