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Abstract. Recent studies on the population dynamics of tuberculosis (TB) have evidenced that
TB is a disease with very long time scales. This makes it of interest to investigate the.long term
interactions between the disease and the underlying population patterns. This paper studies the
properties of two basic models for TB embedding typical patterns of population dynamics. The first
model considers TB dynamics within a stably growing population, whereas the second considers the
effects of logistic-type population dynamics.

1. Introduction. Patterns of reemergence of tuberculos:s in the recent years
are well documented for a large part of the western world (Cantwell et al. 1995,
Raviglione et al. 1993, 1995). Italy is not an exception in this trend (AAVV 1997).
Among the invoked explanations there are increased immigrations, increasing poverty,
intravenous drug-abuse and HIV, via the immunodepression in HIV individuals which
raises the long term probability of developing TB (Raviglione et al. 1993, 1995). In
the italian case a role has been played by the progressive decaying of the surveillance
systern (AAVV 1997). A further important factor is the development of new strains of
the mycobacterium tuberculosis (MB since now on) which are resistent to antibiotic
treatment, as a consequence of incomplete treatment. Even if the data are still very
poor TB risks to become a dramatic problem in former Soviet Union where poverty
and homelessness dramatically increased since 1989.

The re-emergency of tuberculosis in developed countries and its connection with
the dynamics of HIV has raised new interest for TB, which remains the world’s leading
killer among infectious diseases.

This renewed interest has concerned also the area of mathematical models for the
population dynamics of TB. Recent contributions by Blower et al. (1995, 1996; Porco
and Blower 1998} have thrown new ligcht on the historical dynamics of tuberculosis
(TB) in developed areas. It is well known that the lethal incidence of TB in these
areas started to decline during the nineteenth century, long before TB became curable.
Traditional explanations of the décline are based on exogenous arguments (improve-
ments in standards of living and hygiene) or on possible selection processes, both at
the pathogen level (appearance of strains of the pathogen characterized by lower viru-

- lence) and the human-host level. The analysis by Blower et al. is based on a model for
TB embedding the most relevant features of historical TB, i.e. the coexistence of two
main ways of acquiring infection: fast TB via direct contact with an infective case, and
slow TB via endogenous reactivation after a latency period. The model extensively
validated on large data-sets on TB, shows how the natural dynamics of TB reaches
its long term steady state with a “rise, fall and rise” pattern usually taking several
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hundred years. This suggests a fully endogenous explanation of the observed decline
as the outcome of the intrinsic dynamics of TB alone.

Castillo-Chavez and Feng (1997) have considered the effects of treatment both in
absence and in presence of competing strains of MB. In the latter case they could
show that coexistence is quite common in presence of antibiotic resistance. Castillo-
Chavez and Feng (1997, 1998) have considered several other issues. In particular they
have considered the effects of long and variable (rather than exponentially distribu-
_ted) latency period. Moreover they have considered the possibility of (exogenous)
reinfection, i.e. that latent individuals may become active TB cases acquiring a new.
infection from other infected individuals. In this case they could show that muitiple
endemic equilibria may appear through backward bifurcation of the disease free equi-
librium -hen the basic reproduction ratio Ry equals one. They have also considered
(1997, .:298) optimal +accination strategies against TB in age structured frameworks,
by showing that the optimal strategy can be either a one-age strategy or a two-ages
strategy. ' .

Finally, the problem of the interaction between HIV and TB has been considered
by West and Thompson (1997) by usmg a simulation model of interaction between
the two diseases.

The present paper represents a preliminary report of a larger project aimed to a
more systematic investigation of the effects played on the dynamics of TB by more
realistic patterns of population dynamics within the model by Blower's et al. The
results by Blower et al., as all the other previously mentioned efforts, are based on
epidemiological models in which demography is neutral: the pathogen is introduced
in a previously stationary population. Qur investigation appears of interest both on
the purely theoretical side, as “Blower-type” TB models represent a special class of
mathematical models of infectious disease which blends features of several classes of
models, and the applied side. We investigate the properties of two different Blower-
type models, characterised respectively by exponentially stable and logistic population
dynamics. The first model appears to be useful to understand recent observed patterns
of TB in developing areas, while the second seems useful to better understand the
historical dynamics of TB, which suffers, in developed areas, of the massive interference
with demographic transition. The aim of the second model is therefore to reconsider
the process of “rise, fall and rise” of TB in its natural demographic environment.

The present paper is organised as follows. In the second section the basic model
by Blower et al. (1995) is introduced with a brief description of its results, also from a
historical perspective. In the third section we review the role of population dynamics
within basic epidemiclogical models. In the fourth section we introduce a general
Blower-type model for TB embedding population dynamics. In the fifth section we
study in full detail the case of exponentially growing population, while in the sixth
section we report the main facts on the model with logistic population dynamics, and
we are able to fully characterise a special case with density dependency only in the
 death rate.

2. The framework model: the intrinsic transmission dynamics of TB.
Blower et al. (1995) have considered two basic models for TB transmission dynamics,
a simpler one and a more -fined one, The simpler model postulates the coexistence
of two main ways of acqut: ng infection: fast TB via direct contact with an infective
case, and slow TB via endogenous reactivation after a usually very long latency period.
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The population is subdivided in three classes: i) susceptibles (X), ii) latently infected
(L), i.e. those who have been infected with mycob. tuberculosis (MT since now
on) but have no clinical illness and hence are noninfectious, and iii) active infectious
tuberculosis (T'), who are infectious and hence can transmit the infection to others.
Once a susceptible has being infected with MB, he either develops active tuberculosis
(in a fraction p estimated approximately to be 10%), so directly entering T state, or
enter the L state (in a fraction 1 — p) from which they can develop tuberculosis in by
the so called endogenous reactivation mechanisms. The structure of the model is the
following:

Xt) = A-{(p+2X
(1) Lt) = (1-pAX —(u+v)L
CT(t) = vL+pAX — (u+ pr)T

where A is the birth-recruitment term, u the death rate per unit time, pr the extra-
mortality rate induced by TB, A the force of infection (FOI), i.e. the hazard of getting
infected, v the rate of developing TB via endogenous reactivation, p and (1 — p) are,
respectively, the fractions of infected individuals who develop fast TB or enter the
latent state. The FOI is modelled via a bilinear mass action (BMA):

(2) A=43T

where 3 is the transmission parameter, representing both the contact and transmission
processes. (Castillo-Chavez and Feng (1997,1998) used a true mass action incidence
(TMA), with FOI given by: A = 3T/N). The refined model adds more realism
by considering further features of TB namely (Blower et al. 1995, 815): i} only a
certain fraction of cases are assumed to be infectious; ii) cases may recover (without
treatment); iii) recovered cases may relapse TB again.

