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1 Introduction

The first order necessary optimality conditions of the minimum principle
type are usually related in finite dimensional spaces to scalar optimization
problems of the following kind (*):

max f(x)
glz) € B,
h{z)=10
zeXCACHR

where f(z) is a scalar differentiable function and g(z) and h(z) are vec-
tor differentiable functions. Under some particular hypothesis it has been

*This paper has been partially supported by M.U.R.5.T.; some very preliminary re-
sults of this research appeared in [12, 13].

'Minimum principle optimality conditions are used also in infinite dimensional spaces
for instance regarding to optimal control theory [14, 18, 23, 25].



proved that if a feasible point xg is an‘optimal solution of the problem then:
(s V f(zo) + a;fJg(:cg) o of Jn(zo)|(z — 20} <0 Vz e X

where oy > 0, ay € RT, ap € ®P, (a5, aq,ap) # 0, are multipliers. The
main feature of these conditions is that they are related to problems where
the set X is not necessarily open and to a point zp which is not necessarily
an interior point of X; for this reason they have been also called “generalized
Lagrange multiplier rule”, since they extend the Fritz John criterion:

[y V £ (z0) + &L Ty(z0) + &f Jn(mo)] = 0

Obviously, the latter condition follows from the former one when X is open,
while when X is not open the Fritz John condition does not hold in general.
In this paper we are going to deep on the study of the first order necessary
optimality conditions of the minimum principle type stated in [3, 22, 20]
by means of the image space approach [5, 6, 7, 8, 9, 10, 11]; this approach
will let us to generalize the results to vector optimization problems and
" to extend the conditions for nondifferentiable functions. In particular, in
Section 3 the efficiency of a feasible point will be characterized in the image
space with no use of assumptions regarding the functions of the problem;
in Section 4 some necessary optimality conditions in the image space will
be stated under subdifferentiability hypothesis; in Section 5 several neces-
sary optimality conditions of the minimum principle type will be studied
under subdifferentiability hypothesis analyzing in the decision space the
conditions stated in the image space; finally in Section 6 the necessary
conditions will be specified under differentiability assumptions, obtaining
results more general than the ones known in the literature.

2 Definitions and preliminary results

The image space approach, originally suggested by Hestenes [19], will allow
us to extend and generalize to the vector case the known results concern-
ing the optimality conditions of the “minimum principle” type for scalar
optimization problems.

From now on, we will consider the following vector optlmlzatlon problem:

C-—(m)ax flx) | | C’—(m)ax f(z)

) glx) eV, _ glz) €V,

P h(z) =0 - re(XNS)CACHR (21)
reXCACR" S={zxe A:h(x)=0}



where f: A — RS, g: A = ™ and h : 4 — RP are vector valued func-
tions, with A open set, and C C ®* and V C R™ are closed convex cones
with nonempty interior. Note that the set X is not necessarily open and
that not necessarily Int(X) # 8. From now on, we will study optimality
conditions for a feasible point g € X which will be assumed, without loss
of generality, to be binding all the constraints, that is to say that g(zg) = 0.
The feasible poins xzp & X is said to be a local efficient point if there exists
a suitable neighbourhood I, of o such that:

Ay € I, N X such that f(y) € f(z0) +C° gly) €V, hx) =0 (2.2)

where C? = C'\ {0}. For a sake of simplicity we will sometimes use also
the following function:

F:A— R5T™P quch that.F(x) = (f(z), g(x), h(z))

which allow us to say that g € X is a local efficient point if and only if
there exists a suitable neighbourhood Iy, of ¢ such that:

" Ay e I, N X such that F(y) € F(zg) + {C® x V x 0) (2.3)

The study of optimality conditions in the image space will be carried on
by means of the Bouligand Tangent cone to X at xo, denoted with T(X, zo)
and defined as follows:

T(X,zq) = {ze€R":Hzxr} < X,z — 20, H e} € R, A = 400,

= li A — .
7= I el = o))

In the following we will denote with U{X,zq) any subcone of T(X, zg).
Particular subcones of T'(X, zg) are the so called cone of feasible directions
to X at zp (%), denoted with F(X, x0), and the cone of interior directions
to X at xq, denoted with I(X,zo) (see [3, 16, 17]).

The optimality conditions in the decision space will be stated by means
of separating theorems and the use of multipliers, hence the concept of

*Let X C R" be a nonempty set and let zg € CI{X). The cone of feasible directions
to X at zo F(X, o) and the cone of interior directions to X at 2o I(X, xo) are defined
as follows: '

F(X,20) = {z€R":36>0suchthat zo+Az€ X VA€ (0,8}

I{X,z) = {xeR":3e¢>0,30> 0such that A € (0,8), ly — | < ¢ imply
ze+ Ay € X}

Remind that [(X,zo) C Int(F(X,%0)) C F(X, o) C CIF(X,20)) C T(X, z0).



positive polar of a coné K, denoted with KT, will be used. With this aim,
a key tool for the proofs of the next sections is the following.

