Universita degli Studi di Pisa
Dipartimento di Statistica e Matematica
Applicata al’Economia

Report n. 185

Coercivity Concepts and Recession
Functions in Constrained Problems

Riccardo Cambini — Laura Carosi

Pisa, July 2000

- Stampato in Proprio -

Via Cosimo Ridolfi, 10 - 56124 PISA - Tel. Segr. Amm. 050 945231 Segr. Stud. 050 945317 Fax 050 945375
Cod. Fisc. 80003670504 - P. IVA 00286820501 - Web http://starmat.cc.unipi.it/ - B-mail: dipstat@ec.unipi.it



Riccardo Cambini - Laura Carosi

Coercivity Concepts and Recession Function in
Constrained Problems

Abstract. The existence of minimum points for a real function f over a closed and unbounded
set D is analyzed, focusing on the behavior of f along the so called recession directions of D.
With this regard several new coercivity concepts are introcduced together with an extension
of the recession function. Relationships between coercivity and the behavior of the introduced
recession function are studied, giving particular attention to their fundamental role in deriving
optimality conditions. Necessary and sufficient conditions guaranteeing the existence of the
minimum points are given as well as results related to the boundedness of the set of optimal
solutions.
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1. Introduction

The existence of the minimum for a real function f is widely studied not only
in optimization theory but also in several applied sciences, such as economics,
 mechanics, tomography, network theory and so on; just consider for example
the classic cost minimization problem in microeconomic theory (Mas Colell et
Al [9] and Avriel et Al. [5]} or the unilateral problems in linear and nonlinear
elasticity (Baiocchi et Al [6]). Owing to the widespread interest in this kind of
results, many studies have recently appeared, both from a theoretical and an
algorithmic' point of view, and several optimality conditions are given by means
of the recession function and some related coercivity concepts. While we can
find many results dealing with unconstrained problems or with constrained ones
whose feasible region is polyhedral or asymptotically multipolyhedral or even
asymptotically-linear (Auselender [2-4], Zalinescu [11}), there are few optimal-
ity conditions for a feasible region D which is just closed and unbounded. In
order to handle this latter case, we are interested in investigating the behavior
of f along the unbounded feasible sequences so that the recession cone of D
and the recession function play a key role in our analysis. Starting from the
characterization by Baiocchi et Al [6] of the recession function, we provide a
new characterization of f,, which allows us to introduce a recession function for
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constrained problems, called f2, coinciding with the known one when the set D
is the whole space.

‘Beside that, coercivity of function f is the other key tool of our analysis.
In the literature there are several different concepts, which are often referred
to with the same name; sometimes they are defined by means of the recession
function, so that coercivity and recession function wrongly seem to be necessarily
related. In this paper we provide a generalization of these coercivity concepts
for constrained problem, trying to present them in a unified framework. A new
characterization of k-supercoercive function is given as well as the relationships
among coercivity concepts, recession functions and optimality conditions.

Furthermore we provide a new characterization of the existence of minimum
points which improves the one given by Auselender {2,3]. Some other conditions,
which can be easily verified in applicative problems, are stated and the condition
given by Auselender [4] for an asymptotically-linear region D is also improved.
Finally some necessary and sufficient conditions guaranteeing the unboundedness
of optimal solutions set are stated.

2. Preliminaries

In this paper we denote X = %™ and ||-|| is the usual associated norm on X;
our aim is to study conditions ensuring the existence of minimum points for the
following constrained problem:

] min f(x)
PD'{meDgX

where f : X — RU {+oc} is a proper scalar function, that is dom(f) = {z €
X : f(z) < +oo} # B, and D C X is a closed set. We also denote with Sp =
{zo € D: f(zp) < f(z) Vr € D} the set of minimum points for problem Pp.
Note that the unconstrained problem associated with function f is also covered
just assuming D = X.

Let us now recall some concepts regarding to the notions of recession cone
and recession function which have a central role throughout the paper.

