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Abstract

In an intertemporal setting we model the anticipation-disappoinment effect through a habit
formation process which is a function of past expected utility-consumption. A disappointment
effect is captured when the agent’s instantaneous utility is a decreasing function of past expected
utility, anticipation is modeled by assuming an increasing function. Assuming a linear model,
we show that the anticipation effect reduces the risk premium, whereas the disappointment effect
induces a higher risk premium.
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1 Introduction

In [Antonelli, et al., 1999] we proposed a utility functional to represent agent’s preferences
under uncertainty, that we called the Backward- Forward Stochastic Differential Utility (BFSDU) |}
The main feature of this utility functional is that it may capture the disappointment or an-
ticipation effect, depending on the specification of the instantaneous utility.

Indeed, in the decision theory literature, it has been recognized that agents’ tastes may
be affected by what they expect for the future, see [Machina, 1989]. In particular, the
expectation about future consumption or expected utility may affect the agent’s tastes
in two different and opposite directions: disappointment or anticipation. In [Bell, 1982,
Loomes and Sugden, 1986], the authors point out that agents may experience disappointment-Jj
elation comparing an outcome with the expectation they had in the past about it. The
utility that an agent gathers from consuming c(z) at time ¢ is affected by what he ex-
pected in the past for the future: if the agent’s expectation was high in terms of utility
or consumption-standard of living, then he will be disappointed when the outcome is not
as good, the opposite happens when the outcome is better than expected. Instead, in
[Lowenstein, 1987, Lowenstein e Prelec, 1991] the authors point out that agents anticipate
future utility and therefore the expectation of future utility positively affects the utility the
agent, gathers from current consumption. |

In these papers the setting was either deterministic or stochastic, but simple (two periods,
finite state economy). In [Antonelli, et al., 1999] we proposed a utility functional which
captures these effects in a setting well suited for continuous time asset pricing applications.
Disappointment, and anticipation are modeled by relaxing the time separability of the utility
functional and in particular by including in the instantaneous utility {«) a habit process
defined through an integral of past consumption and past expected utility. In a sense, the
agent’s habit is backward and forward looking. Depending on the function u, we describe
either an anticipation or a disappointment effect. For example, when the habit is only a
(positive) function of past expected utility and the instantaneous utility is increasing in the
habit process, we model the anticipation effect; if the instantancous utility is decreasing in
the habit, then we model the disappointment effect. In the first case, since the agent savored
in the past a high level of expected utility, he gets a high level of satisfaction-utility from
the actual consumption rate. In the second case, a high level of expected utility in the past
induces the agent to ask a higher consumption rate today.

In this paper we obtain asset pricing results with a linear model. We provide explicit



formulas for the interest rate and the risk premia in equilibrium. The interesting point is
that the anticipation effect generates a risk premium smaller than the one obtained with an
~ Additive Expected Utility (AEU), whereas the disappointment effect leads to a higher risk
premium. Therefore a disappointment effect provides us with an interesting perspective to

solve the equity premium puzzle, see [Mehra and Prescott, 1985].

2 The Economy

We consider a standard pure exchange one consumer economy with complete markets. Let
(Q,F, P) be a complete probability space, on which a standard Brownian motion in IR¢,
W, is defined. The economy has a finite time horizon [0,7] and W determines the flow
of information through its natural filtration, augmented of the P-null sets and made right
continuous, that we indicate by {F;: ¢ > 0}. Let F; be trivial.

T
We denote by £? = {X : X isapredictable process such that E( f | X;|?ds) < +o0}, and
0

by £2, the space of £? processes with values in IR.,.
There are d + 1 financial securities, which are continuously traded in frictionless markets
and their equilibrium prices are denoted by §" ( = 0,...,d). The 0-th security is the risk-free

asset, its price is given by
50 =) exp{ﬁt rudu},

where r; is a strictly positive, progressively measurable bounded process and sj > 0. The
d-dimensional vector of the security prices ST = (S%,...,5%) (where T denotes transpose)
instead satisfies