. Theorem 2.1 let C;, ¢ = 1,...,n, be cones and let Ko, C C;, i =
L,...,n, be any subcones of C;, i = 1,...,n, respectively. Then:

(Ko, x ... x Ke )t = (K x...x K} ). (2.4)

Proof It is sufficient to prove this property for n = 2. We firstly prove
that (K& x K&) € (Ko, X Kg,)'; assuming (a1, o) € (K4 x K&} it
yields that af'c + ofv > 0 Ve € Kp, and Vv € K¢, so that (o, aq) €
(Kcy x K¢,)T. Let us prove now that (K¢, X Kep)T C (K, < Kf,) and
with this aim assume (ay,a2) € (K¢, x K¢g,)7. Suppose by contradic-
tion that oy & Kg:l fas & Ké.'z] so that 3¢ € K¢, [37 € K¢, such that
afe < 0 [ad9 < 0]; since K¢, [Ke,) is a cone then A € K¢, [M € Kg,)
¥A > 0 so that, given v € K¢, [¢ € K¢, for A > 0 great enough we
have o (A&) + cdv < 0 [ofc + o (AF) < 0] and this contradicts that
(011,052) € (K6'1 X KCZ)+' 0

Finally, it’s worth reminding some known minimum principle optimality
conditions which are going to be generalized in the next sections.

' Theorem 2.2 [20, 22] Consider problem P with a scalar objective func-
tion f(z), suppose f(z), g(x) and h(z) to be differentiable at the feasible
point 7o € X and suppose the Jacobian matriz Jy(zo) to be continuous at
xo. Suppose finally that: '

X is conver, with Int(X) #

If g € X is a local mazimizer then oy > 0, Jag € VT, Jap € B,
(ap, g, ap) # 0, such that:

[afV f(mo) + o Jy(zo) + of Jn(zo)l(z — 30) <0 Vz € X
or equivalently:
oV f(@0) + ol Jg(2o) + af Jn(zo)jv <0 Vo € F(X, 2o)

Theorem 2.3 [3] Consider problem P with a scalar objective function
f(z), suppose f(z), g{z) and h(x) to be differentioble at the feasible point
rg € X and suppose the Jacobian matriz Jy(xo) to be continuous at zp.
Suppose finally that:



I(X,zq) is a conver cone
If 1o € X s a local mazimizer then Aoy > 0, Jog € V+t, 3a, € RP,
(of, 0, ap) # 0, such that:
[asV f(zo) + ang(xg) + ol dn(zo)v <0 Yv € I(X, 20)

Note that both the previous results are based on a sort of convexity
hypothesis regarding to problem P, since the convexity of the set- X or of
the cone I(X, xp) is required.

3 Approach in the Image Space:
the nonsmooth case

In this section the efficiency of zo will be characterized without the use of
any subdifferentiability hypothesis. Following an approach similar to the
one used in [5, 6, 7, 8, 9, 10, 11], we introduce the following subset of the
Bouligand tangent cone at F'(zg) in the image space:

7y = {teRT™P . ) C X, 2, — zo, h(zg) = 0,3I{ N} < RTT,
A — +oo,t = klirf Mo Fzg) — Fwo)}}- (3.1)
bl DO

We will see that, by means of the cone Ty, it is possible to state the following
optimality conditions in the image space which extend the ones stated in
i6, 7, 8, 10] with respect to problems P having an open set X or having xo
belonging to the interior of X. :

Theorem- 8.1 Consider problem P. If 2o € X is a local efficient point
then: :

T1 N (Iot(C) x Int(V) x 0) = (3.2)
Proof We will prove the result by contradiction. Suppose that ¢ €
TN (Int(C) x Int (V') x 0); then Hzx} C X, 2 — g, h(zk) =0, I{ A} C
R, Ag ~» +00, such that t* = limg—, ¢ o0 Ap(F(2) ~ Fzo))-
Being t* € (Int(C) x Int(V) x 0) and being h(z) = 0 Yk then for a known

. limit theorem: _
3k > 0 such that A\ (F(z) - F(zo)) € (Int(C) x Int(V) x 0) Yk >k

so that, being Ay > 0, F(:ck) € F(zo) + (Int(C) x Int(V) x 0) Yk > k and
this contradicts the local efficiency of xg. 0

In the next theorem we will show that it is possible to fully characterize
in the image space the optimality of xg.



