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1 Introduction

Throughout this paper C is a closed and convex cone in R and L is a linear transfor-
mation from R" to ™. The biggest linear subspace of C is denoted by /(C), that is
{(C) = €N —C. As usual the interior (resp. the relative interior) of a convex set A C R"
is denoted by intA (resp. riA). The cone C specifies several order relations in R#". We
shall mainly deal with the following ones:
zr2=cyifr—yeC
rZeyifz—yeC\ {0}
zrcyifz—yeC\I(C)
T >coyifz —‘y e riC.
These order relations are crucial in the study of vector optimization problems and related
topics (see for instance Refs. 1, 2, 3). Note that if C is pointed, there is no distinction
between (=) and (>¢). The main relationship between these order relations is as follows:
(»c) = (>c) = () = (>=¢). The converse is not true in general. With the help
of the above order relations one deﬁnes §everal ?optimal” solutions of a vector problem.
Namely, let A be a nonempty set in #". We say that
i)z € Ais an ideal (minimal) point of Aify >=c zforally e A

ii) x € Ais a strictly efficient point of A if there is no y € A such that z >¢ Y



iil) 2 € Ais an efficient point of A if there is no y € A such that z >, v

iv) x € Ais a weakly efficient point of A if there is no y € A such that z >¢ Y

iv) z € A is a properly efficient point of A if there is another convex and closed cone
K & R" not identical to ®* such that C \ {(C) C intK and there is no y € A with

T—y e intk.

The sets of the points defined in i)-iv) are denoted respectively by IMin (A

C),
SMin(A|C), Min(A|C), WMin(A|C) and PrMin(A|C). The definition of properly effi-
cient points given above is due to Ref. 4. We refer the interested reader to Refs. 5-8 for
other kinds of properly efficient points and their properties.

The notion of efficient points was originally introduced by Pareto in the beginning of the

last century, when he used the positive orthant
R ={r={z1,..,xn) eR*: 2, 2 0,i=1,...,n}

to generate the order. For this reason, efficient points are often called Pareto efficient
points or Pareto points for short. Since ™ equipped with the order defined by the pos-
itive orthant is a Banach lattice (every two elements have a supremum), the calculus of
efficient points is much simplified. For istance, given a nonempty set A C R", in order

to find a Pareto ideal point of A or to show that it does not exist, it suffices to compute
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T = (Z1,.... &p) With T; = inf{x; : (x1,...,2,) € A}. If 7 is finite and T € A | then it is a
unique ideal point of A; otherwise A has no ideal points. Similarly, in order to find the
set of all dominating points of A i.e. the set A? .= {z e ®" : Z=gn a, Ya € A}, one
finds Z = (Zy,...,Z,) with Z; = sup{z; : (z1,...,2,) € A}. If T is finite then AP =z + R
; otherwise AP = {.

Note that if the order is generated by an arbitrary convex and closed cone C, then the
above problems are not simple. For instance, one sees that AY = M,z 4(a + C) which is
quite difficult to compute.

The above examples suggest us an idea of replacing the ordering cone C' by another order-
ing cone of simpler structure, like it} . Such a replacement must, of course, preserve order
relations so that efficient points remain efficient with respect to the new ordering cone.
Iﬁ this paper, we shall use linear transformations for this purpose. More precisely, we are
going to study the effects of linear transformations on order relations. Our attention will
particularly be made on projections and on those transformations that allow to use posi-
tive orthant as an ordering cone. Then, we shall derive the relationship between efficient
points of a set and their images under a linear transformation. Another application is
devoted to characterizing generalized convex vector functions by using order preserving

transformations and to deduce some calculus rules for subdifferential of convex vector



functions.

2 Linear transformations

Let C be a closed and convex cone in R" and let L be a linear transformation from R"
to {™. It is evident that L(C) is a closed and convex cone in ®™. In this section we
are going to establish the relationships between the order relations determined by ¢ and

those determined by L(C).