St 0

dS; = 5 - [pldt +af - dW], Sp=s9, S = ,
0 S

where the d-dimensional vector of mean returns 1 and the d x d volatility matrix o° are

bounded and progressively measurable and si > 0 for all i = 1,...,d.
Each security pays dividends and the cumulative dividends process of security i is denoted

by I. The vector of cumulative dividends satisfies
dD, = pdt + P - dW,,

where P € R™! and o? € R™? are again bounded and progressively measurable. Lastly,
the gain process is defined as G = S+ D, where the sum is done component by component
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and therefore it is an 1td process (dG, = [ufdt +of - dW;]). The gain process can be written
in refurns rates as Sy - [pdt + oy - dW;], where we assume the d x d matrix o; be invertible.
In a complete market economy there exists a unique equivalent martingale measure, called

the risk-neutral probability measure, given by

(1) Q(A) == E["/)T]-AL AEFT:
¢ t
2) g = exp{——fo < Ay, dW, > -—;-/0 BYIRA:

where < -, > denotes scalar product and the vector A is given by

M=ol —rd], 1=(1,...,1)
d

and it denotes the market price of risk. Assuming no arbitrage, the discounted gain from
trade is a martingale under Q).

The density ¢ can be interpreted as the equilibrium price density of a one consumer
economy. The agent is described by a pair (U, e), where U : £2 — IR is a utility functional
and e € £% is an endowment process. Finally, by ¢ € L2 we denote the consumption process
and by C; = + f t csds, Yo > 0, the cumulative consumption.

A portfolio progess or trading strategy, 7 = (n0, %) = (x°,#',..., 7%, is a measurable,
square integrable adapted process, where the i—th component represents the amount of

money invested by the agent in the i-th asset.

Definition 2.1 : A pair of consumption and portfolio policies (c,m) for the representatibe

agent is admissible, if it satisfies the budget constraint
d,Xt = (?"tXt |- ey - Cf)dt-f— < fﬁ, (‘U_',g — Tt].) > d‘ﬁ-l“ < ﬁf;,O’t . de >, XO = 0, XT 2 0’

where X represents the agent’s wealth and Xp > O is the no-bankruptcy condition. An
admissible pair (¢, ) is optimal if there is no other admissible pair (¢, 7') such that U{c') >
Ulc).

Definition 2.2 : A triple (S,c, ) is called an equilibrium f (c;, m) = (e,0), t € [0, 1], s
optimal given the price processes S.

To keep the notation simple, we assume 4 = 1. The results can be easily extended to the
multidimensional case.



3 Backward-Forward Stochastic Differential Utility

The BFSDU, U(c), is the initial state of the first component of the solution (V,Y) to the
following system

T
(3 Vi = B [ (e, V) = AV.)ds|F)

t t H
(4) Y = yoe hmdys /0 o oLy, 1 (1 = p)e,]ds,

where 3, o are bounded and positive adapted processes, p € [0,1], w, & are constants and I’
is a square integrable Fp—measurable random variable. The random variable T' represents
the utility at time T

The process Y describes the agent’s habit, 1 is the standard of living at time 0. The
constant p is the weight describing the forward/backward characterization of Y. If u = 0,
then Y is independent of the utility process V' and we obtain the classical backward habit
formation process, as in [Constantinides, 1990, Detemple and Zapatero, 1991]. H u = 1,
then we have the other extremal case, when the habit is affected only by past expected
utility. The processes oo and é measure the persistence of past habit and the effect of the
instantaneous consumption on the habit.

By assumption, we take u increasing in ¢, but it can be either decreasing or increasing in
Y; in the first case we intend to model a disappointment effect, in the second an anticipation
effect. This interpretation is clarified by the example given below. We assume u strictly
concave in c.

In [Antonelli, et al., 1999)], it is proved existence of the utility functional, its continuity
and concavity. To provide asset pricing results with this utility functional we would need an
explicit solution of the system, this cannot be attained in general, but in the linear case it
is possible to recover an explicit formula for U(c) = V4.

We consider the system (3)-(4) with constant « and 8 for u(c,y) = ulcs) — vy (v € R).
Differently from {Constantinides, 1990], where u(c,y) = v(c — y), we assume that the habit
affects u linearly. To simplify the notation, we take ' =0, v = ép and 1 = 6(1 — u), so we

have

T
(5) Vi=B([ [ule)) = 1¥s — BVlds|F)
(6) Y=o+ fot[st +nec, — aY;]ds.