The common features to both models are: a) they do not consider remfectuon,
phenomenon considered quite relevant in presence of immunodepression (for instance
- in presence of HIV); b) they do not include the effects of treatment (considered in
Castillo-Chavez and Feng, 1997a,b, and 1998). From this last point of view they are
useful essentially for historical purposes or for the understanding of the epidemiology
of TB in developing countries where treatment is not the norm (Porco and Blower,

1998).

2.1. Main mathematical properties. As in this paper we are essentially inte-
rested in the model (1} we briefly report here some of its main features: The model
is a blend of the basic SI (Susceptible - Infectious) and SEI (Susceptible —» Exposed -
— Infectious) models for the population dynamics of infectious diseases: for p =1 all
infected individuals become infectious (collapsing in the SI case), whereas for p = 0 all
the infected enter first the latent state (the SEI case). The basic reproduction ratio,
i.e. the expected number of new TB cases caused by an initial TB infected seed during
his sojour in the T state in presence of a wholly susceptible population, is given by:

Ro= ot (p+ (1 -p) ) W

1+ p

Al

Ry is the sum of two components: a fast component (R{%** = pSN(p+ ur)™1) and a
slow component (R§™ = (1~ p)BNv(g+v)~ (+ pur)~1)) denoting respectively the
number of new fast and slow TB cases caused by the given initial case of TB.
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The moadel (1) has the disease free equilibrium (A /g, 0, 0) which is globally asymp-
totically stable (GAS) when Ry < 1. When Ry > 1 the disease free equilibrium (DFE)
becomes unstable and, at the same time, a unique endemic equilibrium appears which
is locally stable (LAS). As shown in fig. 1 the dynamics of the model for historically
plausible parameter constellations exhibits the rise-fall-stabilising pattern, which is the
outcome of the asynchronous activity of the two separate source of infection embedded
in the model. More precisely, when Ry > 1 we have the following effects: i) in the first
phase a major part of the population is infected (entering the L state) while at the
same time the fast mechanism triggers a fast TB epidemics with exponential growth
in the number of cases (which is more or less rapid depending on the magnitude of
" Rp). ii) Even if the fast TB epidemics cannot be maintained in the long term due
to the reduction in susceptibility, which cause the prevalence of fast TB to cases to
fall down, the disease becomes endemic in the population via the slow mechanism, by
effect of which an increasing number of latent individuals starts to develop TB over
time. ‘

2.2. Historical TB: main facts. Extensive uncertainty analysis of the model
parameters (aimed to define the more likely parameter constellation) relying on the
available historical data-sets on TB, coupled with sensitivity analysis, shows that,
for almost all “historically plausible” parameter constellations, the natural dynamics
of TB reaches a long term steady state with a “rise, fall and rise” pattern taking
from a hundred to several hundred years. This prediction qualitatively fits very well
observed historical pattern of TB: “Major TB epidemics arose in Europe in in the
early 1600’s, spread for almost 200 hundred years and then peaked at the end of the
eighteen century...in Europe and North America these epidemics have been in decline
since 1850.” (Blower et al. 1995, 818). This in turn suggests a fully endogenous .
explanation of the observed decline of TB as the outcome of the intrinsic dynamics
of TB alone, which very well agrees with observed historical facts. The essence of the
explanation is the threshold effect of the model. By writing the threshold condition
in terms of population we get:

v ptpr .
3 N>((1 p)#+v+p) T N
where N* = N*() is the critical community size, which is an inverse function of 3.
The condition (3) states that for every parameter constellation there exists a critical
community size above which the epidemics will spread and below which the epidemics
fades out. _

It is not difficult to realise that the factors traditionally invoked to explain the
biow-up of TB in western countries, namely urbanisation, industrialisation and po-
pulation growth, not only created the conditions for the satisfaction of the threshold
condition but presumably resulted in the threshold conditions being suddenly and
dramatically exceeded, generating major epidemics. In fact population growth and
urbarisation with the connected crowding effects possibly increased the left member
of (3) while increasing poverty and malnutrition, by depressing the immune system of
individuals possibly increased the transmission rate 3 reducing the right member of

3). .
'3. Population dynamics in infectious disease models. Basic epidemiologi-
cal models usually assume a stationary population (let us call it type I population dy-
4



namics} obtained by assuming identical birth and death rates. In this case traditional
epidemiological models (SI, SIS, SIR, ...,.SEIRS) in which the only nonlinearity is the
incidence term (usually assumed BMA or TMA), exhibit a common feature, which is
the dichotomy between the disease free equilibrium and a unique endemic equilibrium
filtered though the action of a unique threshold parameter, usually denoted by Rp!.
The assumption of constant population is unsatisfactory in many cases, for instance
when disease-related death exists, as the population is necessarily driven to extinc-
tion. A formal remedy to this has been to assume a (long term) stationary through
immigration population, i.e.e a population that, in absence of the disease is described

by:
N=A-rN

where A > ( is the immigration term and r > 0 is the internal rate of growth (some-
times A is naively assumed to be a constant natality term, and r the mortality rate).
Let us denote the previous model as “type 2° population dynamics. For human po-
pulations “type 2’ may result well suited to describe the recent story of developed
countries, characterised by below replacement fertility plus immigration.