Lemma 2.1 Let L be a linear transformation from R™ to R™. Then one has:
i) {L(C)) = L{CN[KerL - C]);
i) I(L(C)) 2 L({C)) and equality holds provided either KerL C C or KerL N C = {0};

i) L(riC) = ri(L(C)).

Proof. For i), let v € L(C)N —L{C). There exist x and y € C such that v = L{z) =
—L{y). Then L{z +y) = 0. Hence z € CN[KerlL — ] and v € L(C' N [KerL — C)).
Conversely, let x € C N [KerL — C|) and v = L{z). Then there are u € KerL and y € C
such that £ = u—y. We have —v = L(—1) = L{y —u) = L{y). Consequently, —» € L(C)
and v € I(L(C)).

The second assertion is derived from the first one, and the last assertion is already known



{see Ref. 9).

The following example points out that the relation I[(L{(C")) = L(I(C)) can happen

even if KerL & C.

Example 2.1 Consider the cone C' = {(z,y) € R? : y > 0} and the linear transformation
L defined as L(z, y} = (2,0). It results {(C) = {(z,y) : y = 0}, L{C) = {(z,0) : z € R},

I(L(C))=L({l{C)) but KerL is not contained in C.

Theorem 2.1 Let L be a linear transformation from R* to R™ and let C' be a closed and
convez cone mn R*. Then we have “

i) x 2=cy = La) =, Lly). The converse is also true if KerL C C;

i) 2y = L{z) 20 Lly) provided KerL N C = {0}. The converse is also true if
KerL C (',

W) r >cy = L{z) >0 Lly) provided either KerL C C or KerL. N C = {0}, The

converse is also true if KerL C C;

w)z>cy = Lx) >rey Lly). The converse is also true if KerL C C.



Proof. ~We prove i) first. The implication (=) is straightforward. For the converse,

oy L

L(z) 2=p¢) L{y) means that L(z ~y) € L(C). Hence z —y € C + KerL € C because
KerL C C, which implies z >=¢ y.

For i), let # >¢ y and KerL NC = {0}. Then L(z —y) € L(C \ {0}) = L(C\ KerlL)
= L{C) \ {0}, which shows that L(x) >r(c) L(y). Conversely, if L(z) >5y L(y) and
KerL CC,thenz—y#0ande—y e C+ KerL C C. Hence z —y € C\ {0}, which
means that z >4 y.

For iii}, assume x >¢ y, that is 2 —y € C'\ {(C). Then by i), L(z) >=p¢y L{y).
If L{x) — L(y) € {(L{C}), then in view of Lemma 2.1, L{z —y) € L(I(C)). This and
the assumption of iii) imply =z —y € ('), which is a contradiction. Conversely, assume
L{z)} > 1) L{y), that is L{z—y) € LIC)\I(L(C)). Byi)onehasz >=¢ y. fz—y £ 1(C),
then by Lemma 2.1 we obtain a contradiction L(zx — y} € I(L{C)). Thus, z —y ¢ 1(C)
and r >4 y follows.

Finally, by Lemma 2.1, z > y implies L{zx — y) € L(riC) = riL(C) which shows
that L(z) >y L(y). For the converse, one observes that L(z — y) € riL(C) implies

r—ye€nC+ KerL CriC, which shows that z ¢ v.

The following example points out the role of the condition KerL C € in Theorem 2.1.



Example 2.2 Let ¢ = R} and let L be the linear transformation defined as L(z, y) =
(z,0). We have KerL ¢ C and KerLNC # {0}.

Setting a = (4,2),b = (3,4), it results L{a) >0y L(b) , so that L(a) >y L(b) and
L{a) >=p(¢y L(b). On the other hand a Z=¢ b and thus a #¢ b and a ¥¢ b.
Furthermore setting @ = (2,4),b = (2,3), it results @ >¢ b and @ >¢ b, while L(a) # e
L(b) and L(a) #1cy L(b).

