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Abstract

In this paper we apply a new method, based on Fourier analysis, to compute
cross volatilities on historical data. The main feature of such a method is to be
based on an integration procedure instead of a differentiation one. On equally
spaced data (daily, weekly) it provides the same result than the classical method.
However it is best suited for high frequency data, since it does not need to aggregate
or interpolate data. The method has been tested on Monte Carlo simulations, and
some results on real data are shown.



1 Introduction

In this paper we implement the methodology proposed in [9] to estimate
multivariate volatility for financial time series when the data are observations
of a vector of continuous time semi-martingales. The methodology is based on
Fourier Analysis, it allows for time varying, eventually stochastic coeficients.
Volatility for diffusion processes is a concept well defined in theory but very
difficult to be estimated empirically for financial time series. In fact, financial
data are not observed in continuous time. Many estimators of the volatility
with constant coeflicients have been constructed in the econometric-statistic
of processes literature. The methods are based on differentiation of the time
series, 1.e., the expectation of the quadratic movements of the financial data
is computed; instead, our approach is based on integration. This feature
will allow us to avoid some difficulties encountered with classical methods,
expecially with high frequency data, see [3].

Our method is almost model free, it makes very weak assumption on
the market model. The method is semi-parametric, no assumption on the
functional form of the volatility is done, These features render our method
well suited to detect the dynamics of volatility.

To test the methodology, we provide both a Monte Carlo analysis te-
constructing the volatiltiy of a given process and we apply it to real data.
In both cases we compare the results to those obtained with the classical
methods. We perform both univariate and multivariate tests.

The Monte Carlo analysis establishes that the method performs well in
computing the volatility of a theoretical process and in reconstructing the
cross volatilities of two processes.

In Section 2 we present the methodology developed in [9]. In Section
4 we present some technical points associated with the implementation of
the methodology. In Section 3 we relate our approach to related literature.
In Section & we perform a Monte Carlo analysis of the method testing the
capability of the method to reconstruct the volatility of a theoretical process.

2 The Methodology

The methodology developed in [9] makes a simple Assumption about the
market model. The time series of interest (prices, returns, volumes, etc.) are
discrete time observations of a set of semimartingales:

du; =Y oy () dWi(t) + ws(tydt i=1,...,N. (1)
J

where o and p are random, time dependent functions.



The volatility matrix is defined as:
.1 o
i (1) = 16151 EEN* [(Ui(t‘l‘f)—qu(t))'('U,j(t‘l“'ﬁ)—uj(t)):' L,i=1,...,N. (2)

where E M[.] denotes the expectation operator and N, is the o—field gener-
ated by the full ohservation of the economic data until time . The relation
between X(t) and the model (1) is given by:

N
Ti(t) = Y owlt)osu(t).
k=1

We normalize the time window for the computation of the volatility to
[0,27]. In [9, Theorem 1.2] it is shown that the Fourier coefficients of &
can be computed using the Fourier coefficients of du, then classical results of
Fourier theory allows us to reconstruct L(¢) V¢ € [0, 27].

First of all, we consider a univariate setting. The Fourier coefficients of

du are
ao(du) = L [27 du)

ak(du) = X [i7 cos(kt)du(t) (3)
beldu) = L 77 sin(kt)du(t)

Then we obtain the Fourier coefficients of ¥ through the formulas:

R - Y 2
ao(%) = Jim -~ s;m 5 (a5 (du) + b3 (du)) (4)
. 27 i
a(X) = i, oo 2 as{du)as(dv) 5)
bp(X) = lim _m > by(du)bsr(du). (6)

n-rooq + 1 — 10 s=no

By the classical Fourier-Féjer inversion formula, we can reconstruct Y(#):

e k .
() = Jim E(l - H) - (ar(X) cos(kt) + by, (L) sin(kt)) (7)
The generalization to multivariate volatility is straightforward. The Fourier
coefficients of X;; (1,7 =1,...,N) are
) T N1
ag (Xig) = lim Nti-mn s;ﬂ 5 (05 (du)assi (dus) +as(du;) aasp(dus)). (8)
Similar formulas hold for (4} and (6).
Note that this method allows us to reconstruct the volatility inside the
interval [0, 27]. 7
We observe that the Fourier coeflicients for cross-volatilities are computed
through the coefficients computed for the single time series.
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3 Related Literature

Estimation of volatility for continuous time processes is a difficult task.