As long as BMA or TMA are considered, type 2 demography preserves most
features of the basic model with stationary population, among which the dichotorny
between the DFE and the endemic equilibrium as mediated by R (for instance Mena-
Lorca and Hethcote 1992, sec.2,3).

When more realistic assumptions are made on the underlying demography things
become more complex. Two common assumptions are, following traditional popu-
lation theories, malthusian exponential dynamics and density dependent dynamics,
usually typified via the logistic curve. Exponential dynamics (type 3) is expressed by
the ordinary differential equation: V = (b — )N where b > 0, u > 0, are respectively
the birth and death rate (when & = p we fall in the type 1 case). A general logistic
type dynamics (type 4) is expressed by: N = (B(N) — D(N))N where B(N), D(N)
are the density dependent birth and death rates.

Epidemic models with type 3 or type 4 population dynamics often exhibit more
complex properties. Both these cases are characterised by the appearance of multiple
equilibria and/or muitiple thresholds needed to keep into account the evolution of
both the population and the disease, and the possibility that the disease be weakly or
strongly persistent (Busenberg and VandenDriessche 1990). Multiple equilibria follow
in the logistic case, by the existence of two equilibria for the population which may
be paired with the equilibria of the joint epidemic process.

For what concerns epidemic models with type 3, Anderson et al. (1988) have con-
sidered a SI model for HIV in the developing world, and gave the first classification
of the effects of the interaction of population growth and infectious diseases. Busen-
berg and Van den Driessche (1990) have studied in detail the properties of a general
SIRS model with TMA incidence and extra-mortality both in the infectious and re-
moved state. They are able to prove the GAS of the endemic state by means of a new
negative Bendixson-Dulac type criterion (see also Busenberg and Van den Driessche,
1992). Thieme (1992) has considered a similar SIRS model embedding a nonlinear
contact rate defined as a saturating function of population size. Busenberg, Cooke
and Thieme (1991) have considered a more refined model for AIDS. Mena-Lorca and

! This feature is not necessarily preserved by nonlinear contact rates. For instance Liu et al, (1987)
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Hethcote (1992) study SIRS models similar to that considered in Busenberg and Van
den Driessche (1990), by systematically comparing the effects of type 2,3 population
dynamics crossed with three different assumptions on the FOI mechanism: TMA,
BMA and a saturating one. They obtain results similar to Busenberg and Van den
Driessche (1990) in the common case, and are able to show the existence of periodic
behaviour in the case of exponential population plus saturaiing FOI. Lin et al. (1993)
have considered exponential population evolution within a model for sexual trans-
mission of HIV/AIDS with several stages of infection and TMA, generalising results
by Anderson et al. (1988). More general r-:ults on multigroup models are given in
Busenberg and Van den Driessche (1995).

Several results are available also for what concerns models for endemic diseases
in presence of density dependent effects and/or logistic-type population dynamics.
Greenhalg (1990,1992a,1992b,1992c) has analysed the effects of a density dependent
death rates within SIR,SIS,SEIS,SEIR and SEIRS models with BMA. Pugiiese (1990)
has considered a SI model embedding general density dependent mortality and a non- -

linear contact rate. Greenhalg and Das (1995a, 1995b) have considered SIR and SIRS - -

models with density dependence both in the death and the contact rates.

The first study of the effects of type 4 demography is Gao and Hethcote (1992)
who considered SIS and SIRS models with TMA and “classical” logistic population
dynamics (type 4). The SIS cases is fully characterised and all resuits found hold
globally. In the more complex SIRS case they identify all the relevant thresholds but
the global stability of the “main” endemic equilibrium is still an open question. Zhou
and Hethcote (1994) have investigated a SIS model combining logistic demography
with a nonlinear incidence obtaining global results.

A central question in applied sciences is the identification of mechanisms leading
to persistent oscillations. This question is even more important in epidemiology where
traditional models with standard nonlinearities (BMA or TMA) unavoidably lead to
global stability. The routes to oscillations that have been found for epidemiological
models are: i) periodic forcing; ii) time delays (both these aspect will not be of interest
here); iii) more nonlinearities. The two types of nonlinearities considered in epidemi-
ological mocsls regard essentially: i)the incidence rate, ii)the underlying demography,
through density dependent effects of the aforementioned type. At present there are
no clear-cut results on which are the minimal nonlinear ingredients needed to excite
persistent oscillations in epidemiological models without resorting to external forcing
or time delays. For instance, in the case of constant population, i.e. working only
on the side of the incidence rates, SEIRS type models may exhibit Hopf bifurcations
(Hethcote and Van den Driessche 1991) only through very strong nonlinearities in
the contact rates, i.e. nonlinearities generating a downturn in transmission leading to
muitiple endemic states.

Hence an important point is: to what extent may population effects force the
appearance of persistent oscillations in epidemioclogical models? For SIRS models
~ Mena-Lorca and Hethcote (1992) have shown that a special type of saturating contact
rate may be able to generate persistent oscillations provided the population is expo-
nentially evolving. Anderson et al. (1981) found numerically that SEI models with
BMA, linear density-dependent mortality and zero fertility of exposed and infectious
are responsible for persistent oscillations. A proof of the existence of at least a stable
limit cycle in their model by is given in Swart (1988). This leads to the confidence that
for SEI models BMA plus (linear) density-dependent mortality plus differential fer-
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tility couid be “true” minimal nonlinear ingredients for the generation of oscillations.
Pugliese (1992) has considered a SEI mode] with a density dependent mortality rate, a
density dependent incidence and differential fertility among the three classes. Analysis
of selected subcases shows again the appearance of persistent oscillations and of other
complications as well, such as multiple endemic states. In particular the following facts
are ascertained: i) density-dependent effects plus the nonlinearity in the FOI are the
main responsible for persistent oscillations; ii) differential fertility causes the lost of the
simple DFE-EE dichotomy, with the appearance of multiple equilibria. Roberts and
Jovett (1996) have considered a quite similar model, with density dependence also on
the birth rate, vertical transmission, and incidence B(t) = N~'C(N)XZ, where the
" contact rate C(N) satisfies C'(N) > 0. They remark that by ruling out the assump-
tion of differential fertility, they may avoid the problem of multiple endemic states
while maintaining the existence, for some parameter window, of periodic behaviours.
Gao et al. (1995) have considered several SEI models with type 4 demography and
both BMA and TMA, vertical transmission and disease related death. They have been
able to show that type 4 plus BMA may cause the appearance of a Hopf bifurcation'
(this is not true for TMA). Gao et al. (1997) have also been able to show that, still
for SEI models, even type 3 demography may cause persistent oscillations with TMA.