At last consider the linear transformation L{w,y) = x. Setting a = (2,3),b = (1,4), we

have L(a) >y L(b) while a ¢ b.

Particular case 1: If [{C) is not trivial, we may decompose R" into a direct sum of
I{C) and its orthogonal space [I(C)]* . Let ¢ denote the canonical projection of R* onto

[[(C}]* . Then it is & linear transformation from R" to [I(C)]*- .

Corollary 2.1 Let q be the canonical projection of R* onto [[{CY)* . Then we have
a Zz=c bif and only if g(a) Z=4cy q(b). The conclusion remains true if the order relation

(== is substituted by (>) and (>»).



Proof.  Since Kerg = I[{C') € . by applying Theorem 2.1 we obtain at once the

conclusion of the corollary.

Observe that the cone ¢(C) is convex, closed and pointed. Therefore, the order rela-

tion a > a(C) b means that a Z=qc) b and a # b.

Particular case 2: Now assume that C' is given by the following system of inequali-
ties:

C={reR" <& r>>0i=1,..,k}.
The positive polar cone Ct of C is defined by
Ct={veR <v,z>>0,Vzel}
It is known (by Farkas’ lemma) that C't coincides with the convex cone generated by the
vectors &1, ..., k, that is

k
C+ == {Z Alf! . }\i 2 0,?. = 1,,k}

i=1

We recall that CF distinguishes the points of R®" if for every z,y, € R, © # y, there is
some & € CT such that < £, 1 >#< £,y >.

Below there are some criteria for C* to distinguish the points of &".
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Lemma 2.2 The following statements are equivalent:
i) C distinguishes the points of R":

i) CT contains n linearly independent vectors;

ii) intCT # §;

w) C is pointed.

Proof. 1t is easy to see that the three first statements are equivalent. The equivalence
between iii) and iv) has been proven in Ref. 9.

Now, let us define a transformation T from R” to i* by

Tz)=(<&,x > <&z >). Ve e R (2.1)

This transformation has useful properties , as shown next.

Lemma 2.3 The transformation T has the following properties:
i) T is linear and KerT = [(C);
it} T is ingjective if and only if C is pointed;

i) T is an isomorphism if and only if C is pointed and k = n.

Proof. Tt is evident that T is a linear transformation. Let z € KerT. Then z &

C and —z € C at the same time. This shows that z € [{(C) and therefore KerT C
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I(C). Conversely, let z € [(C). Then < &,z >> 0 and < &i,—x > 0 for i=1,... k.
Consequently, < &,z >=0, i=1,... .k, which implies z € KerT. Thus, KerT = 1{(C).

For the second assertion, it is sufficient to note that T is injective if and only if KerT =
{0}, so that this assertion follows from i).

To prove the last assertion, it suffices to note that if 7' is injective, then dimT(R™) = n,

and to apply the second assertion.

Corollary 2.2 Let T be the transformation defined by (2.1). Then one has

i) z 2=¢ y if and only if T(x) >=pt T(y);

) x >cy if and only if T(z) > T(y);

#) x >y of and only if T(z) >k T(y).

Proof. By Lemma 2.3, KerT = [(C). In view of Theorem 2.1, z »¢ ¥ if aI;d only
if T{z) =7y T(y), where ¥ = ” may be ” >="or” > " or " > 7. Moreover, as
T(C) = T'{R")NRE, we deduce that T(z) >y T(y) if and only if T(z) > sk T{y). This

completes the proof.

3 Efficient solutions under linear transformations

In this section we shall apply the results of the preceding section to study the relationship

between efficient points of a set and their images under linear transformations.
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Lemma 3.1 Let M be a linear subspace of R™, C C M a convexr and closed cone, and
A C M. Then a point £ € A is a properly efficient point of A with respect to C in the

space M if and only if it 1s so in the space ™.

