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Abstract

We study an asset prices model under bounded rationality. In the economy there are rational
traders and noise traders. When the noise traders’ demand is modeled as pure noise (random
walk) and rational traders compute the expected price as a geometric average of the observed
prices (bounded rationality), we show that in the limit, as the trade interval goes to zero, the asset
price is described by a mean reverting process with a drift given by the agents’ expctations. The
antocorrelation of the price increments is negative. When noise trading is persistent (autoregressive
process), the autocorrelation of the price increments is positive for small intervals of time and
negative for large intervals.
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1 Introduction

The classical asset pricing theory, based on the absence of arbitrage opportunities in the
market, provides us with some testable implications. Assuming a stationary economy, excess
returns are not predictable and no sign of autocorrelation should be observed (the so called
random walk hypothesis). Many studies have tested empirically these implications. An
evaluation of the literature allows us to establish that returns are predictable. They are
characterized by mean reversion when they are computed over long horizons (excess returns
are negatively correlated, see [11]), and they are positively correlated when the horizon
is a week or a month, see [16]. Moreover, some phenomena such as booms, crashes and
excess volatility are difficult to be interpreted inside the classical asset prices theory. On
the empirical literature about asset prices see also [6]. Two well established schools of
thinking can be identified in the literature on the interpretation of these facts: the classical
asset pricing school, and the so called behavioural finance school. Those belonging to the
first school explain these phenomena by relaxing the stationarity assumption for the assets’
dividends-returns. In this setting the equity premia are not costant over time and excess
returns turn out to be autocorrelated, e.g. see [11]. The partizans of the behavioural school
argue that the nonstationarity of the model is not enough to explain the phenomena observed
in financial markets and invoke the presence of some elements of irrationality in the market,
e.g. see [8, 15]. On this debate see also [9, 10].

This paper aims to contribute to this debate, by providing a microfoundation for asset
prices in continuous time under bounded rationality and noise trading.

In the last ten years, a large literature on asset prices with heterogeneous agents has
grown up, e.g. see [7, 8]. In [12], a microeconomic approach has been developed to determine
the stochastic differential equation for stock prices as the equilibrium outcome in a market
populated by rational traders, fundamentalist traders and noise or liquidity traders. The
agents of the first class aim at exploiting the arbitrage opportunities in the market, the
traders of the second class base their decisions on the comparison between the stock price
and the fundamentals about the security. Noise traders are pure noise in the market demand,
noise due to traders’ buying and selling stock for liquidity needs. In order to derive a diffusion
process, it is assumed that rational agents are myiopic, i.e. they foresee the future price as
the price one period before.

In this paper, we also look for a continuous time microfoundation of the evolution of

stock prices in an equilibrium perspective with heterogeneous agents. The main feature of



our analysis is that we assume the agents not to be fully rational, i.e. they are character-
ized by bounded rationality. There are two classes of agents: (boundedly) rational traders
and noise traders. Bounded rationality is modeled by assuming that traders forecast the
future price by updating their expectations through the first order autoregressive learning
mechanism (adaptive expectations): the today expectation for the price tomorrow is a con-
vex combination of the yesterday expectation for the price today and of the yesterday price.
Agents are neither fully rational as it is usually assumed in financial markets models, nor
myopic as in [12]. This learning rule can also be interpreted as an extrapolative techni-
cal analysis trading strategy. The noise traders’ demand is described by an autonomous
stochastic process. Two different specifications of the stochastic process are considered: a
random walk and an autoregressive process modelling persistence in the noise trading de-
mand. The diffusion process for the asset price, obtained in the standard weak limit by
means of a suitable time rescaling of the discrete time equations (see [17]), performs a mean
reverting process around the agent’s expectation, which in turn is modeled by a recurrent
Ornstein-Ulenbeck process. For the first specification of the noise traders demand, the price
increments are negatively correlated. When the noise traders’ demand is described by an
autoregressive process we have that the price increments over a long horizon are negatively
correlated, whereas they are positively correlated when the horizon is short enough.