If K = max(c,8,v, |y|) and T is such that K7" < 1, then we have existence and uniqueness
of the utility process in é[go m for any fixed ¢ € L2 From (5)-(6), it is possible to find an
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explicit expression of Vj in the following manner. If we treat Y; as given, we may rewrite

the above system in backward form

Vi r Vi ufcs) 0
()= ()= (252 (52 )17
where the matrix A = hf ” _C;Y ) is made up of constants. The solution (V,Y") can be
explicitly written in terms of ¢, Y; as

Vi _ T Aty  ulcs) ar—y{ 0
(YE)—E(ﬁe G ds + ¢ ¥y Fil,

where the matrix e¢~% is intended to be e40~# = 7,22 {=UA)  Therefore we have

T

V; = B( A (e u(c,) — e ne,)ds + ey Y| Fy)
T

Y, = E([t (6218 ﬂ“(CS) OAZ(S 1‘)7703)0"‘3‘"@2 = t}YT|ft)

where efff denotes the 4j—th element (7,7 = 1,2) of the matrix e**, see Appendix A for the
compu‘r.atlon of the coeflicients. Solving the last equation in ¢t = 0 and recalling that Yy = o,

we obtain
Yo T e, Su(c,) 62237768
(7) E(YT) = B‘TF - B (‘/0 L BeAT ds|.
29 23
Hence, substituting F(Yr) in Vj we get
As AT
eftue,) — efine, e
(8) (/ (enu Cs) 3142377‘33 CfizT Akl )AT 21 )d3+%90)'
53 €53

It is easy to show that U(c) is concave in ¢ and that the agent is risk averse.

The interpretation of the utility functional is that we model a disappointment effect with
7 > 0 and an anticipation effect with v < 0. This is made clear through the following
example provided in [Antonelli, et al., 1999]. Consider the classical additive expected utility

T
b ( / e“ﬁsu(cs)ds) with instantaneous utility « and the following binary choice
0

_ 0 s<t
d=¢ Vsec[0,T], ¢ = c t < s <T with probability =
0 t < s < T with probability 1 — .



for some fixed ¢ and constants ¢ and ¢. Without loss of generality we assume u(0) = 0 and we
set ¢ and € so that the two consumption processes are ordinally equivalent for the additive
expected utility, that is

(9) /Te*ﬂsu(g)ds = W/tT e Pou(T)ds.

0
A disappointment effect would say that the first process is better than the second one, an

anticipation effect the opposite. It is possible to capture these effects by considering the
linear BESDU (5)-(6) with the same instantanecus utility function, yo = 0 and 7 = 0. From
(8) we obtain

. eASeAT _ oAT o As
Ulc)=F ([0 Hsu(cs)ds)’ where H, = 112 AT 22

€9

Without loss of generality, we set & = 8 = v = 1 and we recall v € (—1,1), then we can

VI 47 cosh(vTH (T — s)) + sinh (v T+ (T — 5))
1+ ycosh(y/T++T) + sinh (/T +~7) '

It is easy to show that H, > e ™ <= ~ < 0. We would like to prove that

compute

H, =

. T T
(10} /0 Hou{c)ds > :fr/ Hgu(e)ds = >0,
. ¢

that is when there is disappointment the first process is better than the second and ~v > 0.
Dividing (10) by(9) we have that this is equivalent to prove

T T
f H,ds(e P — e7PT) > / H,ds(1 — e 77,
0 Ji

Which can be verified for every v > 0. Note that the preference order associated with a
disappointment effect can not be obtained with the classical habit formation process.

4 Optimal Consumption and Equilibrium Analysis

The optimal consumption problem, that is to say the maximization of U over the set of
the admissible consumption-portfolic policies of Definition 2.1, can be handled via dynamic
optimization techniques or via the martingale method, see [Cox and Huang, 1989]. Here we
follow the second approach which seems the more appropriate for the BFSDU.

The optimal consumption problem of the representative agent is equivalent to the fol-

lowing constrained static maximization problem:

(11) max Ufc)  under the constraint



T £ T :
(12) E* ( [ e /s “d'sc,gdt) < E* ( / e ’"*’dsetdt) .
AL JO

E* denotes the expectation under the equivalent' martingale measure nested in the complete
financial market model, that is E*(} = E(ip-), where ¢ is defined by (1), while U(c) is

given by (8). Moreover we assume that the endowment process is given by
(13) dey = p(t, e)dt + o°(t, &)dW,, ep=x >0

with Lipschitz and deterministic coefficients y® and ¢°. If we choose bounded functions pf(t)
and o() and we take

(14) et =1 +e&+ fot(eg — z)pc(s)ds + ‘/Ot(es — z)o%(8)dW,,

then we obtain an endowment process that is always greater than z + . If we want to read
(13) in d dimensions, then we have to consider o°(¢, ¢;) & d dimensional vector that is taken
in scalar product with .