Theorem 3.2 Consider problem P. The point xg € X is a local efficient
point if and only if the following condition holds:

vt € TINCxVx0), t#0, and V{zz} C X, zx — g,
h(zp) = 0, such that H{ N} C RYF, A — +oo, with ¢t =
limp 100 A (F{zg) = F(xo)), there exists an integer k > 0 such
that:

F(wk) i F(.’L’o) +(CO x V x 0) vk > k.

Proof =) If 2y is a local efficient point then, for (2.3), V{zz} C X,
T — Tp, h(xk) = 0, there exists an integer k > O such that F(zy) ¢
F(xg) 4+ (C° x V x 0) Yk > k, and this is true also for particular sequences
such that ¢ = limp_, 400 A (F{zr) — F(z0)) with t € TIN(C x V x 0).

<=) We will prove the result by contradiction. Suppose that zp € X is not
a local efficient point, then by means of (2.3) I{xx} € X, 2 — w0, such
that F(xx) € F(zo) + (C° x V x 0) V&, so that in particular h{zx) = 0 k.
Let us consider now the sequence {dy} C R*T™*P with dy = ﬁ%;-
since the unit ball is a compact set, we can suppose (substituting {dy} with
a suitable subsequence, if necessary) that limy o dy = t* # 0, t* € 71.
On the other hand, d, = % € (C° x V x 0) so that its limit
t* € (CxV x0). It then results that t* € T1 N (CxV x0), t # 0,
and this contradicts the hypothesis since t* = limg_, o ﬂ%;—:%(;—gﬁ and .
F(zy) € F(zg) + (C%x V x 0) Vk. 0O

Directly from Theorem 3.2 we can state the following sufficient opti-
mality condition.

Corollary 3.1 Consider problem P. If the following condition holds then
zg € X is a locol efficient point:

Ty N{C xV x0)= {0} - (3.3)

4 Approach in the Image Space:
the subdifferentiable case

The previous optimality conditions, based on the cone 17, are not easy to
be applied being 7y not trivial to be determined. Some more useful opti-
mality conditions in the image space, involving both the inequality and the
equality constraints, can be stated under the following subdifferentiability
assumptions, which will be assumed from now on:



Subdifferentiability Hypothesis
Functions f, g and h are Hadamard directionally differentiable at xy €
X®. '

See [15] for the definition and a complete study of Hadamard direc-
tionally differentiable functions (see also {1, 2, 24, 27]). The necessary
optimality conditions in the image space will be stated by means of the
following cones:

8h |
Kergy, = {0ju{deR":d= v, 5;(.1:0) =0, >0,|v||=1,veR"}
Ker§, = R"\ Kerg
of dg oh
= m+s+p . = _ —_— —_ > =
Kp = GeR™: i = u(h (), 22 (z0), 5 (o)) > 0, Joll =1,
v e (T(X NS, z) UKer§)} .
of dg dh
— m-5+p = “d et i > —
Ky {te® 7ot = pf 5o (o), v (o), 3o (%0)), b = 0, |lv]| = 1,
v eU(X,S,z5) C (T(XNS,zo) U Kergh)} C K;,
where U(X, 8, zo) is any subcone of T(X N S, zq) U Ker§, (4).
Remark 4.1 Note that in general it is: |

T(X NS, 20} C T(S,z0) C Kerap,

3Let f: A — R, with A C ®™ open set. The limit:
f{ma + Ah) — f(zo)
A

lim
" A OF b
is called the Hedamard directional derivative of f(x) at xo € A in the direction v; if this
derivative exists and is fintte for all v then f(z) is Hademard directionally differentioble
at ©o € A. In order to verify the Hadamard directional derivability, remind that a
function f(z) is Hadamard directionally differentiable at z¢ (see [15]) if and only if its

s def 1. _ . . . S
derivative 3£ (zo) = limy_,q4 HEe422=0(20) 5 continuous as a function of direction and

the function itself is Dini uniformly directionally differentiable at 2o (hence directionally
differentiable at zo), that is to say that:

. of
yJm 1 f (@0 + v) = flzo) — 5 -(zo)| =0
Remind also that if a function f(x) is Hadamard directionally differentiable at @ then it
is also continuous at zo. A vector valued function F' : A -+ R™ js Hadamard directionally
differentiable at xg if all its components verify this property. _

*Remind that in the literature [5, 6, 7, 8 9, 10, 11] it has been defined with K the
cone K1, = {t € R**™ : ¢ = [Js(wo), Jy(wo)]v, v € R}, which is nothing but the image
of [J¢{@o); Jy(@o)].