This result calls for a discussion with those obtained in the financial markets literature
under bounded rationality. The analysis of financial markets under bounded rationality has
been developed in several papers, e.g. see [1, 5, 22, 23, 24, 4]. In those papers, agents do not
know perfectly the dividend process, they learn some of its parameters as time goes, then
the equilibrium asset price is computed rationally according to the no arbitrage condition.
In this framework, mean reversion and high volatility are obtained. In this paper we do
not rely upon the agents’ ignorance of the dividend process, pure noise in the market not
affecting the fundamental of the asset, which is equal to zero, generates mean reversion under
bounded rationality. Our learning rule is more sound from a behavioural point of view,
instead of estimating the dividend process parameters and computing rationally the price as
the expectation of future dividends, the agents directly compute the expected price through
an adaptive scheme. The asset price performs a mean reverting around the level given by
agent’s expectation process. If agents use an extrapolative learning mechanism-technical
analysis trading rule, then the price’s drift is determined by the agents’ expectation.

The paper is organized as follows. In Section 2 we present the discrete time financial
market model with whife noise trading. In Section 3 we study the convergence of the asset



price to a diffusion process. In Section 4 we consider the case of an autoregressive process
describing the noise traders’ demand.

2 Bounded Rationality in a Financial Market with Noise]
Trading

In [20] a simple model has been proposed to explain some anomalies encountered in testing
the classical asset pricing theory. In the model there are rational agents aiming at exploiting
all arbitrage opportunities offered in the market, and noise traders, whose nominal demand
is pure noise with no economic rationale. The model gives us the following forward looking

equation for the asset price:
(1) Se = vpSk + 0xZy, k=1,2,...,

where 5, is the asset price at time k and é'k denotes the agent’s expectation at time & of
the asset price at time k£ + 1, the coefficient vy is a suitable discount factor, the sequence
(Zk)g=y, which models the noise in the market, is a sequence of independent and normally
distributed real random variables such that E [Zk] = 0 and D? [Z;] = 1, and the coefficient
ot 18 the noise traders variance component.

To simplify the analysis, we have assumed that the asset does not deliver dividends.
The asset can be interpreted as a future contract. The noise component does not affect the
fundamentals of the contract, therefore if the agents are fully rational the fair price of the
contract should be constant over time and equal to zero. In fact, under rational expectations
there is a unique fundamental value for the asset price which is constant and equal to zero.
Qur choice of not considering dividends is motivated by the fact that we want to isclate
the effect of pure non fundamental noise on the asset price when the agents are not fully
rational. The full rationality no correlation result for return and price increments provides
us with a benchmark.

Equation (1) is the classical no arbitrage equation plus a noise component. In a market
with two assets, a risky asset and a risk-free asset characterized by the interest rate r, setting
o = (1 + 7‘)_1, S, = Ey [Sk+1], where Ey denotes the conditional expectation at time k given
the available information, and choosing oy, = 0, we end up with the classical no arbitrage
equation with respect to the risk neutral prbbability measure.

Following [20], the random variable Sy in (1) can be interpreted as the equilibrium asset

price in a market where there are two classes of traders: rational traders and noise fraders.



Agents belonging to the first class behave according to the no arbitrage principle looking
at the expected rate of the return of the asset, when the expected return is larger or lower
than the risk free rate they buy or sell short the risky asset. Agents belonging to the second
class act for pure liquidity needs and therefore their effect on the market price is purely
idiosyncratic and is described by the sequence of random variables (Z),~,. In what follows,
rational agents are not characaterized by rational expectations. The rational expectations
agsumption is a mile stone in modern economic and finance theory, every other behavioural
assumption is named bounded rationality. The rational expectations assumption is based on
two main hypotheses: agents know the model and use all the available information in the
best way. Bounded rationality requires to weaken these two assumptions. In our analysis,
following among the others [2], we assume that rational traders do not compute the expected
price according to a probability measure, but update their expectation according to the first

order autoregressive learning mechanism:
(2) Sk = St + a(Sp—1 — Sk=1), k=1,2,...

for a suitable learning coefficient oy, (0 < @y < 1), the today expectation for the tomorrow
price is a convex combination of the yesterday expectation for the today price and of the
vesterday price. Note that, to avoid simultaneity problems between the expectation forma-
tion and the determination of the equilibrium price, the asset price is not compared to the
contemporaneous expectation, as it is done in the classical adaptive expectation framework.