The classical way to estimate the volatility is to adapt the formula (2)
to the data observed with the given frequency without considering the limit.
The quadratic variation estimated empirically in this way provides an un-
biased estimator in case of constant volatility. Many estimators have been
proposed in this setting.

The literature on the estimation of volatility has grown up recently for
three main reasons: a) tick by tick time series are now available, b) risk man-
agement techniques, such as VAR, based on the estimation of the volatility
are now heavily used in many financial institutions, ¢) observation that the
volatility for financial tirne series is non constant and in many cases nonsta-
tionary.

'The reference framework foresees a parametrization of the volatility through
constant coefficients and then an estimator is emploved. In this setting un-
biased estimators of the volatility have been proposed by simply considering
the quadratic variation of the financial data and using closing data for se-
curities prices, more refined estimators have been proposed by considering
high&low prices, on this point see for example [2]. The three reasons pointed
out above motivated recent developments in the literature.

First of all, financial time series analysis has shown undoubtly that volatil-
ity is not constant. This conclusion is reached by considering time series with
different frequencies, see [11] for monthly volatility. In particular it is ob-
served a clustering of volatility wich also appears to be highly persistent. To
model these phenomena GARCH and ARCH models have been proposed.

Tick by tick observations of a time series pose problems for the computa-
tion volatility and in particular of cross volatilities, see [6] for a survey on this
type of time series. Two time series reporting every price of the transactions
for two assets are characterized by inequally and irregularly spaced data,
this fact leads to problems in computing cross volatilities. To avoid them,
interpolation or imputation methods are employed. In the first case a time
horizon is fixed, the time axis is split according to that horizon and inside
each interval the last observation is considered. This procedure gives us ho-
mogeneous and equally spaced time series but it entails two main drawbacks:
in some intervals of time no observation is available, some observations are
thrown away. Interpolation requires to aggregate data observaions, centering
them at some fixed points.

Recently new methods have been developed which are not based on in-
terpolation and imputation, see [7, 4]. They avoid manipulation of the data
by assuming that the underlying true returns are serially uncorrelated (in
the first case) and that, the process generating the transaction times and the
prices are independent (in the first and in the second case). Our method



does not make these assumptions.

The literature on tick by tick observations provided us with some well
established regularities. In [5, 8] it is observed that cross volatilities tend to
vanish as the interval of time emplayed for the computation of the volatility
goes to zero.

Much work in the recent literature on the estimation of the volatility of
diffusion processes is due to the fact that high frequency data are now at
the disposal of researchers, Model-free estimates of volatilities have been
proposed recently. Among them we recall [1].

4 Implementation

Applying the method to real data, we have at our disposal a time series
(t;, S(t;)), i =1,... K of N observations at time ;. In what follows we will
consider u(t) = log S(%).
We will compress the data in the interval [0, 27] and compute the integrals
(3) through integration by parts:
w(2r) — u(0) k

%wm=%£%mm@mm= - ;ﬁ%mmmmm (9)

The smallest wavelength that can be evaluated is twice the smallest dis-
tance between two consecutive prices; in the case of equally spaced data, it
will correspond to £ = N/2 (Nyquist frequency), see [10]. We will always
choose N/2 as the largest frequency. Then the Fourier coeflicients (4),(5),(6)
will be evaluated for 0 < k£ < J and with n = M such that:

Mig=2 (10)

As the observations are finite, to implement the method and in particular
the integration we need an assumption on how data are connected. Qur
choice is the function u(t) be equal to u{t;) in the interval [t;,4;,.], piecewise
constant. With this choice, the integral in equation (9) in the interval [t;, #;,1]
becomes:
bk rtivr
;l sin(kt)u(t)dt = uts)

w1

ko[t 1

- [ sin(kt)dt = u(t,-);(cos(kti) — cos{ktiy1))
‘ (11)

thus avoiding the multiplication by k which amplifies cancellation errors when

k becomes large.