In order to verify this property, firstly note that T(X N S, zp) € T(S,zo)
being X NS € §. Since t = 0 € T(S,x5) N Keray let us consider just
t € T(S,z0), t # 0; then F{xx} C S, zx — =z, I N} C RT, X, —
+oc, such that ¢ = limg_, 4 oo Ax(zr — z0); We can also suppose (eventually
substituting {zyx} with a proper subsequence) that v = limg—.4 o0 TeE—aaT-
Since {zx} C & it yields h(zp) = h(zx) = 0 ¥k > 0 so that, by means of
the Hadamard directional differentiability of h(x), we have:

Ck) h Y —
k—+oo ||-’13k — :L‘g“ ve—0t dp—v o | v

where 7y, = {2, — || and di = ﬂ%’;_—ﬁ‘?g so that v € Kergj,.
Let us now prove that ¢ € Kergy too. By means of the definition it results:

. : . Ty — Tg
t= 1 —_ = — Ii TV
knir-ll-]oo )\k(ﬂ—"k :Eo) kllar-ll?oo }\k ”wk 550” 1141:100 ||:ck - $0|| e
where p = limg. 400 Az ||Z% — Tol] 2 0 and ||v]| = 1. Being Kerah a cone
and being v € Kergp we then have that £ € Kergy, 0

By means of the previously defined cones we are now able to state the
following necessary optimality condition in the image space.

Theorem 4.1 Consider Problem P, if the feasible point xg € X is a local -
efficient point then:

KN (Int(C) x Int(V) x 0) =0 (4.1)
and for any cone U(X, S, x0) C (T(X N 8, 20) U Ker§,) it is:
Ky 0 (Int(C) x Int(V) x 0) = @ ' (4.2)

Proof We will prove condition (4.1) by contradiction. Suppose that there
exists £ = (tr,15,t4) € K N {(Int(C) x Int(V') x 0), so that I > 0, v €
(T(X N 8, z) u Ke'rah vl = 1, such that ¢ = p(8 (x0), gﬂ(mo), 9 ()
with (8 (0}, 32(x0), 82(z0)) € (Int(C) x Int( V) x 0). Being (:ro) =0
then v € K erah which implies that v ¢ Ker§, and v € T(X N S xo). By
means of the definition of T(X NS, xo) we then have that I{zx} C (X NS),
zr — xo, A} € RTT, Ay ~ 400, such that v = limy_ ;o0 vk Where U ==
Ar(2y - o). Being functions f and ¢ Hadamard directionally differentiable
it results: '

lim 1(%8) — Hlaw) Sf(=xo) _ T flzo+ 5 'Uk) ~ f{@o) Bf

k—+o00 i k—»-{»oo

zo) € Int(C)
)\k



and, in the same way:

——————————mk) T 9(20) 39 (:r ) € Int(V)
A

lim

k— o0
By means of a well known limit theorem it then exists k > 0 such that
Flzr) — Flzo) € Int(C) and g(ax) — g(zo) € Int(V) for any k > k; this
means that the sequence {z} C (X N S), 2 — o, is feasible for k > k
and that xg is not a local efficient point, which is a contradiction.
Condition (4.2) follows directly from condition (4.1} being U(X, S, zo) C
(T(X NS, z) U Ker§,). 0

Remark 4.2 For the sake of completeness, note that the previous results
can be obtained as a corollary of Theorem 3.1. -
Denoting with B = {t = (t7,1,,t,) € RST™HP . ¢, # 0} we have, directly
from Theorem 3.1, that the efficiency of xp implies that:

(173 U B)Y N (Int{C) x Int(V) x 0) =

We now just have to verify that Ky C {(Th U B)}. Let t = ,u%‘:*'}(zg) € Kp,
v & (T(X NS z0)UKer§,), vl =1, u > U; if 2 =0 then ¢t = u35 (o) =
0 € Ty while if 4 # 0 and v € Ker§, then £ (mo) # 0 and ¢t € B. Suppose
now g # 0 and v € T(X N S,xp), then EI{:B;C} C X, xp — 330, h{zi) = 0,
such that v = limg—+oo Mﬁ% let also Ay = ||zx — z||”*. By means of
the Hadamard directional differentiability of F(x) at zo we have:

aF . Flax) — F(xo)

- = L o = Hm A (F —F ;

5y {(zo) P Tex — o] . m k(F(zx) — F(zo)) € 11
being T a cone it then follows that { = ,u (mo) € T too. 0

Remark 4.3 Note that the necessary optimality conditions (4.1) and (4.2),
stated in the image space, hold without any convexity hypothesis {on
U(X,8,20), T(XNS, x0), Ky or Kr) as it is shown in the following Exam-
ple 4.1; this property points out that these necessary optimality conditions
are more general than the ones stated in [3, 20, 22}.