(2) says that the expected price is a geometric average of the observed prices.

3 Convergence to a Diffusion Process

The system of stochastic difference equations (1)-(2) can be rewritten in the following canon-

ical innovation form:

Sy = vk + ok,
Skt1 = Sk + ey (v — 1) Sk + 1042k,

(3)
where ' &
;Sn'l = S’o +0£1(SO — 5’0)

Since Sy is the datum asset price at time k& = 0, if we make the natural assumption that the
random variables of the sequence (S’D, VAT /A ) are independent, then it is well known



that the solution (S;ﬂ, S'k) o of (3) is a Markov chain with respect to the filtration (7).,

generated by the sequence (S’O, VAT /S ) itself.

Following [17], we can show, by means of a standard stepwise time-rescaling and under
suitable hypotheses on the coefficients, that it is possible to obtain the weak convergence
of the solutions of the rescaled systems to the solution of a system of diffusive stochastic

differential equations. To this end, first, we rewrite (3) in the following equivalent form

Sk — S g = —dp Sy + Sk — Sp1 + on sy,
Skt — Sk = —0y 188k + Qo101 7,

(4)

where we have introduced the discount rate dy, = 1 — v. Then, for each n > 1, we consider
the partition of the interval [k — 1, £[ (k > 1) by means of the n points & — 1 = t,4 1) <
Tafe—1)41 < oo <lppo1 <lpp = k, where t; —£,_1 = At = 1/n for every 7 > 1, and we rescale

the system accordmgly by writing

00— 500, — —, 04 (80— 50) At 4 2, 20

t5-1
Sﬁ3+1 S(n) = ¥ dt. S( + C\ftH_lO'iJ Z(n)

(5)
41
Notice that, since we want to make both the drift terms and the variance of the noise
terms of the rescaled system (5) proportional to At, we are led to introduce the term
(S(") S(") ) At, and we require (Z (n)) __to be a sequence of independent and normally
distributed real random variables having n;g;n 0 and variance Af. On the other hand, the dis-
count rate d; depends on At owing to its own nature. Actually d;, = d(t;,,41) = d{t;, At),
and we assume

(6) dtj = 6tj At +o0 (At) .

where §,; is the instantaneous interest rate at time ¢;, for every j > 0.
Likewise the solution of (3}, the solution (S£?)= 5}(?")) of (5) is a Markov chain with
7 /450

respect to the filtration (}"t(;)) . generated by the sequence (S(n) Z}:L ye- Zt(f), . )

Jz
Now, we introduce the sequence (Wt(_"')) given by
/20

pprn) def AN
t 0 if j=0"

and we write
s E s, s E M Wi H W fore <t <ty

7



The processess (S}f”))»o = S, (gt(n))wo = §(, and (Wf”))wo = W™ have right
contimous paths with finite left-hand limits (RCLL paths). Moreover, given the Polish space
D ([0, +co[; IR} of all RCLIL paths endowed with the Skorohod distance, it is well known that
the D ([0, +oc[; R)-valued sequence of random variables (W)

Wiener process starting at 0,

1 CONVerges weakly to the

We want to show how, applying Nelson’s criteria, it is possible to check the weak con-

vergence of the sequence (S("), 9{”)) , as n goes to infinity, to the solution of a system
n=>0

of stochastic differential equation. To simplify the analysis, we assume a constant learning

rate, market volatility and instanteanous interest rate:

(7) oy =a, oy=0, & =6 forj>1

J 7

'The results obtained below can be easily extended to time varying parameters. Our main
result is the following.
Proposition 1 As n goes to infinity, the sequence (S{n), 5‘{“)) converges weakly to the

n=>0
solution of the system of stochastic differential equations

(8) { ds; = ((1 ~8) 8, — 5}) dt + o dW,

dS, = —ab8, dt + ao dW,,

where (W), 15 a standard Wiener process.