In the integration by parts formula (9) the constant term (u(27) — u(0))/2x

appears in every ag; this could make the formulas (9) too strongly dependent

from such a random term so we add to du the drift term —ﬂz’%-gﬂﬂdt, S0

that the transformed w will have u(27) = u(0). In fact, adding drift term to

du will not change the volatility.



5 Monte Carlo Analysis

We start with a single diffusion process, which in the following will represent
the price of an asset. To simplify the analysis, we assume no drift and
therefore we simulate the price model:

dS(t) = o(t)dW ()  te 0,2

in the following way:

SJH.}_ = S, - (12)
LA N(Oa Gi)

where as A(u2,0) we mean the normal distribution of mean p and standard
deviation o.
We take u(t) =log S(t), therefore u(t) will follow the stochastic path:

a’(t)
2

dult) = — dt + o (t)dW ()
so that it will have the same volatility as dS. We can now make a test with
different choices of o (¢).

5.1 o(tf) = constant
The first natural choice is to set o(t) to a constant. If o is constant, then, as
can be readily obtained:

CJ,k,bg,N.N‘(U kzl

3_\7—77;))

This distribution is the theoretical one, but since we take u(t) on a discrete
lattice and make assumptions on how u(t) is connected between two adjoining
points, then such distributions could have in general a broader variance.
'To test this point, we perform the Fourier analysis on 500 Monte Carlo series
of N data, results are shown in figure 1 for N = 100. The result is quite
good; the variance is the expected one, and the mean is consistent with zero.
We remark that taking N data with a volatility o means to take o; = o 2
when drawing random numbers in (12).
We can now calculate the moments of the T-coefficients.
We know that:

E (o} (du), B2(du)] = o
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F1GURE 1: Moments of ay for N = 100, o = 0.01: for 1 < k < 50 (a) Mean
[+, it is consistent with zero; (b) Variance oy; it is consistent with o /7

Var{a(du), b (du)] = 207}

Starting from these equation, we get:

F[ap(D)] =0 (13)

Varlag(Z)] = 2%},i (14)

To estimate the moments of a;(2),b:(2) we will make the assumption that
the coefficients ay(du),by(du) are indipendent, which is true if o is constant
but should be checked in any other case. Making this assumption we readily

obtain;
Elax(Z),bx(2)] = 0 (15)

Varlae(), by ()] = 8% (16)

'To check the validity of such formulas one can use again Monte Carlo data.
So we can see that the coefficients of ¢ are again gaussian variables, with the
first two moments following formulas (13),(14),(15) and (16).

Eventually, using the above results we can give an estimate of the precision
of the algorithm. We remark that if you are interested only in the mean



Fraure 2: Dots: variance if the distribution obtained on the MC sample for
different choices of N. Line: expected variance as a function of N: AX/E =
V' 2/N; it pives the correct explanation of the observed function

volatility of the interval chosen, then we have < ¥ >, = ap, which will give
a precision of ~ \/5/ V' N, equal to the precision of the classical case (figure
2).

5.2 ¢(t) = piecewise constant

In the following we will choose as o(t):

. T 0 <t<Tm
a(t)—{ oy w<E< 2 (17)

With this choice we want to check if the algorithm can reveal volatility vari-

ations inside the time window.

This time, in the perfect world scenario we should have:

2 2
an(d), be(dtw) ~ N (0, 22 ) (18)
As before, we find the following equation for oy:
2 2
_ ay -} Ty
op = o (19)

It means that formulas (13),(14),(16) remain the same with ¢ = /(57 + 03)/2.