Proof. Let x € A be a properly efficient point of A with respect to C in the space M.
"There 15 a closed convex cone K # M such that C\(C) C inty K and z € W Min(A|K).
Let N be the orthogonal complement to M in R™. Then the cone K, := K + N is a
closed convex cone, different from R™ and verifies the property that C\{C) C intK, and
T € WMin{A|K,). Hence z is a properly efficient pqint of A in ®™. For the converse, the
case {(C') = C being trivial, we may assume that C'\ {{C) # §. Given Kj in ™ with the
above property, let us define K := Ko N M. Then K # M, otherwise K should coincide

with R™. Using this cone K, one sees that z is a properly efficient point of A in M.

Theorem 3.1 Let A be a nonempty set and C a closed and convex cone in R*. Let L be
a linear transformation from R™ to R™. Then the following assertions hold:

i) If v € IMin(A | C), then L(z) € IMin(L{A) | L{(C)). The converse is also true if
KerLCC;

i) If v € SMin(A | C), then L{z) € SMin(L(A) | L(C)) provided KerL C C. The
converse is also true if KerL N C = {0};

w) If x € Min(A | C), then L(x) € Min(L{A) | L(C)) provided KerL C C. The
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converse is also true if either Ker L C C or KerL NC = {0};
w) If v € WMin(A | C), then L(z) € WMin(L(A) | L(C)) provided KerL C C. The
converse is always true;

v) T € PrMin(A | C) if and only if L(x) € PrMin(L(A) | L(C)) provided KerL C C.

Proof. 'The four first assertions follow directly from Theorem 2.1.

For the last statement, in view of Lemma 3.1, by considering L(R") instead of R™ if
necessary, we may assurne that L is surjective. Let z € PrMin(A | C}, then there exists
a closed convex cone K, different from ®", such that C'\{(C) C intK and x € WMin(A |
K). Consider the closed convex cone L(K). First, observe that L(K) # R™. In fact,
suppose to the contrary that it is not the case. Let v € R*\ K. Then L{v) € L(K), so that
v=k+cforsomec € KerL CC C K and k € K. Since K is a convex cone , we aI:rive at
a contradiction v € K. Second, L{C)\ {(L{C)) C intL{K). In fact, by the assumption of
v) and by the surjectivity of L, one has L(C)\ [(Z{C})) = L(C)\ L{I(C)) = L(C\I(C)) C
L{intK) = int L(K) as requesfed. Third, we obtain L(z) € WMin(L(A) | L(K)) in view
of Theorem 3.1 iii). Consequently L{x) € PrMin(L(A) | L(C)).

Conversely, let L(z) € PrMin(L(A) | L(C)). Then there exists a closed convex cone
H, different from %™, such that L(C)\ I(L{C)) C intH and L(z) € WMin(L(A) | H).
Consider the closed convex cone L™'(H). We easily see that L™ (H) s R". Moreover,
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C\HC) CintL™*(H) because L~ (intH) # @ and int H 2 L{C)\ I{(L{C)) = L(C\ (C)),
so that intL™'(H) = L™ (intH) 2 L YL(C\I(C)) = C\I(C) + KerL = C'\ l{O).
Finally, we show z € WMin(A | L71(H)). Indeed, if this is not true, there exists y € A
such that = —y € intl"'(H) = L™'(intH). It follows that L(x — y) € intH, hence
L{x) — L{y) € intH. a contradiction. In this way, = € PrMin(A | C) and the proof is
complete.

Note that a key condition for the transformation L to preserve efficient point is that
KerL C C. The following elementary example shows that, without this condition, the
conclusions of Theorem 3.1 may fail.