Given a nonempty set D C X, the asymptotic cone Dy, of D (often referred
to as recession cone) is defined by (}):

Do = {y € X : 3z} € D, 3{tn} € Rt = 00, = = 1}
n
In

[Zn]|

={0}U{y € X : Han} C D, |znl| — +oo, — v,y = Av, A >0}

! Remind that the asymptotic cone is a closed one and that a set D C R™ is bounded if
and only if Do = {0}. Remind also that when D is a closed convex set then the asymptotic
cone is convex and can be rewritten as follows:

Do ={y€ X :32 € D such that x + Ay € D VYA > 0}
={yeX:z+Aye€ D VreDVir>0}
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By means of the asymptotic cone it is possible to define the recession function.
Let f: X — RU {400} be a proper function; the corresponding recession
function foo : X — RU{~0c, +00} is defined by:

eDi{ foo) = (epi(f))oo

where, as usual, epi(f) = {(z, ) € X x R: f(x) < u}.

It is worth noticing (see Auselender [2,3]) that foo 18 positively homoge-
neous (i.e. 0 € dom(fs) and foo(Az) = Afeo(x) VA > 0) and that if f is lower
semicontinuous, that is liminf, .z, f(z) = f(zg) Ve € X, then f, is lower
semicontinuous too. Note also that the following useful properties hold:

i) fe(0)=0or fm(o) =00 (2) 1
il) fool(0) =0 = foo(y) > —00 Vy# 0 (3) .

In studying the existence of minimum points for f a key role is plaved by the
behavior of f with respect to the directions y such that foo(y) = 0. With this
aim let us recall the following widely used notation:

ker(foo) = {y € X ! fooly) = 0}

Note that, by means of the positive homogeneity of fu, the set ker(fw) comes
out to be a cone, with or without the origin (in the case foo(0) = —00); if f
is lower semicontinuous then ker(f) is a cone with the origin, but it does not
necessarily contains lines.

In Baiocchi et Al. [6] the following equlva.lent expression for f is given:

fooly) = inf lim inf £ n¥n)

it (o) ] 1
{vn}CX {tn}CR | n—+00 B n — +00, ¥y — Y (1)

Let us now state a new equivalent formula for the recession function, which
will be useful in the rest of the paper. With this aim let us firstly introduce the
following definition.

Definition 1. Let us consider problem Pp. Function f is said to be lower un-
bounded on compacts over D if Ju € R, 0 < u < +oo, Hzx,} C D, |zl £ 1,
such that liminf,_. 1o f{Tn) = —oc. Function f is said to be lower bounded on
compacts over D if it is not lower unbounded on compacts. In the case D = X
function f will be simply said to be respectively lower unbounded on compacts or
lower bounded on compacts.

Note that if at least one of the following conditions hold:

i) f is locally Lipschitz
ii} f is lower semicontinuous

2 By means of the definition epi(foo(0)) is a cone, so that foo(0) € {—00,0, +oc}; being f
proper dy € X such that f{y) < +4co so that the halfline {{0,u),p > 0} C (epi(f))ee and
hence fx(0) # +oo.

3 This property follows directly from the definition being (epi{f))e & closed cone.



Cambini R. and L. Carosi

then f is lower bounded on compacts; note also that these conditions are
sufficient but not necessary, as it is pointed out in the next examples.

Ezample 1. Let us consider the following scalar functions f : ® — R

i) flr) = ¥z is lower bounded on compacts but it is not lipschitz in any
neighborhood (—e¢,€) of zp = 0;

92
. = forz <0 . o
i) fix) = {Tg 1 for 1 S lower bounded on compacts but it is not lower

semicontinuous.

By means of the following notation:
lim inf = inf liminf f(z,) : lz.|l — +0
liminf f(z) = inf \liminf f(za) : 2]

we are now able to state the following characterization of the recession function.

Theorem 1. Let f: X — RU {+o0} be a proper function, then
i) foo(0) = 0 if and only if f is lower bounded on compacts and

lim inf f(:r) > —00,
leli—+oo [l

foo{0) = —oc otherunse;
i1) for any y # 0 it results
f@) = _ ¥

Foolw) = W | S 25 Tl Tl ™ T

Proof. i) <) Suppose on the contrary that fo(0) = —oo; then, by means of the
definition, (0, —1) € (epi{f))oc so that, being ||(0, —1)|| = 1:

I{(Zns n)} C epi(F), [[(@ny pan) | — 00, ”Efj—” - (0, -1).