'The constrained maximization problem is solved by exploiting the first order necessary
conditions for optimality and the concavity of U. For an AEU (o = » = v = 0)(see for
example [Duffie, 1996, p. 205-208]), the problem is solved through the associated Lagrange-
an. The consumption plan obtained from the first order necessary conditions associated with
the Lagrangean is parametrized with respect to the Lagrange multiplier, then the multiplier
is determined by imposing the consumption plan to satisfy the budget constraint. Thanks
to the Inada conditions on the utility function, a unique Lagrange multiplier is determined
and therefore the optimal consumption plan is defined. Concavity of [J assures that this
solution is the optimal one. '

Setting & = Of; ® _’"'“)d”’g[)t, the Arrow-Debreu price process adjusted by the preference
discount factor, the first order necessary conditicns for the Additive Expected Utility evalu-
ated along the endowment process show that £ = u'(e;). To ensure that the price pro-
cess £ belongs to £3, it is enough to asswme that the endowment process is hounded
away from zero and that the utility function satisfies the standard Inada conditions, see
[Duffie and Zame, 1989]. We remark that, looking at equation (14), it is easy to obtain such
a process by taking x + & > 0. The price process & contains many interesting pieces of
information about our economy. In particular, the equilibrium interest rate is the opposite
of the expected growth rate of &, while the market prices of risk are the opposite of the
volatility in the growth of £. Keeping in mind the equalities

dipy = —MdWy, and e P(e) = 7P, = efﬂmduwt;
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differentiating both sides one obtains the equilibrium interest rate and the market price of

risk

o= B (6) 7 )i ) + 3u(e)of),
u”(et)
v/{e)

" . R . .
where f = ‘-:}-,%-;-?-)1 Of course these formulas may be read in the multidimensional version.

When assuming a nonseparability in time and in particular a habit persistence effect,

O’te = —ﬁfOO’U(th/SE, det),

Bt =Ty = —0y

the optimal consumption process, of the equilibrium interest rate and of the risk premium
can be obtained through the Gateaux derivative of the utility functional, we refer the reader
to [Duffie and Skiadas, 1994, Schroder and Skiadas, 1999] for a stochastic differential utility
and to [Detemple and Zapatero, 1991, Detemple and Zapatero, 1992] for a habit formation
process. As explained in [Duffie and Skiadas, 1994], provided the optimal consumption ex-
ists, the Arrow-Debreu equilibrium price process is given by the Riesz representation of the
Gateaux derivative of U{c) evaluated along the endowment process.

Given a reference pair of cumulative consumption and trading strategy, (7%, ), and a set
F' of feasible directions, the Gateaux derivative of U(c) at (7,¢) is defined as the functional

VU(Ec) = lim Ue+ a:;) — U@

, CeF.

We say that VU(G; ¢) admits a Riesz representation if there exists a process ~, such that

VU(Ee) = B[ " (6o — ) ndt).

In [Duffie and Skiadas, 1994, Proposition 2] it is shown that ~; represents the Arrow-Debren
price process if T is the optimal consumption policy and coincides with the endowment
process of the economy.

We can adopt the same procedure in our linear setting. We can compute the Gateaux
derivative of U(c), defined as in (8), at a consumption process ¢, along a feasible direction

and find its Riesz representation -, which is given by

As AT AT As AT nAs As AT
L B1i%s — e ey w(cy) €12 €39 — €19653
Vs AT s AT
o9 29
As AT _ AT As AT As _ As AT
eftfeil’ — edle efd ens — oflfe . L
We set H, = 1122 T 2 2 and K, = 1222 < 12722 These functions are deterministic

=) €23
and differentiable in time, by h and & we denote their derivatives. In Appendix A we analyze

the coefficients H, K and their derivatives.



To ensure existence of the optimal consumption policy and of a well behaved Arrow-
Debreu price process we impose the following conditions, see [Detemple and Zapatero, 1991,

Detemple and Zapatero, 1992].