Example 4.1 Let us consider the following problem:

P : {max f(z1,22) = 71,9(21,72) = 22 2 0,z € X}



where X = X U X3 U X3 with:

X1 = {(z1,22) €R® 11 4+ 22 20,211 + 25 < 0},
Xy = {(z1,z) e R*: 11 < 0,22 <0},
Xz = {{z1,m2) €R? 12y + 22 20,21 + 220 < 0}

and zg == (0,0); since there are no equality constraints involved in the
problem, we can consider § = %2. Note that (Int(C) x Int(V)) = ®2,
and X = T(X NS, x0) = Ky, since [J{xmo), Jy(zo)] is equal to the identity
matrix. The point zg is the global eflicient point of the problem and the
necessary optimality condition (4.1} is verified being X NR%, = 0; on the
other hand, none of the convexity hypothesis reqguired in Theorems 2.2 and
2.3 hold, being X, I(X,xg), T(X N S, xp) and K, not convex.

5 Optimality conditions in the Decision Space:
the subdifferentiable case

In this section some necessary optimality conditions of the “minimum prin-
ciple” type, involving both equality and inequality constraints, will be ob-
tained specifying the results stated in the previous section.

Firstly note that the problem of Example 4.1 does not verify any of the
thesis of the Theorems 2.2 and 2.3; this emphasize that in order to achieve
a necessary optimality condition in the decision space, that is an optimality
condition involving the directional derivatives and some multipliers, some
additional hypothesis are required, so that the previously stated optimality
conditions in the image space results to be more general than the forth-
coming ones.

In our study we will use the following set Img;, which is nothing but the

image of the directional derivative g—ﬁ(mo) with respect to the directions:

Tmon = {t € WP+ 1 = o (ag), v € B, ol =1, > 0}

The following theorem points out that, in order to state optimality con-
ditions in the decision space, an additional hypothesis implicitly based on
the separation between (Int(C) x Int(V) x 0) and the convex hull of Ky; or
K}, denoted with Co(Ky) and Co(K ) respectively, is necessary.

Theorem 5.1 Consider Problem P and let U(X,S,zp) € R" be a cone.
If the following condition holds:

Co(Ky) N {Int(C) x Int{(V) x 0) = {§

10



then Jay € CT, o, € VT, Jap € R, (o, g, 0p) # 0, such that:
af dg oh
T T T
ey 3o (zo) + Org B0 (z0) + o, B0 (zo) <0Vwe U(X, 8, zp),v #£0.

Proof 1f Co(Imgap) # RP there exists a support hyperplane for the convex
cone Co(Imgp), so that Jap, € RP, ap # 0, such that aft < 0Vt €
Co(Imgy); this implies that aTah Fe(®g) < 0w € R", v # 0. Assuming
oy =0 and oy = 0 we then have that

a? gf(’l’,‘o + o g
and the thesis is proved. Suppose now Co{Imgn) = RP and Co(Ky) N
(Int(C) x Int(V) x 0) = #; by means of a well known separation theorem
between convex sets, (s, ag,an) € (Int(C) x Int(V) x 0)™, (orf, g, an) 7
0, such that (o, oy, ap)’t < 0Vt € Co(Ky) 2 Ky. By means of Theorem
2.1 it results (Int(C) x Int(V) x 0)F = Int(C)* x Int(V)™ x RP and the
thesis follows being C and V convex cones (). I:l‘

0)"¥“th'§"($0)<0 Yoe R v#£0

Remark 5.1 Note that the proof of Theorem 5.1 points out that the case
Co(Imgap) # RP is a trivial one, since a minimum principle like condition
holds with no additional hypothesis, such as convexity ones, optimality
assumptions on zp, regularity conditions for the problem.

The previous Theorem 5.1 allow us to introduce the following concept
of regularity condition, which will be defined with respect to any of the
subcones of (T(X N S, zg) U Ker§,).

Definition 5.1 Coﬁsider Problem P and a cone:
U(X,S,z0) C(T{XNS,xp) U Kergh)‘

A first order U -regularity condition is any condition verifying the following
logical implication:

Ken(Int(C) xInt(V)x0) =0 == Co(Ky)N({Int{C) x Int(V) x 0) =0 (5.1)
By means of the concept of U-regularity condition and the previously

stated results, we are now able to prove the following necessary optimality
condition in the decision space.