Let A = {(z,y) € R® : either z > 0,y > 1 ,0rz > Ly > 0}, C = N2 and let
L be the projection L{z,y) = z. It is easy to see that (0,1) ¢ IMin(A | R2) with
L(0,1) € IMinL((4) | L(R2)); (1,0) € IMin(A | %) with L(1,0) ¢ MinL((A) |
L(R2)); (0,2) ¢ Min(A | R3) with L{0,2) € MinL((A) | L(R2)). In this example

KerL € C.

Corollary 3.1 Assume that [(C) is non-trivial and let g be the canonical projection of
R™ onto [[(C)]*-. Then z € Min(A | C) if and only if q(z) € Min(q(A) | g(C)). The

conclusion remawns true if Min is substituted by IMin, WMin or Priin.
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Proof. We know that Kerg=1[{C) C C and q is surjective. Therefore the conclusion of

this corollary follows from Theorem 3.1.

Corollary 3.2 Let C' T R" be a convex polyhedral cone defined by the system < &,z >>

0, t=1,....k and let T be the lineor transformation from R™ to R* defined by
T(z) = (< &,z >,.,< &z >)

Then z € Min(A | C) if and only if T(z) € Min(T(A) | RE). The conclusion remains

true if Min s substituted by IMin, WMin or PriMin.

Proof. Let us denote by N := T(R"). Then T is a surjective linear transformation from
R" to N. By Lemma 2.3, KerT = {{C). Applying Theorem 3.1 to this case we obtain
that z € Min(A | C) if and only if T{z) € Min(T(A) | T(C)) € N. Observe that
Min(T(A) | T(C)) = Min(T(A) | R%); the conclusion of the corollary follows.

The same reasoning is available for IMin, WMin and PrMin.

Corallary 3.3 Assume that C is a polyhedral, convex, closed and pointed cone defined as
in Corollary 3.2 and A is a nonempty subset of R". Then Min{A | C) is homeomorphic
to Min{T(A) | R*). The conclusion remains valid if Min is substituted by WMin and

PrMin.,

Proof. This follows from Corollary 3.2 and Lemma 2.3.
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In the remaining of this section, let us apply Theorem 3.1 to the case where L is a linear

function, which in fact leads to the linear scalarization method in vector optimization.

Corollary 3.4 Assume that L is given by L(z) = (a, 1) where a is some vector of R™.
Assume further that L(C') = R,. Then the following assertions are true:

i) Every minimum point of L on A is an ideal point (hence a properly efficient point) of
Aif Kerl CC;

it) Bvery strictly minimum point of L on A is a strictly efficient point of A if Ker LN C =
{0};

it) Buery minimum point of L on A is a weakly efficient point of A.

Proof. This follows from Theorem 3.1.
We end up this section with noticing that the condition L{C) = R, is equivalent to
the fact that o € C"\ {0}. If in addition, Ker LNC = {0}, then a must be in the strictly

positive polar cone of C, that is {(a,2) > 0 for all z € C'\ {0}.

4 Generalized convex vector functions

Let X be a nonempty convex subset of R | ' a convex and closed cone in R* and let

L be a linear transformation from R to R™. Let f be a vector function from X to ™.
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With the orders generated by C' one may define a class of convex vector functions and
their generalizations. In this section we shall study the effect of linear transformations on
convexity and generalized convexity properties of vector functions. We shall adress only
to those generalized convex functions that are frequently used in applications and other
kinds of generalized convex functions are left to the interested readers. In the sequel P
and () are among the sets C,intC and C \ [(C).

Let us recall that

i} f is said to be C — convex (resp. strictly C — convez) if for each z,y € X,z # y and

A €1(0,1), one has

FOAz+ (1= Ay) <=c¢ Af(z) + (1 - N fy) (4.1)

(resp.f(Ax + (1 ~ Ny) e Af(z) + (1 = N f(y)) (4.2)

if) fis C — quasiconvex if for each z,y € X and A € (0,1) , one has that

£(2), £(y) <=c a impliesfOa + (1 ~ \y) <=c a (4.3)

iii) fis (P, Q) — quasiconvez if for 2,y € X and X € (0,1) , one has that

flx) <=p f(y),impliesf(Az + (1 - Ay} <=¢ f(y) (4.4)

We refer to Refs. 2, 8, 10-16 for the above definitions and other generalizations of con-

18



vex vector functions. Note that a {C, C')-quasiconvex function is called C-quasiconvex by

Refs. 1, 17.