Proof.  The proof follows the guideline outlined in [17], and it is based on a classical
existence resnlt for stochastic differential equations (see [13, Chap. 5, Theor. 2.9]).
Let us consider first the matrix field

def c 0
U:]R,2_>R2®]R127 U(:E]_?[L'Q): (Q{O’ 0)’

!

and the vector field
b:IR’Q_"]R‘Qa b(xlwa) E(bl (wlamQ)abQ (mlaxQ))a

where

de d
b (1, x2) f (1=6)zg —x1, ba2(x1,22) e —abxs.

Since it is easily seen that the conditions given in [L3, Chap. 5, Theor. 2.9] hold true, we
can conclude that (8) has a unique non-exploding strong solution for every given initial price

Sp and for every distribution of the expected price 9p.

8



Now, following [17], to prove the weak convergence of (S(”), S (”)) to the solution of

n=0
(8), as n goes to infinity, we want to show that the conditional variance-covariance matrix
and the conditional expectation vector per unit of time of (S("), 3(”)) converge uniformly

n>0
on compact sets to the components of the symmetric non-negative definite matrix field

a a
a:TR? — IR?, afxy, x) = L1 1.2 ,
du1 Ogp
given by

def
a = ool

and to the components of the vector field b : IR? — TR? respectively.

To this task, observe that the hypotheses on the noise sequence (Zt(?)) . and on the
iz

filtration (]:t(_”)) give
7 /=0

E[sPIE] = s,
s, A4] - 40,
(7] - B[a] -0
i 2

B|(Z%) 1750 = B|(20) | =at
(o \? | o] [\

E (Zm_l) =P = B (th+l) —0,
’: 3 - - 3:

E|(z0) 157| = E|(Z0)) | =sar

Then, taking into account of (6) and (7), by straightforward computations, we obtain

) E|(S9-sP)IFD] = —as0+ e (8- s,),
(10) B (S0, - 80 IFD,| = ~eds,
(11) E [(35;') - S§?31)2 |.ﬂ§r"f31- = & _(353))2 LA (5*5;“) _ sg;g)z + Ato?
‘ -22td8 (5 - s,
(12) B (57 =8 ) (30, - $PNAR] = o (@,Fj->)2 — Atad (8" - 50V, ) 5%
+Atao?,
(13) E {( nt(ﬁgl - Sf(:))Q |.T}(£)1 = ofd? (ggb))z + Aia’s?.



Now, writing ﬂ(ﬁ)l,t,- : IR?* x B (R?) — R, for the j-th transition probability of the Markov

chain (ng},gff)) o’ where B (IR?) denotes the Borel o-algebra on IR?, for k,1 = 1,2, we
3=

define

=N

~(n le f n
ag) (w1, 12) < / (e — 2k (. — 20) PV, (@1, %2, dyn, dya)
IR

and

~n d
B (21,30) & /2 (e = 26) Ei s, o, 2, ),
R

where we claim that the integrals on the right hand side of the above equalities exist and
are finite, '

Indeed, setting

72 d,'e. _ T
Ci: ) (xlyx2) :f At 1/ (?Jk: o Ek)4 ]Dt( )1,1,‘_,‘; ('7’-11'1“21 dylv dy2)

R2 -

for £ = 1,2, and recalling that the Markov property gives
4 4 Alm "
E I:(Xt(:') - Xéj)1) |‘7:f(u~,w)1] = /IR2 (yl’ﬂ - XL(J__)]_) ﬂgri)l,tj (Sigj)last(j_)lyd’yhdy2) 3
for both X = § and X = 5, from

4 n 4 N 3 /.
E [(sg") - 5i,) |.7-}(:_)1} = d*(57) - anea (557) (80 - 80,)
n 2 /. 2 . 2
+H6AL (sg")) (s,?ﬁ - s§j}1) + 6Atd%0? (sg"))
s /A 3 aim) { Al
~4At3d8§f}( o _ ,ff_)l) — 12A¢d023" (sfgx) —Sff_)l)

4~ 4 N 2
FAP (50— 80} + 60802 (57 — 50 )+ 3¢,

and _
. R 4 R 2
E {(Sg") — Sg"jl) |]-}(ﬂ} = ot (ng)) + 6At (St(:‘)) + 3A#att,
we obtain
™ (zy, 1) = At d oy — ddPad (g — 21) + 6ALd2 22 (2 — 1) + 6d%0 %z
—4AFdxy (2 — 21)° — 12Atdo% s (29 — 21) + AL (29 — 21)°
+6AE 52 (2 — $1)2 + 3Ato?,
and

cén) (z1,x2) = At Totd'a) + 6a*da2 + 3Ata o™,

10



Therefore, taking again into account of (6) and (7), it follows that for k= 1,2
lima ™ (y,2) = 0,

Fo—r OO

uniformly on compact sets of IR?, which gives our claim (see [17, sect. 2.2]).