Let C be a cone; it is known (see {26]} that C* = CHC)* so that Int(C)t =
Cl(Int(C))* too. If C is a convex cone we also have (see [4]) that CiInt(C)) = CI{C) so
that Int(C)* = O,

11



Theorem 5.2 Consider Problem P; If the feasible point x5 € X is a local
efficient point and o first order U-regularity condition holds, with:

U(X,S, 9’,‘0) - (T(X NS, :L'o) J KeTgh),

then 3oy € Ct, o, € VT, Jap € NP, (a4, aq,a) # 0, such that:
H g i g
7] e oh
a}“a—i(xo)mg a—fj—(cco)-l—af%(xg) <0 Yve ClU(X, S, 20)),v #0 (5.2)

Proof The thesis follows from Theorem 4.1, Condition (5.1} and Theorem
5.1 since, being f, g and h Hadamard directionally differentiable at xg, the
directional derivatives g{;(mo), g%(zco) and g—ﬁ[mg) are continuous as func-
tions of direction. 0

Example 4.1 points out that the optimality condition in the decision
space expressed in Theorem 5.2 is less general (being based on a U-regularity
condition) than the one stated in the image space, since assuming U (X, S, xq) =
T(X N S,zg9) we have, even if zg € X is a local efficient point, that
Co(Ky) = 2 so that the U-regularity condition does not hold.

It is easy to prove the following first order U-regularity conditions.

Theorem 5.3 Consider problem P and a cone:
U(X,S,z0) € (T(X NS, 20) U Kerf,).

The following conditions are first order U-regularity conditions:
i} Co(Ky) N (Int(C) x Int(V) x 0) = 4,

it) Co(Ky) ¢ K1,

i) Ky is a convex cone.

The result stated in Theorem 5.2, based on the U-regularity property
with respect to a cone U(X, S, zo) € (T(X NS, 7o) U Ker§,), can be deeped
on studying subcones of T(X N S,zo) (5).

For a sake of simplicity, from now on we will use the following notations:

Ix=f(X,a:0), TX:T(X,:L‘Q), FxﬂF(X,:Co)
ISZI(S,CL‘U), T3=T(S,ﬂfg), _F,s:F(S,.‘E()).

®Tt is known (see [3]) that:
F(X,20) N (8, 20) = F(X NSz} & T(X NS, m0) € T(X,w0) N TS, xo).

12



Lemma 5.1 Let us consider Problem P; it results:
Cli{Ix NTg) UCTx NIs)UCHFx NFg) CT(X NS, zp). (5.3}
If T(5, zo) = Kergp, then:

Ix UCKTx NIg) UCI(Fx N Fg)UKer§, C (T(XNS,xp) U Ker§,). (5.4)

Proof We firstly prove that I'(X, zo)NT'(S, zo) C T(X NS, z0). I IxNTs =
- @ the result is trivial, otherwise let t € I(X, zo) NT(S, 20), t # O (note that
if t = 0then t € T'(X NS, xp) trivially), so that I{x} € X, zx — xo,
A} € R, A — +oo, such that ¢ = limp,.00 A(Tx — 20). Since
t € I{X,z0) then Ik > 0, 36 > 0 such that u € (0,5), & > k imply
zo + (A (2K — 20)) € X. Being z, = xo + A—lk()\k(wk —2p)) and Ay — +00,
then 3k > & such that Vk > k it results A—lk < éand xp =12+ ,}—k(Ak(mk -
o)) € X. This means that ¥k > k > & > 0 we have 2, € X N § so that
t € T(X N 8, x) and hence I{X,zg) N T(S,20) € T(X N S, z0). Being
T(X NS, zo) a closed cone we finally have Cl(Ix NTs) C T(X NS, xp). In
the same way we can also prove that Cl{Tx N Ig) € T(X N S,xp). Since
F(X,20) N F(S,20) = F(X NS,zo) € T(X NS, x0) (see [3]) it results
CI(F{X,zo) N F(S,z0}) CT(X NS, xzo) being T(X NS, zo) a closed cone.
Condition (5.3) is then proved; in order to prove condition (5.4} we just
have to verify that I(X,zp) C (T(X NS, z0) U Ker§,). Let t € I(X, xp); if
t € Ker§, the inclusion is trivial, if ¢ ¢ Ker§, then t € Kerg, = T(S, 2o)
so that t € I(X, 20} NT(S, z0) C T(X NS, zp). 0O

Directly from Theorem 5.2 and Lemma 5.1 we state the following corol-
lary.

Corollary 5.1 Consider Problem P; if the feasible point xo € X is a local
efficient point and a first order U-regularity condition holds with:

U(X, 8, %) C CllIx NTs) UCTx NIs) UCKFx N Fs) U Ker,,
or with T(S, zo) = Kers, and:
(X, S, z0) C Ix UCYTx N Ig) UCIFx N Fs)U Ker§,,
then 3ay € CF, 30y € V', Jap € RP, (af, a4, p) # 0, such that:

70f

o %(wo) + aT@(mo) + a{%(wo) <0 YweCHU(X,S, zp)),v#0

9 Bu
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Remind that in Lemma 5.1 the hypothesis T'(S,zp) = Kergy is not
trivial since in general it is just T(S,zo) C Kergp, as it has been proved
in Remark 4.1 and it is pointed out in the next Example 5.1. The next
Example 5.1 points out also that under subdifferentiability hypothesis it is
possible to have I{S,zp) # 8 even when Co(Imgy) = RP.