The TB models we will consider in this work are mixed models blending features
of both SI and SEI models. Existence or nonexistence of periodic behaviours for this
class of models is still an open question.

4. A general model for TB with population dynamics. The general model
we will consider here is

X(t) = B(N)N—(D(N)+ AT, N)X
(4) | L:,(t) = (1-pAX — (D(N} +v)L
T(t) = vL+p)X ~ (D(N)+ pr)T

The main news with respect to the basic model of the previous section concern:
e The dynamics of the total population N = X +L+T in absence of the disease

(ur =0) is:
(5) | N(t) = (B(N) - D(N)) N

where B(N), D(N) are nonnegative, continuously differentiable functions de-
noting respectively the birth and death rates. Standard assumptions are:

i) B'<0,D' >0 ; ii) B(0) > D(0); i) B(oo) < D(c0)

The (5) is a general model for population dynamics embedding as special subcases
the traditional malthusian model (B(N) = & D(N) = u) and the logistic model
(B(N) =b—kyN ; D(N)= p+ koN). In this last case we have the equation:

(6) N(#t)=[(b~p) = (k1 +k2)N) by fon, g > 0

sometimes written as:



_ . N
™ | Nt =r(1 = N

where r = b — pu is the initial malthusian rate of growth and K = r/ (k1 + k2) is
the car;ying capacity of the system, which is the (GAS) long term equilibrium of the
model.¢ -

The previous set of assumptions is the most general preserving for (5) the main
features of (7), i.e. the existence of a unique (GAS) nonzero long term equilibrium for
the population.

e The force of infection term follows a general density dependent pattern of the
form: A = A(T, N). Noteworthy subcases are the bilinear mass action (BMA) .
used by Blower et al: A(T;N) = 8T, and the true mass action (TMA), used
by Castillo-Chavez and Feng (1997,1998): (T, N) = ST/N. In this paper we
consider only TMA; the effects of BMA and more general FOI’s with nonlinear
contact rate A(T, N) = 3(T, NYT/N will be considered in a forthcoming paper
(Salinelli et al. 1998). _

5. TB in an exponentially varying population. Here we consider the model
(4) under malthusian population dynamics and TMA-type force of infection. The final
form of the model is:

X)) = bN-pX -6

® 0 = (-pEa - oL
; XT
) = vL+pﬁ—ﬁ-—(#+#T)T

where all the parameters are strictly positive. In particular b # p. The most intere-
sting case is b > u (malthusian growing populations).

Notice that (8) admits a unique solution for every initial datum, which is also
meaningful, i.e. solutions originating from positive initial conditions remain positive.
The dynamics of the total population is:

.

(9) N=(b-p—urR)N
As (8) is first degree homogeneous it is convenient to work on the proportions, by

considering the new variables}: § = X/N; I = L/N; R = T/N. This leads to the
system: ' :

St) = b(1-S)-BSR+ urSR

(10) Ity = (1-p)BSR~ (b+v)I +urlIR
R(t) = vl+pBSR— (b+pr)R+prs

2 The linear assumption (6) is at best an approximation, as the birth rate may become negative
for higher N. This restricts the study to the case N < b/ky = N4 which preserves the meaningfuness
of the carTying capacity, as K = I’ﬁ:"‘:—, < Na.

3 A more deep resort to homogeneous equations, following for instance Busenberg and Hadeler
(1990), is possible. :



The system (10), which is two-dimensional, as § + I + R = 1, is defined on the feasi- -
ble region: D= {5>0,12>20, R>0, S+ I+ R=1}. The (9) and (10) show that
the epidemiological part of the system decouples from its demographical part, as a
consequence of homogeneity. This permits, as in Anderson et. al: (1988) and Busen-
berg and Vanden Driessche (1990}, to study first the dynamics of the epidemiological
part and then using the dynamics of R as an input to study the dynamics of the
overall population given by (9). The population dynamics would then be given by the
equation:

(11) N(t) = Noexp {(b — )t = pr fo t‘ R(u)d’u}

For instance if the epidemiological part of the system reaches a positive equilibrium
R* then, unless in the very special case (b — u) — urR* = 0, the population would
experience exponential growth or decay:

(12) N(t) = Ngexp {(b — p — urR*)t}

It is possible to show that for the epidemiological system (10) there exists a thre-
shold parameter Ry defined as:

13) B (pe-n5)

which governs whether the endemic proportion can exist and be locally stable. These
facts are summarised by the following theorem which gives the main mathematical
results concerning system (10):

THEOREM 5.1. The system (10) always has the disease free (DFE) equilibrium
Ey = (1,0,0), which is GAS whenever Ry < 1. Viceversa, when Ry > 1 a unique
endemic eguilibrium E\ = (8*,I*, R*) appears which is GAS: _

We only sketch the proof of the previous theorem (short details are postponed to
the appendix; the more technical aspects will be discussed elsewhere). To check the
existence of the DFE is trivial matter. The investigation of its local stability leads to
the jacobian:

-b 0 —(8— pr)
(14) J(1,0,0)=| 0 —(b+v) (1-p)8
0 v pB = (b+ pr)
from which the threshold Ry is determined.

As the DFE is LAS for Ry < 1 and unstable for By > 1, Ro is the relevant
threshold which governs whether the endemic proportion can exist and be locally
stable.