Assumption 4.1 The following conditions are satisfed:

o u(-):[0,00) — (0,20) is three times continuously differentiable, strictly increasing and
strictly concave, lim«'(¢) = oo and lim u'(c) = 0;
c— c~00

o In equilibrium (¢, = e;, VYt € [0,T]) we have
Ha'(es) + 1K, > 0, Vs € [0,T7;
o e, >>0, Vs [0,7].

The first condition is the standard concavity-Inada conditions. The second and the third
conditions ensure that the Arrow-Debreu price process belongs to £3.

From (8) it is straightforward to verify that the concavity of u implies that also U is
concave in ¢, moreover the first condition of Assumption 4.1 guarantees that the inverse of
the marginal utility is well defined for every positive value, therefore we can apply a procedure
similar to the one employed for the AEU to prove existence of the optimal solution.

Given a positive Lagrangean multiplier p, we consider the Lagrangean associated to (11)-
(12)
AT

T ] T
(15) B( f [Hyu(cs) + nKacslds) + -2y, — pE( / e P3¢, c,ds),
0 622 0

see [Duffie, 1996] for the rearrangement of the constraint in terms of the orginal probability

measure. First order necessary conditions give
(16) Hol(c;) + nK, = pe P&,

We denote by I : (0, 4c0} — (0,+4o00) the inverse of «'. As we show in the Appendix,
K¢ > 0 all tif and only if v < 0, while H, is always positive. The above equation cannot be
solved in all the situations. We extend I to the real line by defining
I(z) = Iz) for z>0
400 for z <0.
With this notation, by virtue of the concavity of U, we determine the candidate optimal

consumption as
e Bt — nk.
i) = (B8
t
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Note that ¢; = -+oo when the argument is non positive. Let us define the function in p,

H(p) = E(./[)Te_f: T“d""cz(p)ds) = E(/T eﬁf; ’“uduI(pe—ﬁsgs - nKs)dS)‘

0 H,

By virtue of the continuity of the coefficients, H{(p) is continuous in p. When p — 0 we have
to distinguish two cases. If v < 0 the argument of the integrand I tends to zero and then
becomes negative, this implies that [ is going to infinity that means H(p) — +o00. When
v > 0, then K < 0, all ¢, therefore as p — 0 we have, thanks to the integrability of £, that

H{p) — xo = E(/T e ’"“d“I(—%m)ds).

J0 &

Viceversa if p — oo, ¢ — 0, which implies that H(p) — 0. Note that H(p) is a monotonic
(decreasing) function. All these arguments imply that the constraint equation H(p) = = =
E(fy e o e ds) uniquely determines p when y > 0; when v < 0, being H bounded by o,
the constraint is trivially satisfied for z > zy giving p = 0 and ¢*(0) = I (mﬂé,{f), otherwise
the constraint equation again uniquely determines p.

Assuming market equilibrium, the optimal consumption must coincide with the endow-
ment of the economy, so we obtain the following characterization of the Arrow-Debreu price

process for the one consumer econormy:
(17) o o ety e &P, = Ho(e,) + 1K,y

where we set the Lagrange multiplier equal to 1, by rescaling the price process. The equi-
librivm price is made up of two components. The first one is related to the instantaneous

marginal utility, the second to #. Differentiating both sides of (17) we obtain the following

Proposition 4.2 Let Assumption 4.1 be satisfied then the interest rate of equilibrium has
the following expression:

Bt e . 1,
(18) ry = —(e ﬁtft) 1[h.tfu,’(et) + Hy(p (t,et)u”(et) + 5(0 (t, et))gum(et) )+ k]
f =4 1 £ 1
= —(Hy'(er) + nKy) " ' (er) + He 1o (3, ex)u”(e5) + “2“(‘7 (t,e))*u"(er) ) + nky
and the market price of risk is the following:

(19) Hi — n:—(It(e_ﬂtét)“lﬂtu”(et)ae(t,et) = —O't(Ht'U:’(Bf;) -+~ ??Kt)ilﬂtu”(@t)()'e(t, et).
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We remark that the prvious results remain true also in the multidimensional case. This
procedure can be applied also when the matrix A is time varying, but still deterministic. We
would like to remark the similarity of these results with those for the standard AEU, which
is in fact included in our model when we take v = v = 0.