Example 5.1 Let us consider the point zp = {0, 0) and the following func-
tion h: N2 — R

0 if I Z O,CL‘Q S 0
W) = min(zy,ze) if x> 0,22 >0
N 1% if z3<0,292>0

max(zy,z2) if z <0,29 <0
It results:

h{v} if z1z2>0

so that Imgp = R, Kergp = {{z1,22) : 122 < 0}, T(S, 7o) = S where:

oh 0 if <0
By { 0 % 3

S = {(x1,22) @1 =0 or z2 =0} U {(x1,22) : 11 > O,z < 0},

and I(S,zp) = {(z1, 22} : 21 > 0,72 < 0}. Even if Co(Imgp) = Iman =R,
we then have I(S5, 20} # 0 and T(S,20) C Kersn but T'(8,z0) # Kerap,
since for example d = (—1,1)T € Keryy, but d € T(S, zo).

Remark 5.2 Note that in Lemma 5.1 no particular properties at all are
required for the sets X and 5. Note also the difficulty of stating a subeone
of T(X NS, zo) greater than Cl(Ix NTs)UCKTx NIg) JCI(Fx N Fg) since
in general it results {see Examples 5.2 and 5.3):
Int{F(X,z0)) NT(S,z0) € T(X NS, xp),
CI{I(X,20)) NT(S, z0) & T(X NS, o),
CHF(X,z0)) NCU{F(S, z0)) € T(X NS, x0},

Note finally that in general it is also (see Example 5.3):
CI(I(X,x0)) € (T(X NS, z0) U Ker§,),

Example 5.2 Let X = X; UXa ¢ R2%, Xq = {(z1,22) : 0< 12 < |71}
and Xy = {(z1,23) : ;1 = 0}, let 79 = (0,0) and let § = {(z1,zy) :
h(z1, x2) = 23 — 41 = 0} s0 that X NS = {zo} and %%(:co) = Vh{zo) v =
-—4wy. It then results 7'(X N S, zo) = {0} and T(S, o) = X so that:

Int(Fx) NTs = CliIx)NTg=Ts=Xa & {0} = T'(X n.Ss, :Eo)
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Example 5.3 Let X = {(z1,22) : 0 < 79 < /[z1]} C R?, let 2o = (0,0)
and let S = {{(x1,22) : h(21,22) = 1 = 0}, so that X NS = {zp} and
%k (20) = Vh(20)Tv = v1. It then results T(X N S, z0) = {0} so that:

CllIx)NTs =Cl(Fx)NCUFg)=Ts =8 € {0} =T({X NS, x0)

Note also that d = (0,1) € Cl(Ix) while d ¢ T(X 1 S, z0) and d ¢ Ker§,
being %(mg) =d; =0.

6 Optimality conditions in the Decision Space:
the differentiable case

In this section we are going to furthermore specialize the previously stated
necessary optimality conditions under the following differentiability hypoth-
esis (see [15]), which will be assumed in the rest of the paper:

Differentiability Hypothesis
i) functions f and g are Géteaux differentiable at 20 € X (7},
i) function A is locally Fréchet differentiable on a neighbourhood of xg,
iii) the Jacobian matrix Jp(z) is continuous at xg,
iv) the Jacobian matrix J(zp) is surjective.

First of all, let us point out the consequences of these strong hypoth-
esis with respect to problem P. We can easily see that, being A Gateaux
differentiable at zg, it results:

- Kerap, = Ker(Jy(zo)) and Imap, = Img(Ja(x0)) = Co{Iman),

- Co(Imgy,) = RP <= Ju(zo) is surjective.

Anyway, what is more interesting is that the Differentiability Hypothesis
i)-iv) imply that:

T(S, zq) = Keréh and I(S,zp) =0 (6.1)

The first condition is stated in the following Theorem 6.1, which is a gen-
eralization of the well known Lyusternik theorem (see [20, 21]), while the
second one is proved in Theorem 6.2.