By studying the equilibrium system:

(1-p)B(1-T-RR-(b+v)[+uprIR = 0
vf+pB(l-I—R)R—(b+ur)R+urR* = 0

on the set

Do={I>0,R>0,I+R<1}.
9



it is possible to check that the DFE remains the unique equilibrium for By < 1 and
that a unique locally stable endemic E; equilibrium appears for Ry > 1 (see the
appendix). .
To prove that the DFE is also GAS for Ry < 1 we use a Poincaré-Bendixson-type
argument. The argument goes as follows: a) for Ry < 1 the DFE is the unique equi-
_librium in the feasible region, and it is LAS; b) D is positively invariant: trajectories
initiating in D stay in D forever; c) there exist no periodic orbits which could attract
trajectories in D, as a periodic orbit should necessarily enclose an equilibrium point,
and this is excluded by the fact that the DFE is the unique equilibrium in D for Ry < 1
(and by the paositivity of the trajectories). Hence the DFE is the only attracting point
in D and is necessarily GAS. Finally the proof of the GAS of the endemic equili-
brium for Ry < 1 is obtained by the generalisation of the Dulac criterion proposed by
Busenberg and Vanden Driessche (1990). '

5.1. Behaviour of the model. In the more. interesting case of exponential -
population growth (b > i) the overall long term behaviour of the model is the outcome
of the complex interplay between several thresholds* (notice that the present discussion
holds thanks to the fact that our results are global). These thresholds are:

v
+(1-
P (p ( p)#+v)

which governs whether the disease is capable to persist in absolute terms in a constant
population (& = u). Then we have:

__B v
Bo=gar (p+(1—P)b_-T——E)

which governs the persistence of the disease in relative terms.

For b > p we have Ry < Rp which implies the obvious fact that persistence in relative
terrns is more difficult than absolute persistence, as the growth in numbers could be
more than counterbalanced by a faster growth in the total population. Finally we
have:

(15) : Rp =

b—p
16 R} =
(16) oy

which follows from the “long term” dynamics of the population:
(17) N =N({(b - p) - urR"]

The threshold (16) governs whether in the long term the disease is capable of regu-

lating the growth of the population by converting population growth (B! > 1) into

population decay (R! < 1). Notice that it any case the presence of the extra mor-

tality of the disease slowers population growth. Population decay will intervene when

(remember b — i > 0): R* > (b— u)/ur i.e. when TB (relative) endemicity exceed a
prescribed threshold.

The relation::

L

L

* From this point of view the discussion is similar to Busenberg and Vanden Driessche (1990).
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permit to understand the interplay between the existence of a giobally asymptotically
stable equilibrium in the system (S, I, R) and the long term dynamics of the original
system. It holds for instance:

T\ _[§ (N (N .
(-0, ), (), e
§ 241 £ B E

The last result shows that when Ry > 1, so that the system reaches Ej in the long
term, then the long term growth of population and disease will be aligned.5 '

Definitively the behaviour of the model is as follows (full mathematical details
will be provided elsewhere). Let us consider the case, more interesting from the
demographic point of view, of a population growing exponentially at the positive rate
r = b~ p in which an initial seed of the disease is introduced. If Rp < 1 the disease
is unable to survive in absolute terms and goes extinet (hence it cannot persist in
relative terms in a growing population).

If Rg > 1 the disease is able to invade the host populatlon in absolute terms and
the number of cases of TB will start grow. This does not mean that the disease will
be able to persist in relative terms as the population is growing: as long as population
grows faster the incidence figures of TB will be decreasing (in fact Rg > 1 may
coexist with Rp < 1). Relative persistence needs something more, i.e. Rp > 1: in
this event. the potentiality of the disease are strong enough to permit the emergence

~of an endemic equilibrium in relative terms: population and the disease will enter in
a regime of stable growth (so that the incidences figures will tend to remain constant
over time). The intrinsic rate of growth of the system will not be r, but something less
due to the presence of the extra-mortality caused by TB, The reduced intrinsic rate

. of growth will be exactly:r* = r — urR*. There is a further possibility, namely that
r* is forced to become negative: in this event population growth would be converted
to population decline until extinction. The interplay between pr and Ry in reducing
r* is not trivial as very large values of ur would reduce Ry and therefore R*.

‘ 6. Logistic population dynamics. Let us now assume that in the general
model (4) population dynamics follows the standard verhulstian form (6):

(18) ' N(t) = [r — (ky + ka)N]

with equilibrium at K = »/(k; + k), r = b — p. By assummg that the FOI is of the
TMA type we get the final model

X@®) = G-kNN = (a+kN)X - g2
(19) L) = (1—p)ﬁT—((p+ng)+v)L

T(t) = oL +pﬁX—AT,F- — ((#+ k2N) + pr)T

5 Notice that synchronous growth between population and epidemics appears only when Ro > 1
and the GAS equilibrium in the proportions appears. When this is not the case (Rg < 1 ) then the
disease could even grow in absolute terms but without any synchronicity with population growth. In
this case the discrimination between growth and decay of the disease is governed by Rp.

® A trivial observation is that this happens whatever be the size of of the population: TMA modeis
are not sentitive to population size.
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The total population satisfies:
N(@) = (r— (ky + k2)N) N — urT

As in the exponential case it is convenient to pass to the fractions: S, I, R. We get:

§ = (b= kN)(1 - §) — BSR + urSR
(20) I=(1-p)BSR— (b~ k1N) +v)I + prIR
' R=vI+pBSR—((b—kN)+ ur)R+ prR?

where S + I + R = 1 so that one equation can be droi)ped and substituted by the
population equation. We definitively consider the system

[=(1-p)BL-I-R)R—((b-kN)+v)+purIR
(21) - R=vI+pB(1-I-R)R—((b—N)+pr)R+ prR?
N = Nr~ (ky + k)N - prR| |
Here we only report results for the case » = 5 — u > 0, which implies a true

underlying process of logistic growth of the population (the reversed case of population
extinction under the accelerating effect of density dependence is less interesting).