This existence and finiteness result allows 1s to combine the relations
(n) (n) m ] _ (ﬂ) ()  aln)
B (- 582 2] = [ (- 52) P, (52, 5 ).
( & n _ n n}  &ln
E [(Stnjl 5 n) |‘E(3 )1 - [Rz ( St(.?-l)l) P(q )h (S{ St(j )’ dij, dyg) !
d R2

E[(Sga) Sf(:)}) (S(") S(n)) |]_—(n>]

tit1

= /2 ( S!g;,' )1) (y2 - S't(an)) PSN)l ty (’5’1:1)1?8(1% dyl‘: d’yg) ’
R

[(S(?H Sf:))Q ]-7:‘5:;)1] — ‘/W (y2 _ Sf(:}) Ptf,”lt, (S{:" 1,3(?),dyl,dy2) ,

with (9)-(13), to obtain

& (vy,m0) = dad+ AL? (25 — 21)° + 02 At — 2Atdzy (v — 7))
a1y (w1,m) = ag (21, 20) = ad’z} — Atad (z2 — 1) 32 + Atas?,

(
(

&g,g (z1,20) = oPd%3+ Atagoj,
(x1,m3) = —day+ At{zy—a),
(

) 331,332) = —O!d.’l.‘g. 7

Thererefore, writing

G':(:}) (:131,.1:2) I At (ak ,} (z1,%) — chn) (z1,23) 3;”') (331,11’}2)) ,

and
n de, —17(n
B (2, 0) € A (), 1)
for k,1 =1, 2, we have

agffl) (mla m2) = 0-27 ag 2} [371,5132) = ag?l) (371, x2) = (_m-z, G’STQ)

11



and
B (21,29) = —At ey + 25 — 1, b (21, 32) = —~ At adzs.

Hence, it is immediately seen that, for all k,! = 1, 2, we have

lim o\ (2, 25) = ax; and  lim B (@, m2) = by (21, 72)
n—oo i . N—o0

uniformly on compact sets of IR2,

What shown above implies that we are in a position to apply Nelson’s criteria (see [17,
2.2 - 2.3]} and the desired result easily follows. a

System (8) can be integrated by means of a standard procedure (see [18, 5.1.3, p. 64])

and the solution (,S'Ej S’t) is given by
20

1-68 4 1-46 . 1 -« ¢
14 = i —t -t §
(14) St 1__a68t+(30 1-@580)8 +1—a60-e ./oedWS
t
(15) Sy = Spe % 4 cme”‘&/ e dW,.
0

Therefore, the limiting price process looks like a mean-reverting Ornstein-Ulenbeck process
around the level given by agent’s expectation process.

Having obtained an explicit form (14) for the limiting price process, we can apply Itd
calculus to compute the main features of (S;),.,. In particular, it is matter of straightforward

computations to prove the following result:
Proposition 2 For all t, At > 0 we have:

(1600w (Separ — Si, S — Si—At)
2
(1—-46) (D2 [90] _ _;_0_2%> g ab(2t-An) (1- emaﬁAt)z

(1— ab)?

e (DQ 5] - ;H) 0 (1 _ 0y

ﬁ&%nﬂ [So] e0koB (A — 1) (1= 7202 4 (8¢ — 1) (1 ¢75¢))
‘%%(?—2 (1 ¢-atdt)?

c?a(l — o -6 "2 —Af\ 2
e (CONCLD N

4o (Lrad): ((em —1)(1- e»-arSAt) n (eaaAt _ 1) (1 - e“At)))