"Let F: A -+ ®™, with 4 C R open set, and let Jr(zo) be the Jacobian matrix of
F at xo. F(z) is called Giteour differentiable at zo € A if for all directions v it yields
liy_,qq SLZeEI=FEO) — jo(gg)Ty, F(z) is called Fréchet differentiable at o € A if

b
for all directions v it yields limﬂ,,"_,m. F(”"*”)_FEI",TI)“JP(’D) =0
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Theorem 6.1 [20] Let h : X — RP, X C R", be a given mapping and
let zp € § = {z € R" : h(z) = 0}. Let also h(z) be locally Fréchet
differentiable on a neighbourhood of xo, let-Jy(x) be continuous at zp and
let Jp(zo) be surjective. Then it follows:

T(S, z0) = Ker(Jp(z0)) = {d € R" : Jn(z0)"d = 0} = Kergp

Theorem 6.2 Let h: X — RP, X CR", be a given mapping, let xg € 8 =
{x € R": h{z) = 0} and let h{zx) be Géteaur differentiable at ;.

i) If 3d € R" such that Jy(zo)d # 0 then I(S, z0) = 0,

it} if I(8, zq) # 0 then Img(Jy(z0)) = {0} and Ker(Jx(z0)) = R,

i43) if Ju(wo) is surjective then I(S,zg) = 0.

Proof i) Let d € I{S,x0) # ; if d = 0 then 29 € Int(S) (!), so that there
exists a suitable neighbourhood of z¢, say I, such that A{z) =0 Vz € I,
and this implies that Jg(zo) = 0 which contradicts Jy(x)d # 0. Suppose
now d # 0; then there exists a suitable neighbourhood of d, say Iy, such
that all the directions v € I are feasible for the set S, this implies that
‘h{zo + tv) = 0 in a neighbourhood of t = 0 Vv € I3 and hence Jy{zg)v =0
Yu € Ig; since i linearly independent directions d; exist in [y we then have
that Jy(zo)v = 0 Vv € R" which is a contradiction.

i1),iii) Follow directly from the previous result i). O

Note that Example 5.1 points out that conditions (6.1) may not hold
under subdifferentiability hypothesis.

We are now ready to state the following necessary optimality conditions
in the image space and in the decision space. Note that these results extend
and generalize to the vector case the result given by Jahn in [20] (Lemma
5.2 page 113), who proved the minimum principle necessary optimality
condition for a scalar problem (that is having a scalar objective function
f(z)) with just U(X, S, zo) = I{X, za).

Theorem 6.3 Consider Problem P under the Differentiability Hypothesis
i)-iv) and let:

U(X,5,20) C Ix UCIFx N Fg) UKer§,,
If the feasible point g € X is a local efficient point then:

Ky 0 (Int(C) x Int(V) x 0) = @

81t is known that the following conditions i), ii) and iii) are equivalent for any set
SeR” (see [17)): 1) 0 € I(S,20) i) zo € Int(S) i) I(S,zo) = K" :
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and if in addiction a first order U -regularity condition holds then o e Ct,
Jog € V', 3ap € NP, (ay, ag,on) # 0, such that:

[Q?Jf(&b‘o) + ozg:Jg(ccg) +afdy(mo)jv<0 VYoe CI(U(X S, zg))

Proof By means of the differentiability hypothesis we have that conditions
(6.1) hold, that is to say that T(S,zp) = Kersp and I(S,zo) = 0. The
whole thesis then follows from Lemma 5.1 and Theorems 4.1 and 5.2. O

It is easy to prove the following additional first order U-regularity con-
ditions related to Problem P, which come out to be stronger than the
ones stated in Theorem 5.3 since they are based on the differentiability of
functions f, g and h.

Theorem 6.4 Consider problem P under the Differentiability Hypothesis
i)-iv) and o cone:

U(X,S,z0) CIxUCHFx NFs)UKer§, .

The following conditions are first order U-regularity conditions:

i) U(X, 5, zq) s a convex cone,

i) U(X, S, xp) = I(X,z0) is a convex cone,

ii5) U(X, S, w0) = I(X,z0) £ and X is a locally convez set at xp (°),
i) U(X, 8, z0) = I(X,z0) and X is conver with Int(X) # 0.

Remark 6.1 Note that Theorem 2.3 [3], related to a scalar optimization
problem (that is that f is a scalar function), can be generalized to the
vector case by means of Theorem 6.3 using the U-regularity condltlon ii}
of Theorem 6.4.

Remark 6.2 Note that assuming the U-regularity condition iv) of Theo-
rem 6.4 we have that the necessary optimality condition stated in Theorem
6.3 holds Vv € T'(X, z5) = CI{I(X, zo)) (*9), generslizing to the vector case
Theorem 2.2 [20, 22], where the thesis is verified for a scalar optimization
problem Vv € F{X, zy). Note also that this is the first time that we require
Int(X) # 0. .

°X C %™ is a locally convex set at o if Al,, arbitrary open ball about zo, such that
X N Iy, is convex

ONote that if X is convex, with Int{X) # @, then T(X,zo) = Ol(I(X,x0)) (see
(16, 17]).
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