Let d = lim, 1 ]I—"—r (this limit exists eventually substituting {z,,} with a

subsequence); we then have m —1, so that u,, < 0 definitively, and:
e =L o
Tn,
e (TeaT> TeuT)

so that TI“%HTI — —oc; being f(z,) < wun, < 0 it then follows that J;i(;’“") —
—00 which implies imy,— o0 [|@n]| < +oo provided that Hm infyz)—4o0 5 >

—oc; hence ’Ic(__f“::‘”) —o0 only if lim,_ 4 o |zn| = 0, being f lower bounded on
compacts. Since |[(2y,, 4p)|| — +o0c, we have p, — --o0o and hence f(z,) — —oc,

since f(xp)} < pyn, which contradicts the lower boundedness on compacts of f.
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=) Let us suppose on the contrary that f is not lower bounded on compacts

or that liminf|jz|—+oe0 {lgj) = —o0, then the following condition holds:
Hz,} € X, f(zn) — —00, such that oo — —00
T
(x. f(2.)) Jlxn) _
Let (y,0) = lim,— 4o Ty end d = lim, oo 73 (ENE Being o — T

we have that f(z,) < 0 definitively and:

Y= iMpe oo Tz izl = limy, o0 ”—(j_ﬂ—'(';-—m
B =i o0 7 Fopyy = i oo “(ﬁmﬁ%ﬁnﬁ%;” =-1
Being {(xzn, f(zx))} C epi(f) and |[{xz,, f(zn))|| — +occ we have that (0,—1) €
(epi(f))oo; hence {(0,u) : p <0} C (epi(f))oo = epi(feo} implying foo(0) = —
which is a contradiction.
1) We prove that 1f y # 0 then foo(y) given by (1) is equivalent to the

following:

foult) = I inf timinf 282 0

{zn}CR™ [R—+oo [lzafl

T, Y
Tzl " Tl

Let z,, = tnvp; being t, — +00 we can assume t, > 0 Vn so that ||z, || = t, [|vall-
Firstly note that condition vn — y is equivalent to the two conditions {jv,|| =

24— Jly]l and p2p ”U" = u_m"ﬂ " o> observe also that the couple of conditions
tn ~ +00 and j|v,| = “—f—’—“ lly|| are equivalent to the two following ones:

|zl — +o0 and {jvp|| = Hf—:ﬂ — ||y]| Formula (1) can then be rewritten as:

inf - [l f(@n
{vnh{zn}CR™ ”_‘"’ (]

It results also:

Y
) Yomll: llzwll = -+oo, lonll — lgll+ ]

fooly) = Ilwnll flyll

= f 1 f ‘
Il =, k. [t ntonl < onl = ol

so that the thesis is proved.

3. Coercivity concepts

In the literature, the existence of minimum points for unconstrained problems
is strictly related to the coercivity property of the objective function. Several
definitions of coercivity can be found in the literature and different concepts are
often referred to with the same name.

In this section we aim at defining some coercivity concepts related to con-
strained problems, generalizing the ones given in the literature and trying to
study them in a unified framework. From now on we use the following notation:

lim inf = inf |} f f(z,): _
|lzﬂ~“‘+oouf( ) {z,}CD [,1@_,1_{.1( f{zn) ”mn” ~ 400
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Definition 2. Let us consider problem Pp. Function f is said to be (*):

i) semicoercive on D if dzg € D such that iminf). ot F(z) > flao)
i) coercive on D if liminf) o400, f(7) = +00
i) strictly coercwe on D if iminfy)— o0, {&% >0

w) supercoercive on D if limindy ) 400, %ﬂl = 400

v) k-supercoercive on D, with k > 1. if liminfj ;- 400, I{afﬁ) -~ 0

In the case D = X, function f wnll be simply said to be semicoercive. coercive,
strictly coercive, supercoercive or k-supercoercive.