It is enough to draw a conclusion. Indeed, in order to reproduce X(¢) as in
(17) we should have:

G.A;(Z) B 0
() = o —o)((-1) - 1)

8

(20)
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FicurE 3: Four different volatility reconstructions; the generated one is the
bold line. The algorithm is unable to reconstruct the volatility inside the
interval

50 that the largest coefficient is b = <2(c3—02). But the variance of b, (16) is
larger than its expected mean. For example, if we have o1 = 0.01, o3 = 0.03,
which is an unusual case because actually the difference in a time window
will be even smaller, we have from (16) a standard deviation of 6-107%, and
from (20} an expected value of 6.34 - 10~%. For larger &, the estimate of by
will be even poorer. This makes us understand that it is nearly impossible
to reconstruct ¥(t) for any ¢, since from a unique realization of the market
we cannot hope to obtain the Fourier coefficients with the needed precision.
This fact is illustrated in figure 3, where five different reconstructions of the

same generated Monte Carlo sequence are shown.

5.3 Multivariate analysis

To test if the algorithm works well with multi-variate analysis we generate
two Monte Carlo process with a given degree of correlation p. This is easily
done in the following way: we choose two random numbers, €; and e with
distribution (0, ) and then transform them as:

n=e

T = pea -+ /1 — pPe (21)

As can be easily checked, m and 7, are still normally distributed with corre-
lation p.

Then we test the algorithm on thr Monte Carlo series, and the result is shown
in figure 4 for p = 0.5. The distribution is the same as the one expected from
the classical way of estimating the correlation, as in the univariate case. The



FIGURE 4: Distibution of measured correlation with the Fourier algorithm on
three Monte Carlo simulations with generated correlation 0.5, —0.5, 0.

approximate formula for the error is:

ro=1-) % (22)

where N is the number of data used.

5.4 Conclusions

From the above analysis, we have that given a time window, we can compute
the mean of ¥ on such an interval with the same precision as the variance of
returns, and this is done through:

V< E>=gq (23)
with:
AX; 2
=2 2
=, v (24)

where N is the number of data used, and the error on correlations is given
by formula (22).

6 Results on real data

We applied the method to a time series of daily data of Dow Jones Industrial
and Dow Jones Transportation from 1896 ro 1998 (28000 data). We divided

10
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FIcURE 5: Volatility Matrix for two indexes: Dow Jones Industrial and Dow
Jones Transportation. The agreement is quite good.

this sample into 28 periods of 1000 data. The result is shown in figure 5; the
comparison is very good.

7 High Frequency Calibration

When we go in the high frequency regime, we encounter the difficulty that
time intervals are not equally spaced. However, the Fourier algorithm, being
based on an integration procedure instead of a differentiation one, should
provide the necessary robustness to address this point. We will show this is
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Fiqurz 6: (a) Dots: Mean of the distribution obtained for different N; the
dashed line is the generated o. (b) Dots: Variance of the distribution obtained
for different V. Dashed line: expected variance, Ac/o = /2/N. Solid line:

expected variance times +/2; it approximately explains the observed variance.

true.

An other problem that one has to face when trying to perform a multi-
variate analysis on high frequency data, is that they are not synchronous,
e.g. the price of two stocks changes at different times.

Again, we will resort to Monte Carlo analysis to provide more insight on the
Fourier method. In this case one has to be careful, because choosing the
Monte Carlo model means having in mind the market model, and results
might be influenced by such a choice.
We will choose the following approach to mimic HF data: at first we will
choose a time scale corresponding to the smallest time interval between trades
{one second), then reproduce the Monte Carlo model with the method de-
picted in equation (21) using as the fixed time interval such a time scale;
then we will choose the trade times randomly from an exponential distribu-
tion with a given decay time 7 (say 5 seconds).
Figure 6 shows the results obtained on the Monte Carlo simulation of high
frequency data; for different choices of N, mean and variance of the obtained
distributions are shown. The mean is somewhat underestimated of a few
percents, expecially when N is small. The variance is larger of a factor v/2
than the previous case. No dipendence on 7 has been observed, as expected.
The syncronization effect can be shown in figure 7. We generate two high
frequency series with correlation coefficient 0.5 and 7 = 5. If we apply the
Fourier algorithm to all data, we get the solid curve: it exhibits positive