6.1. Equilibria and thresholds. The system may have (as it happens for simi-
lar cases) up to four equilibria. In particular it always has two disease free equilibria
which are found by posing I = R = 0 in (21). This leads to the disease free population

equation: _
N =(r— (k1 + kaN)) N
which has the equilibria N = 0, N' = K . Let us denote these equilibria as Fo and Ei:
Eo=(1,0,0,0) E =(1,0,0, %)

Moreover, for N — 0 in (20) we obtain the system:

§=b(1—S5) - BSR+ prSR
(22) : I=(1-p)fSR-(b+v)I+urlR
R=vI+pBSR — (b+ pr)R+ prR?

The nonzero equilibria of (22) represent (provided be feasible) endemic states in the
proportions with population lead to extinction. The system (22) is identical to the
system (10) defining the equilibria of the TB system with exponentially evolving po-
pulation and therefore leads to the same equilibria and thresholds. Hence, by defining
with Rg the basic threshold parameter of the exponential model (previously defined

as Ro):

(23) Rg = bfw (p +(1- p)b%)

when Rg < 1 we only have the already found E equilibrium, while when Rg > 1 the
Ej equilibrium:

Ey = (5,12, Ry, 0)
12



will appear. Ej is exactly the endemic equilibrium of the exponential case, and satisfies
the same properties. In particular for Rg > 1 it will be GAS. The corresponding
asymptotic dynamics of the population is given by?:

N(t) = [(r - urRs) — (k1 + k2) N] N(t)

the ultimate outcome of which will be extinction when r — upRg < 0. Local stability
analysis shows that this actually happens if and only if Rg > 1.

Finally, let us look for endemic equilibria with nonzero population. From the
population equation we find:

r—urR

24) N=%7% <%
Obviously we seek N > 0, implying:
. .
25, R<—
(25) . =

which provides a bound on the endemic proportion of TB cases.
Let us write B(N)} = C + DR where:

' . kab + klp._ . ky
(26) C= itk O T Ak

From the [ + R= 0 we get (as (8 + D — up)R + C < 0 at equilibrium):

- B—ur
@ 12~ (o meo) ®

The equilibria with nonzero population may then be found as solutions to the system:

(1-p)B(1~I-R)R—((C+ DR)+v) +uriR=0
(28) I_(ﬁ—nr—((B+D—ur)R+C))R=O

(B+D—pur)R+C
‘defined on the set Dy. Let us define:

v
C+wv

(29) Bo= 7 f#r (p + (1- p))
where C = B(K) is the birth rate at the carrying capacity. It is possible to show
that Rp is the threshold that governs: i) the instability of the “large” DFE E; =
(1,0,0, K); ii) the existence of a (unique) meaningful endemic equilibrium with positive
population. The following theorem holds: ‘ .

THEOREM 6.1. When Ry < 1 no equilibria with positive population may erist
in Dyg. When Ry > 1 a unique meaningful endemic equilibrium Ey = (S3, I3, R3, N3)
exists. The endemic proportion of TB cases Ry satisfies R < R, where:

_B-ur—-¢C
| B—ur+D
Moreover E5 is locally stable whenever it exists.

et

7 See the lemma of the next section.
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6.2. Behaviour of the model. As in the exponential case, the behaviour of the
system is governed by an articulated set of thresholds. Among these Rp (governing
whether the disease is capable to persist in absolute terms in a constant population)
and Rg (governing the existence and stability of the equilibrium Ej) are inherited
from the exponential model. Moreover we have:

. ﬁ ) v
Bo= 5% v 7r (" +BE) o “p))

governing existence and local stability of the large DFE and the existence of the

endemic equilibrium E3. Notice that, as B(K) < B(0) = b, it follows Ry > Rg, which

permits a nice graduation of the mutual effects of Hy, Rg. Rg is the reproduction

ra.te of TB cases when the population is characterised by its maximal birth rate, for

N = 0, while Ry is the reproduction rate corresponding to the carrying capac:ty of
the population, which is characterised by a lower birth rate B(K).

Even if our mathematical analysis of the model (21) is not yet complete, we still
lack some global result, the behaviour of the model is roughly as follows. Let us
assume, as in the exponential case, that r > 0, so that in absence of the disease
the population would reach its long term logistic equilibrium KA. Let us moreover
assume that the population starts from very low initial levels (to emulate the possible
phenomenological effects of the process of demographic transition). In this population
initial seeds of TB are introduced. If Rg < 1 the disease is unable to survive. If
Rp > 1 the number of cases will grow in absolute terms. In this case, provided
Rp > 1 also holds, the disease can persist in relative terms and will synchronise with
population growth reaching a long term equilibrium which will be somewhat lower of
K due to the existence of the disease induced mortality.

Let us consider the extreme case Rg > 1, In this case the disease is very strong
(remember that as: Rp > Ry > Rg it follows By > 1 even more so, and Rp > 1 as
well). In this case the equilibrium F becomes GAS corresponding to the fact that
the action of the disease has been so strong so to lead the population to extinction
despite its intrinsic growth message.