12



102(1 —-05)2

S Sl Ny S e A L
9 (1 = 0{6)2 ( € )
Proof. From (14) it follows that for all 0 < s < ¢ we have:
- _}_i q —afbt _ i -
(17) E[S] = B [30] (2% — e=t) + Spe

and, thanks to the formula

8 t
1
E { / e dW, / e”dW,ﬂ} = (et — 1),
0 J0

Pt+gq

that holds true for all p, ¢ € IR, we have
(18) Cov (S,S,Sf)
D? & —afs _ -8 —abt i
1_ aa [ 0] ) (e e)

2
1o° le( )2 e—ac‘)'(s—l—i) ( 20085 1) .
26 (1 - ad)
cfa(l —a)(1-8)
(14 ab) (1 — ab)?

2

_1_0"2 (1 -« ~(54) (62.9 _ 1) _
2 (1—ab)?

Irom the latter, thanks to the bilinearity property of the covariance functional, we obtain

the stated result. Ol

(8—(S+C¥6t) (e(1+a6)s _ 1) + em(a55+t) (e(1+a¢5)s _ 1))

Equation (16} shows clearly that if the variance of the expected initial price Sp is small
enough, then the price process increments are negatively correlated. Moreover, (16) shows
that for any value of D? [.SA'O] and for any time step At, the price process increments becomne
negatively correlated as times ﬂows: In particular, if the expected price Sp is a datum, then
the price process increments are always negatively correlated. This result shows that a pure
noise in a bounded rationality economy produces a mean reverting effect and negative corre-
lation in the price increments as observed in large part of the empirical literature (negative

correlation of returns and price reversals).

4 Noise Traders Persistence

Now, we consider the following forward-looking difference equation

(19) Sp=eSp+ Ne, k=1,2,...,

13



where S, .SA‘;c and v, represent the same variables as in the last section and the random

variable Ny, which models the noise in the market, satisfies the following equation
(20) Nk:mk +ﬁka—1+Uka: k:]—)zv"'v

where the coeflicient (), represents the persistence in the noise traders demand and, as in

(1), the sequence (Zy),.., is a sequence of independent and normally distributed real random

variables such that E[Z;] = 0 and D?[Z;] = 1. Also this model has been proposed in [20].
Similarly to the case studied in Section 3, the system of stochastic difference equations

(19), (2), and (20) can be rewritten in the following canonical innovation form:

Sk = kak -+ Nk,
(21) Sei1 = S+ 0gep1 (v — 1) S+ o1 N,
Ny = my + BNt + o2y,

where
Sl = Sg -+ &1(8{) - S())
Also in this case, Sy is the datum asset price at time ¢ = 0, and we assume that N is

the noise traders’ component in the market at time ¢ = 0. Therefore, under the hypothesis
that the randomn variables of the sequence (5’0, Llyeni Loy, ) are independent, the solution

(Sk, Sk, Nk)lc of (21} is again a Markov chain with respect to the filtration (Fy),., gen-
>0 -

erated by the sequence (S'O,Zl, R/ ) itsell. Hernce, we rewrite (21) in the equivalent

form
Sk — Sp—1 = —d,Sy + Sy — Si_1 + Ny,

(22) Sie1 = Sy = ~apa1deSk + o1 Ny,
Ng — Ne—i = mp — velNgey + 01 Zs,

where we set v, = 1 — 5, and, with the same arguments and notation of those in Section 3,

we rescale (22) obtaining

A QS}T’) S 4 N )At

(23) 5 s(“) =~y dy, 807 + o, N{PAL,
Nt(ﬂn 1?\Jrf(:t)l - (mtj - ,Yf? ti— 1) At + O—’yul-th(nk)?

for every n > 1. Here we are making again both the drift terms and the variance of the noise

terms of the rescaled system proportional to A¢, and we are assuming again that (6) holds

true. Then for every n > 1 the solution (S (n) Stj . N, (”)) of (23} is a Markov chain with
=0

14



respect to the filtration (.7’ ) . generated by the sequence (S(") zZim ...,ngf), i, ) For
iz )

ty oy

sake of simplicity, we assume again that (7) holds true, moreover we assume that
(24) my =m, Y, =1, forj>1.
Then, an analysis similar to that in the proof of Proposition 8 gives:

Proposition 1 As n goes to infinity, the sequence of the triple of D ([0, +oc[;IR)-valued

random variables (S("’),S'("),N (”‘)) converges weakly to the solution of the system of
120

stochastic differential equations

dS; = ((1 — 68, — 5, +M) dt,

(25) dgt = “‘Odtsgt dt + QNt dt,
dN; = (m — yN;) dt + o dW,,

where (Wy),5q is a standard Wiener process.