Theorem 4.1 Let. C be a convez and closed cone in R* and L a linear transformation
Jrom R™ to R™. Let f be a vector function from a conver set X C R to R™. Then the
following assertions hold:

i) If f is C' — convez, then Lo f is L{C) — convex. The converse is also true provided
KerL CC;

i) If f 1s strictly C — convex, then Lo f is strictly L{(C') — conver. Conversely, if Lo f
is strictly L(C) — convex and KerL C C, then f is strictly C — convex;

iis) under the hypothesis that KerL C C, f is (P, Q) — quasiconvez if and only #f Lo f
is (L(P), L(Q)) — quasiconvex;

iv) under the hypothesis that KerL C C and L is surjective, { is C' — quasiconvex if and

only if Lo fis L(C) — quasiconver.
Froof. Assume that f is C-convex, i.e. (4.1) hoids. By Theorem 2.1, we have
L o] f()\.’L‘ -+ (1 — /\)y §=L(c) AL o f('l’:) ~ (1 — /\)L o] f(’y) (45)

which shows that L o f is L(C)-convex. Conversely, if L o f is L(C)-convex, then (4.5)

holds and by Theorem 2.1, (4.1) holds as well. Hence f is C-convex. The second assertion
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is proven in a similar way.

Now assume that f is (P, Q)-quasiconvex. To show that Lo f is (L(P), L{Q))-quasiconvex,
let Lo f(x) <=ypy Lo f(y). By Theorem 2.1, f(z) <=p f{y), which implies f(\z +
(1—=A)y <=¢q f(y) for X € (0,1) because f is (P, @)-quasiconvex. Again by Theorem 2.1,
Lo f{Ax+(1-A)y) <=L Lo f(y) which shows that Lo f is (L{P), L{Q))-quasiconvex.
The converse is proven similarly.

For the last assertion one observes that for each b € R™, there exists @ € ®" such that
L(a) = b because L is surjective. The argument of proving i) can be used to achieve the
conclusion.

We now deduce two corollaries for two particular cases.

Corollary 4.1 Let C be a conver and closed cone in R* and q the canonical projection
of R™ onto [L{C)]*-. Let f be a vector function from a conver set X C R to R*. Then f
is C — convex if and only if go f is g(C) ~ convex. The conclusion remains valid if "C —

convex” is substituted by "strictly C-convex”, "C-quasiconver” and ”(P,())-quasiconvex”.

Proof. This is immediate from Theorem 4.1 and the fact that Kerg = 1(C).

Corollary 4.2 Let C € R be a convex polyhedral cone defined by the system < &, x >>
0, i=1, ..., k and let T be the linear transformation from R™ to R* as in the previous

section. Then the following assertions are true:
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1) [ is C—convex (resp. strictly C' — convex or (C,C) ~ quasiconvex ) if and only if Tof
is R — convex (resp. strictly B¢ — convez, (RE, R ) — quasiconver);
it) f is C'— quasiconver if To f is ?Rﬁ — quasiconvex. The converse is also true provided

T is surjective (or equivalently, &, &, ..., &, are linearly independent).

Proof. The first assertion is derived from Corollary 2.2 without any difficulty. To prove
the second assertion we observe that T'(C) = R% whenever T is surjective. Now, apply
Theorem 4.1 to complete the proof.

By using the last corollary we recapture the following useful criteria for C-quasiconvex

vector functions Ref.2.