A (single factor) Consumption CAPM similar to the one associated with the AEU is

obtained:

Hu' (e;)

e=htg,
Given the instantaneous utility function, from (19), we find that the risk premium results
higher than the one obtained with the AEU when v > 0 and lower when v < 0. This is easily

py — 1il = — G Cov(dG:/S;,de;), where [f =

verified. For a given endowment process e, and instantaneous utility function u satisfying
Assumption 4.1, being H, > 0 and v"(e,) < 0, we have

_ Hau(es) S _u'{es)

Hou'(es) +nK, = u/(e,)

when K, < 0, that is to say v > 0, whereas for A%ﬁ < v < 0 we have Ky > 0 and the

, Vs €{0,T],

opposite inequality is derived.

Allowing the agent’s tastes to change over time as a consequence of whai he expected in
the past in terms of expected utility for the future is an interesting way to solve the equity
premium puzzle. The analysis gives us a striking result: a disappointment effect induces a
larger risk premium than the one obtained with an AEU, an anticipation effect induces a

smaller ane. _

Let us analyze the interest rate of equilibrium. As for the AEU, this consists of three
components. The first one comes from the agent’s discount factor, which is simply 3 in the
AEU framework and meﬁt(ﬁu’ (e;) + n—) assuming the presence of the backward-forward
habit. The second componextﬁ, is rela_tegt to the expe.cted growth rate in consumption (the

How (es): o7 W) if K, < 0, we
have that a disappointment effect amplifies this component, whereas an anticipation effect

interest rate is positively related to it). Since

reduces it. The last component is related to the expected variance of consumption growth

(the interest rate is negatively related to it if u"(e;) > 0).

5 Conclusions

In this paper we have modeled the anticipation-disappoinment effect. through a habit forma-

tion process which is a function of past expected utility. Disappointment is captured when
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the agent’s utility is a decreasing function of past expected utility, anticipation is modeled
by assuming an increasing function. Assuming a linear model we have shown that the antic-
ipation effect reduces the risk preminm, whereas the disappointment effect induces a higher

risk premium.
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A Appendix

Given the matrix A = (_—ﬁu __O?I ) , there are two real eigenvalues:

N A A ) e N et e VA e SR 2
1= ) 2 = .

2 2

Then we have the following:

()6‘ + /\2)6)\18 - (B -+ )\1)8'\28 ,y(e)\ls - e,\gs)

PAS — }\2 — ’Xl /\2 - )\1
2 V(BA]S _ e)\zs) (/5: + )\2)6)\33 _ (/6+ )\1)8’\13
)\2 - )\1 )\2 - A1
Given the assumptions of our model, we have two real eigenvalues with A\ < 0 < 8 < A, if
we choose y > —935 :

It is straightforward to determine the sign of the elements of e?*
ey <0, ey <0, ef¥>0, eff >0, ¥se[0,T].

Besides we observe that ‘
7o eﬁseéilg _ 811421‘65113 _ ((ﬁ+)\2)2 +,},y)6)\13+)«2T + ((ﬁ+‘>\1)2 +,YV)€:\1T+I\23
’ egy (A2 = M)(({B + Ao)eMT — (B + Ay )emT)
(ﬂ + )\2)2 + ,-},y)ehﬂ-f-)\zT + ((ﬁ + )\1)2 +- ,ﬂ,)e)uT—&—Azs

- >0
(B + A2+ w)erel +{(8+ A1) + qv)ehT
and
g, el = elfelf oMo ot
i eg (B + Ao)edT — (5 + Ap)ehT
is negative for v > 0 and positive for —L——L“Zf 2 < 7 < 0. About the time derivatives of K
and H,, k, and h, respectively, we have the following
By = s 2B+ X))+ )T 4 2 ((8 + N+ gl
(B4 A)? + yv)ere” + ((B8+ A\)2 + yv)emT
A26A1T8A2£ _ )\IBAQTE)\]_S
ke = i
YBT3 T — (B At

The first implies that 0 < H; < 1 = Hj, and the second implies that K is decreasing for
7 < 0 and increasing for y > 0, in fact k, has the same sign of X,.
We restricted the analysis to real eigenvalues since considering complex eigenvalues is not

really meaningful as it regards umplausible values of ~ (negative state prices).
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