Likewise (8), System (25) can be integrated by means of a standard procedure and the
solution (Sf,, 5, Nt) . is given by
>

26) S = 1_5 (so— 1_‘530)

1« 1

l—« ’
Ny—{Noe7'4+m (L—e7t) + —*f des)
+(1_0f5)(1—')’)( f ([)6 +'m( e ) ae De
N ~ & - T oo o to's
27 8 = Soe_“&—l—ry_aa (Noe "“5*+E-5(1— *) + oe” *fo et dWs)
o
- N;.
y—ab '
i
(28) Nt=N0e_'Y“+in—(1—~e‘“)+o*e‘"’t[ e dW,
Y Jo

Notice that, since we can rewrite

1—aéb

(e ))
+(1—;5;g—7)(%( )J’m(l_;v (1_6_t)))
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(29) S = See '+ 1-¢ ((So-i-




a(l—é) —&,/t 6 —t/t
o abs g . ¥ Y8 A
+(1_Q5)(’Y‘@5)U(e 0 ’ Wome 0 o

+ 1—a U(e—wfte'yde*e_t/tede)
(1—ab)(1—7) 0 ° Jo ’

and

G &~ a e —
(30) S, = Spe 5t+7_a5Ng(e & _ e “'t)

o 1—e™ 2t ]
+’ywoz5m( ab )

¢ ¢
L (e“”‘& / e qW, — e f e’® dWS) .
v - ab 0 ]

1—e®  1—e¥
= ;
¢ (2
that holds true for all 0 < ¢ < 4 and every t > 0, it is clearly seen that both the price

process and the expectation process have a positive drift, for all 0 < «, 7,6 < 1.
From (29) it follows

_|_

Thanks to the inequality

Proposition 2 For oll i, At > 0 we have:

(31) Cov (St - Se-ats Syrar— St)

_ ((11__&6;;2 (Dz [S'o] 1 o 202) o200t (Bmﬁ/_\t _ 1) (1 _ B—cmmt)

(1 “5)2 afa] 1 (7*04)2 o2
' ((1 e S R )
xe HH (e — 1) (1 — 774
) '

x ((e’yAt _ 1) (1 _ e—amf;) + (ecuSAt _ 1) (1 _ ef"yAt))

1 a(l ~8)° o2 (1 — o-o6it)2
26 (1= a0 (et )
__L (v — C")z o2 (1 — e—7At)?
27 (1—-7)*(y - 0)” < )
1 a(l-8)(y—a) o2

_’y—l-O{é; (1—4)(1 _aé)(’}/—aa)z
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% ((1 — B_’YAt)z + e~ (ytad)t (emSAt _ 1) (1 . 6_7At))
n 1 a(l —a)(1l-6) 2
L+ ad (1 —9) (1 —ab) (y — ab)?
((1 wm) o~ (1+ad)t (ot _ 1) (1- e_m))
R R\ L R
TH+ab(1—9)(1 - ab) (v — ad)*
X ((1 - e‘“mf) + e Crhedt (g7AL ) (1 . e—aéAt))
L (-at-a0)
L7 (1= 7)* (1~ ab) (v — ab)
X ((1 - e””)2 4 g (e'rAt _ 1) (1 _ e—At))
L a(l—a)(1-6) )
T+ a8 (1=7) {1 - af) (y - ab)’
« ((1 — oA | o=t (AL ) (1 _ e—aam))
NS TR
L+7(1—9)" (1 - o) (y - ab)
((1 e ’YAt) a1+t (em _ 1) (1 _ e—’yAt))
1 (1-a)