Corollary 4.3 Let ' be a convex polyhedral cone as in the previous corollary. If the
scalar functions, < &, f(z) >, i=1, ..., k are quasi-convez, then f is C—quasiconvex. The

converse is also true provided k=n and the vectors &, &, ..., &,, are linearly independent.

Proof. It can be easily seen that the vector function T o f is §Ri — quasiconver if and
only if its components < &, f(z) >,..., < &, f(x) >, are quasiconvex. This observation

and Corollary 4.2 produce Corollary 4.3.
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5 Subdifferential of convex vector functions

Let f be a C-convex vector function from a convex set X C R to R*. We recall (Refs.

15-17) that the subdifferential of f at z is the set
Ocf(x) = {A € LR, R") : f(y) — flz) >=c Aly - z),¥y € X}

where L(R!, R") denotes the space of n x f~matrices.
Subdifferential of C-convex vector functions enjoys several useful properties (see Ref. 15).
In this section we are going to establish some more calculus rules by using linear trans-

formations.

Lemma 5.1 Assume that C = §Rj_ Then we have

Ocf(x) = 8fi(z) x .. x Ofn(z)

where f\,.... fa are components of f and 8f,, ..., 8f, are their classical convex subdifferen-

tial.
Proof. Let A € ¢ f(z) with n rows Ay, ..., A,. The inequality
fy) = flz) 2=pm Aly—z),y € X (5.1)

means that

fily) = fillz) 2= Ally—x),ye X,i=1,...n (5.2)
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Hence A; € dfi(z), i=1,...n. Conversely, if 4; € df;(x), i=1,....n, then (5.2) holds, and

N

so does (5.1). This shows that 4 € d¢f(x)

Proposition 5.1 Let L be a linear transformation from R™ to R™. Then one has the

mnclusion

Lodcf(z) € drcy(Lo f)lz).

Equality holds provided L is an isornorphism.

Proof. Let A € 0-f(x). By definition, one has
fy) = fle) z=c Aly—2), Wy e X (5.3)

Hence

Lo f(y)—Lo f(z) 2=y Lo Ay —x),Vye X (5.4)

which means that Lo A € 9y (L o f)(=).

Now, if L is an isomorphism, then by using the above inclusion for L', we obtain
L™ o driey(Lo f)(z) C 8r-vpeyl™ e Lo f(x) = dof(z)

Consequently,

aL(C)L [e] f(fl‘,‘) g L (o} acf(.’L')
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and equality follows.
We now apply this result to the case where C is a polyhedral convex cone and T is the

linear transformation defined in Section 2.

Corollary 5.1 With C and T as above, we have

Todaf(xr) C f%i(T o fi(z) =8(& o f)(z) x ... x (&0 f)(z)

Proof. According to Proposition 5.1 we obtain

Todcf(z) C OreyT o f)(z).

Moreover, as T'(C') © R% , we have

Brie)(T o f)(z) C O (T o f)(a).

Consequently,

T 0 9cf(x) C O (T o )(a).

It remains to apply Lemma 5.1 to achieve the proof.

Assume further that intX # 0, and C is pointed. Then f is a locally Lipschitz vector
function around x € int.X (Theorem 3.1 of Ref. 15). In this case the generalized Jacobian
Jf(z) of f at x is the convex hull of all m x n-matrices obtained as limits of sequences

{ f’(:;c.i)}, where {x;} converges to = and the derivative f (z;) exists. By Theorem 2.6.6

24



of Ref. 18 and as for scalar functions the convex subdifferential and Clark’s generalized

subdifferential coincide, we deduce
3G o fllz) = J(& o f)(z) = &(JT f(z))
for every i=1, ..., k. This and Corollary 5.1 implies
&%f(ﬂ?) C&Jfl(z)i=1,,k

Actually, we have equality because by Theorem 4.4 of [14] , Jf(z) C dof(z). Tt is

worthwhile mentioning that even for C' = R%, dof(x) % J f(x) as pointed out in Ref. 15.
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