6.3. The case of density-independent fertility. If fertility is density inde-
 pendent (B(N) = b) the system (20) reduces to:

§=b(1-8)~BSR+urSR
(30) I=(1-p)BSR— (b+v)I+urIR

R=vl +pBSR — (b+ pr)R + prR*
and:
(31) N = N[r —kaN — prR)
In sum: as the system in the proportions is not affected by the general mortality rate of -
the population, (30) results identical to the exponential case, the only difference being
in the population equation. Hence, the epidemic and the demographic subsystems
decouple. This permits to use “in toto” results from section 4 for the subsystem
(30) and then, once the solution R(t) for the proportion of TB cases is available, it

can be used as an input for the population equation.  Hence this case is completely
characterised. In particular, the basic threshold is once more:

(32) Ro= (p+( -p)bﬂ)

14
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which governs the persistence of the endemic proportion. When Ry < 1 the DFE
equilibrium in the proportions is GAS and the population follows a disease free logistic
pattern: |

(33) | N=N[r~#kN|

‘When Ry > 1 the exponential endemic equilibrium E» is GAS and the population
follows the reduced logistic pattern:

(34) B N =Nlg- kN
where g(t) depends on the dynamics of R from (30):
o{t) =r - urR(t)

The equation (34) is quite common in these type of models. The following lemma
(Gao and Hethcote, 1992) holds:

LEMMA 6.2. Provided the function g be continuous and its limit g (oco) exists, -
then the irue long term behaviour of (84) is equal to that of the ODE:

N = N{g(c0) — kyN|

Hence, as R(t) reaches the long term equilibrium Rj, the true long term dynamics
of the population is given by:

(35) ' | N=N[r- purRa) — kaN|

The (35) is a logistic equation with long term equilibrium given by the reduced carrying
capacity: '
T — pur iy
Ny = =
ko
From (36) we see that, exactly as in the previous cases, when urR; exceeds r popu-
lation growth may be converted into population decay up to extinction.

(36)

7. Conclusions. It is our intention to expand this preliminary work in the future
along two directions. On the theoretical side our next step will consist in the study of
the dynamical effects of bilinear mass action (BMA) incidence terms (with and without
exogenous reinfection), in both the exponential and logistic models. As shown by Gao
et al. (1997) BMA may be responsible for the appearance of persistent oscillations in
SEI models with type3 or type 4 population dynamics. Asthe Blower-type TB models
considered here are mixed SI-SEI models not yet studied in the literature, the fact to
prove or disprove the existence of oscillations appears to be an important result for the
ongoing debate on ingredients needed to generate oscillations in basic epidemiological
models. .

On the applied side we intend to deep the analysis by Blower et al. by investiga-
ting with uncertainty/sensitivity analysis the behaviour of TB models with population
dynamics. Moreover we aim to investigate the processes of modernisation, urbanisa-
tion, and definitively of demographic transition, which defined the environment in
which historical TB developed, by adding further realism, i.e. by considering reinfec-
tion and explicit spatial structures which be able to more directly connect the actual
transmission dynamics of TB with specified geographical contexts.
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0.1. Equilibria and local stability analysis of the exponential model.
The equilibria are the solutions of the system:

i=0

(37) B=0

i.e.:

(38) { ~(b+)I+(pr—(1—-p)ARI+(1-p)BR-(1-p)BR2=0
vl ~pBRI + (pB ~ b — pr) R+ (ur ~ pB) R? = 0

on the feasible region:
D={I>0,R>0,I+R<1}.

It is immediate to check that Ey = (1,0, 0) is a solution, and it is the only solution on
the boundary of D. At the DFE we find the jacobian:

: —b 0  —(8-ur)
JE)=| 0 ~pb+v) (1-pp
0 v pB — (b+ pr)

An eigenvalue is given by ~b. The other are solutions of:
M +PAX+Q=0
where:
P=(b+v)+(b+pr—pf) ; Q=(b+v)(b+pr—ph)—(1-p)B0
The definition of Ry ((13) of the main text) permits to write:
Q=(0+v)(b+pr)(l1- Ry} ; P=c+w(l-Ro)

where &, w are strictly positive. This shows that a dominant eigenvalue exists and is
positive if and only if Ry > 1.
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Let us now look for endemic equilibria, i.e. solutions located in the region Dy. By
addmg the two equations (37) we get:

(R+D)((ur —B) R~ b) (#r—ﬁ)R-

Notice that if (up — ﬁ_) R~b = 0 the last relation is not meaningful; for (ur — 3) R—b #
0 the system (37) is equivalent to:

which may be written as:

I{(ur — (1~ p) B)R ~ O+l = (=P BR(R-Y

(39) I pB-ur)(1-R)~b
(B~pr)R+0b
LEMMA 0.1. Let us suppose (I*, R*) is a solution of (39) on Dy; then R* satisfies
Bopr-b |
40 R < —
(40) - B-upr

with 8 — pup — b > 0.

Proof. As it must hold 0 < I* + R* < 1 with R* > 0, the second equation of (39)
implies 3 — pr > 0. Under this assumption, and remembering I* > 0, B* > 0, we
find:

5.urb
Rt 2_HT O
B - ur

But R* >0, leading to 8 — upr~b> 0.0

<1

After some algebra (39) leads to the equation:
(41) F(R)=aoR*+a1R+a2=0
where:

ag = pr(B—pur)
— (B~ pr = ) pr + (B - p7) (b+v)]
(Ro— 1) (b+v) (ur +b)

Keeping in mind that 3 — pp ~ b > 0 means (3 — ur) /b > 1, it hoids:

s ) . 5
(42) Bo_b-!—-wr (p+(1 p)b+'v)<b+,u.r

implying that when @ — ur ~ b > 0, Ry may lie on both sides of unity.

The following theorem holds:

THEOREM 0.2. When Ry > 1 system (39) admits one and (only one) solution in
Dy. No solutions erist in Dy for By < 1.
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Proof. Thanks to Lemma 1 we only need to solve (39) for 3 — ur > b > Oon the
set Dy = {I>0,0< R<R,J+R< 1}, where R = (8~ ur — b) /(8 — pur). Hence
ap > 0, a1 < 0 implying that the parabola f(R) is convex and has a positive vertex.