-5 = 7)2 = a6)202 ((1 - c~4t) 42 (em _ 1) (1 . e—At)) _

In particular, if S; is a datum and At is small, then it is easily seen that (31) gives

(32) Cov (St — Si_ At SH—At - St)
1 of6(1-6)°

Mg ao @6)2 - aé)gngtz (1 + g2t
Ty -l-laeé (1 ’Yj El _ 2)55 (’Y_ ala) o?At? (14 aby~le~(rHad)t)
1 -|—1a6 (1— )(2 ﬁaaé) o i)aé)g o2 At? (1-+ a,sef(lm&)a)
_7 +laf.6 (1 —3*;5)2((11— 235)((7 #025)202At2 (1 -+ a“*lfs*lveﬁ(wa&)t)
2
_% - jf;; (;O‘_) a6)202At2 (1+ ¢
g= 7(1- SZ_(laﬁ)- 2;5)_(:)— oy A (L e
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1 o6 (1 —a) (1~ 8)
TTH a8 (T =) (1-ab) (7 — a8’

O’QAtz (1 + a—lé‘—le—(H-ozﬁ)t)

1 v (1—a)(y—a) AL —1,—(1+)t
T i et =g 07 )
1 (1—a)

—= a?At2 (1+ 7).
2(1 —7]2(1—01:6)2 ( )

Now, it is matter of straightforward computation to show that for large ¢ the right hand

member of (32) becomes
200y (1 — @} + 2av® 4 206 (o — ) + +* + “higher order terms”.

We can conclude that for small values of the increment Af, and large ¢, the price process
increments are positively correlated. The result holds true for small ¢, as it can be proven

easily by observing that the right hand member of (32) computed for ¢ = 0 reduces to

a(1—a)(1—6)(1+ ab)
(1 — a)* (8 — ab)?

and also observing that its derivative, computed for ¢ = 0, reduces to

ol At?

B20?At? + “higher order terms”.
g

On the contrary, keeping up the assumption that the expected price Sp is a datum, if we
assume that At is big, then also ¢ is necessarily big {t > At), and from {31) we obtain

(33) Cov (St ~ Stat, Serar — Si)

~ ___1_ a(l——5)2 o2 — 1 a(l -é8)(y—a) o

26(1~at) (y—ad) 7+ b (L—~7)(1—ab)(y— ad)

4 1 a(l—a)j(l-9) - 1 a (18) {y — ) .
1+o8(1—y)(1-aé)(y—ab)®  7+ab(1—9)(1-ab)(y—ad)

B S ) L1 (l-a)(y-a)
(1= (v—ad)® 1471 -9 (1-ab)(y— ab)

L ! al-a)(1-8) ., 1 l-a)z-a)
Ltab(l—y)(1-ad)(y~a8)®  1+7(1-77(1-ab)(y—ad)
1 (1 “‘0‘)2 9

2(1— (1 —ad)
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The right hand member of (33) reduces to
—ay” (7 + 1) + “higher order terms”,

this shows that, for big values of the increment At the price process increments are negatively
correlated.

Despite the above results hold true for any triple of positive parameters o, v, §, they are
strenghtened by choosing 6§ < 1.

Differently from the non correlation result obtained under full rationality, we have been
able to show that the price movements are positively correlated over short horizons and neg-
atively correlated over long orizons, confirming the regularities observed in the literature for
asset returns (price increment divided by the price). Unfortunately, no closed form solution
is available for the returns, therefore we are not able to provide a complete explanation of
the anomalies detected in the literature. However a Monte Carlo analysis performed in [19]

shows that the same type of correlation is enconutered for the return process.

5 Conclusions

In this paper we have analyzed an asset price model under bounded rationality. The funda-
mental of the asset is constant and equal to zero being null the dividend process. A noise
component not affecting the fundamental deseribing the noise traders’ demand gives the null
price under full rationality and a price characterized by mean reversion around the agents’
expectation under bounded rationality. Price increments over short horizons are positively
correlated, whereas over long horizons they are negatively correlated. These theoretical re-
sults provide a theoretical explanation of teh regularities observed in the empirical literature.
Future research calls for an analysis of the bounded rationality economy assuming a non null
dividend process.
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