12



FIGURE 7: Syncronization effect: the solid curve is the measured correlation
distribution when taking all data; the dashed curve when taking only syn-
cronized data. The widening of such a distribution is due to the loss in statis-
tics.

correlation but it is less than the generated one. If we apply Fourier analysis
only to data points which occurr at the same time, we get the dashed curve,
which has the right correlation (but with a larger variance due to loss in
statistics).

This means that when reckoning correlations, only that data which come in
‘the same time are meaningful, not syncronous data points cannot fully reveal
correlations. This is, however, only a limitation in statistics: the fact that
high frequency data are not equally spaced does not affect the power of the
algorithm.

We have to remark that also for correlations an extra /2 term appears in
the variance (22).

7.1 Conclusions

Also for high frequency data, given a time window, we can compute the mean
of X on such an interval computing ag, with the precision

AL, 2
5 —\/;\/5 (25)

where N is the number of data used, and the error on correlations is given
by formula (22) multiplied by /2.

8 Results on real data

We applied the method to high frequency data registered at the New York
Stock Exchange for ten stocks in the month of January, 1995. The stocks are

13



General Electrics | AA

J.P. Morgan Coca-Cola
Merril Lynch Mobil
Exxon Mercks
Pepsi AT & T

TABLE 1: The ten stocks traded at NYSE used in this analysis in the month
of January 1995

Ficure 8: Cumulative distributions of the correlations between the 10 stocks
in 84 time windows. The cotrelations are not economically significant.

listed in table 1. :

We divided any trading day into 4 periods, anyone 5800 seconds long.
Within each of such periods, for all the 21 trading days in the month, we
computed with the Fourier Analysis the cross correlations between the 10
stocks. The distribution of such correlations is shown in figure 8. Correlations
are very close to zero when the frequency is very high. It is a fact well known
in literature: when time goes to zero correlations go to zero too (Epps effect)
[5]. We confirm this result.

We also employed the Fourier method to compute the autocorrelation
coefficient of every stocks. Figure 9 shows the result for J.P. Morgan on
January 3", fitted with an exponential of decay time 7 = 5 minutes. Table
8 shows the autocorrelation decay time obtained for the other stocks in the
same day. They agree with the ones already observed in financial literature,
confirming a positive autocorrelation function in the first 5 — 10 minutes.
Moreover we can observe that the autocorrelation function remains positive
for a longer time when the stocks are less liquid.

Also lagged correlations between stocks can be measured with this times.
Figure 10 shows such a lagged correlation between Exxon and Mobil on
January 3" 1995. The bump in the upper figure between 50 seconds shows

14
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Fiaunre 9: Autocorrelation function of JP. Morgan on january 3%, It is well

fitted with an exponential with decay time ~ 5 minutes.
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FiGure 10: Upper figure: correlation between Exxon and Mobil (lagged) on
January 3t 1995. It is significantly positive in the first minute. Lower fig-
ure: correlation between Mobil and Exxon (lagged). No significant correlation

appears.

that that day Exxon price changes influenced Mobil price changes with a
delay of about 1 minute. The opposit is not true, as seen in the lower figure.
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9

| Stocks | Decay time (minutes) | Number of trades f
AA 1444 0.2 1130
GE 1.5+02 2467
JPM 50+0.2 1369
KO 7.8-41.0 1407
MER, 13£0.7 732
MOB 7.2+0.2 1255
MRK 1.24+0.2 1922
PEP 5840.2 1326
T 64 0.2 1717
XON 0.85 £ 0.05 1416

TABLE 2: Decay time of the autocorrelation coefficients of the ten stocks con-
sidered

Factor Analysis

10 Conclusions
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