- Moreover

FO) = (RBo-1){(b+v)(b+pr)

f® = (p-1)b8
Since p € (0,1) it follows f (R) < 0; hence one (and only one) solution exists in D;
iff £(0) > 0ie iff Ry > 1. Viceversa, when Ry < 1, provided 3 — ur > b > 0 the

parabola f(R) has a negative intercept showing that no endemic equilibria exist for
Ro < 1. Finally, for g = 1 the parabola f(R) takes the form:

HR) = pr (B~ pr) R* — [(B — pr) (1 + b+v) — bur] R
from which, apart the uninteresting soiution R = (), it follows:

pr+b+u _ b

R=
pr B — ur

which is not acceptable as it does not satisfy R < R

0.2. Local stability analysis of the endemic equilibrium. Let us consider
the reduced jacobian in correspondence of the endemic equilibrium £;:

(ur=(1=p)B) Ri=b—v ~(1-p)BR:+{b+v) 1

J(E) = ) I
v—pBR, ~v 5~ B~ pr)Ry

Hence:

TT-}-(EI)=-(ﬂ—#T)R—(b+v)+m-R—v£

Let us now consider the equai:ion I= 0; solving for S we get:

(tv)=-prR
(1-p)BSR

As § > 0, by definition it necessarily holds: (b+ v) — urR > 0. Hence:

S=1

TeJ(Er) = = (8- pr) R— (b+v) — prR) — v <0
Let us now consider det J:
det J (E1) = pur (ur = 8) R + [b(pB — pr) +v (6 — pr)| R+ I [v (B - pr) + bpB]
Let:
g(R) =pr{pr - R*+ b3 —pr)+v(B—pr))R  Re(0,1)

with g (0) = 0. We now prove that there exists R such that g (ﬁ) >0and Ry < R |
(where R, is the endemic solution for R) implying, thanks to up—3 < 0, that g (R) >0
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forall Re (0, ﬁ) - Recalling that the equilibrium equation f(R) = 0, has two roots of .
which only the smaller one Ry was acceptable (in that lies in (0, 1)), while the larger
R* is greater than R = (3 - ur — b) /(B — pr), from the product

Ryt = 2B—pr—b)+b(p8—pr—b)

| ur (B — pr)
we find:
o U(B—pr=b)+b(pB—pr—>5) _ =
fa< i B —pr - b) =R
Hence: '

g(ﬁ) =%?~E(;%>.O.

showing definitively that det J (E;) > 0, thanks to 8 > ur.

0.3. Global stability of the endemic equilibrium. To prove that the en-
demic equilibrium E; is GAS we use the negative criterion developed in Busenberg
and VanDenDriessche (1990) to exclude the existence of periodic solutions of the pro-
portion system. This criterion constitutes an extension of the classical negative crite-
ria Bendixson-Dulac-type. Given a vector field v = (v, (z,%,2), 2 (2, y,2) ,va(z.9, 2))
which is C! on an open set A C R3 the curl of the field is defined as:

_{Ovs Ovy Buvy duvy vy Oy
- url{v) = (By 5z’ Bz 0z’ Oz Oy

Let us now consider the following field in R3 :

_(HLGR _ AHSH ASI) TR LR LGSR
g(S’I’R)“( SR ST '~ sr IR ' IR SR )

where:
fH(S5R) = b—(8—pur)RS-bS

H(SD)-= b=-(B-pr)(1-S-DNS-b8

f2{LR) = —(b+v)I+{(ur—(1-p)B)RI+(1-p)BR - (1 -p)BR?

RS = -Tb+o)[+ur(1-1-8)I+(1-p)B3(1-S~1)§

f3(I,R) = vl—p3RI+(pB~b— ur)R+ (ur — pB) R?

f3(S,R) = ~(@w+bR+urR*+v(1-S-R)+pBRS

As
i(f:(S,R)+f1(S,I)) b b Bopr
a5\ SR ST RS2~ IS? I
g(fz(I,R)+fz(s.f)) _ _#r_(1=-pB(-D
I\ IR ST S I
i(fa(I,R)+f3(S’R)) - Hr=pB _ pr_ v
R\ IR SR T S SR?

we find '

_ B(1-p)S?R? +vI®S + bI'R + bIR?
curl (g) ‘ (]wl'.- 1) == 1252 2 <

This definitively proves that the E, is GAS whenever it exists.
20
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1. Equilibria in the logistic model. Inspection of (28) shows that meaningful
equilibria may exist only provided 3 — ug > 0.
By writing D = prqs where gy = Ky/(K; + K>), the second equation of (28) gives:
[=pB—tr—R(B~qupr) -
R(B~qur)+C
As B — ur > 0 the denominator of the last expression is positive at equilibrium
implying that the numerator as well must be positive; this leads to:
B=ur—C =F
B — qapr
which is meaningful prcmded B > ur + C. Tedious but simple algebra on the system

(28) of the main text leads to the following quadratic equation for the determination
of endemic equilibria with nonzero population:

f(R) =agR?*+a1R+ag =0

R<

where:

ag = gopr (B — Q2p7)
ay = =|gapur (8 — pr ~C)y + (8~ qznr)(v+C)+(1—P)(1~ ) Bur]
ar=C(pB—pur —C)+v (B~ pur—C)=(Ry—1)(C +v) (C +pur)

Notice now that ag > 0 (as # > ur and ¢g € (0,1)}, a; < 0, and moreover:

_(1-p)BIC(B—qapr) + (1 — ) up (8 — pr — o)
f(R) = B — qour

Hence, as in equilibrium it must hold R < R, a meaningful ethbrmm will exists if
and only if f(0) = a2 > 0, i.e. if and only if Ry > 1.

1.0.1. Local stability analysis of the equilibrium £; = (1,0,0, X). We find:
—(b— k1 K +v) (1-p)B : 0
J(Ey) = v pB— (b—k K + pr) 0
0 —urK - =k +k)K

Therefore —(ky + k2)}K is an eigenvalue. The remaining eigenvalues belong to the
reduced matrix: '

7 —(B(K) + v) (1-p)B
J(Ey = ( (
(Er) v pB-(B(K)+pr)
which is identical to the matrix ascertaining stability of the DFE in the exponential
model, with the constant birth rate b replaced by the state dependent birth rate B(K).
Hence the invasion parameter is :

- B v
Bo=s®+5m (P T BE T p))
where:
bky -+ pky
B K)o —— o
(K) ky + ko ¢
Hence:

I v
Ro= gl (4 520 -p)
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