Directly from the given definitions, we have that on the set D a coercive
function is also semicoercive, a strictly coercive function is also coercive, a su-
percoercive function is also strictly coercive, a k-supercoercive function is also
supercoercive for any & > 1, a strictly coercive function is nothing but a k-
supercoercive function with & = 1.

- Let us now point out that these introduced concepts are not sufficient to
guarantee neither the existence of minimum points for problem Pp nor the lower
boundedness on compacts of the function, as it is shown in the next Example 2
where function f is k-supercoercive but not lower bounded on compacts.

Erample 2. Let us consider the following function f : R - R U {+o0}:

flz)= {mk + Jog(z?) for z # 0

+o0 forx =0

with & > 1. Function f is k-supercoercive on X = R even if Sp = @ since
infreqn f(z) = limy—o f(z) = —00.

The following results provide a characterization of k-supercoercive and strictly
coercive functions.

Theorem 2. Let us consider problem Pp. Then:
i) f is k-supercoercive on D if and only if the following condition holds:
da,b,c € R, a >0, such that f(z) > ajlz|* +b vz € D, x| > c

1) f is k-supercoercive on D and lower bounded on compacts if and only if the
~ following condition holds:

Ja,b € R, a >0, such that f(z) > alz|* +b Yz e D

* Note that, in the case D = X. in {8] the supercoercive futictions are referred to as I-
coercive, while in [2,3) the strictly coercive functions are called coercive.
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Proof. i) <=) From the hypothesis it is:

lim inf Ltz > liminf [a+4 b ] =a>0
=l —+ocn ||z llz]| —~00 ||z]]

so that f is k-supercoercive. |
i) =) Suppose on the contrary that Va b,e e R, a >0, dr € D, |z| > ¢

such that f(r) < a||:1:|I "+ b. Choose a = b =0and e =n,n=1,23,...:
then 3z, € D, |jzy]| > n, such that -lfﬁﬁr < . This implies:
lim inf M < 1l f(Zn) n)
lal—toon |[z]}* T n=teo iz, ||"

which is a contradiction.
i) <) Analogously to i) we have that f is k-supercoercive; f is also lower

bounded, since f(z) = a|z|* +b > b Vz € D.
ii) =) Suppose on the contrary that Va,b € R, a > 0, 3z € D such that

flx)<a ]I:r”k +b. Choose a = 2 and b = —n; then 3z, € D such that f(z,) <

L ||$n|| - n. If the sequence {a:n} is bounded then f(z,) — —co0 so that f is
lower unbounded on compacts, whlch is a contradiction. If the sequence {x,} is
unbounded then:

n . 1 -
iminf 22 < him 2% ooy (1o ) <o
lali—+oon |lf|® — =t [lap | TR AT 2|

which is a contradiction.

Since a strictly coercive function is nothing but a k-supercoercive function
with & = 1, the following corollary trivially holds.

Corollary 1. Let us consider problem Pp. Then:
i) f is strictly coercive on D if and only if the following condition holds:
Ja,b,c € R, a >0, such that f(z) > allz|| +b Vz e D, |z| >¢

ii) f is strictly coercive on D and lower bounded on compacts if and only if the
following condition holds:

Jda,b € R, a >0, such that f(x) > allz| +b Ve e D

Let us now introduce the following definition of recession function for con-
strained problems.

Definition 3. Let us consider problem Pp. We say recession function over D
the function f2: Do — RU {—00, +oc} defined as follows:
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i) f2(0) = 0 if and only if f is lower bounded on compacts over D and:

linminf 1z

lzlj—+oon |z}

> —00,

f2(0) = —oc otherwise;
1) for any y # 0 it is:

D = l'. 1 inf f(r) = Y
Y o e I

Analogously to the set ker(f,) we will use the following notation:
ker(f2) = {y € Doo : £ (y) = 0}.
Let us note that, directly from the definition (°), it is:

foo(y) € f2(¥) Yy € Do
and that the equality may not hold, as it is shown in the next example.

Ezample 3. Let us consider X = R2, the function f : ®2 — R such that f(z,y) =
zy, and let D = Do = R3 = {(z,y) € R? : 2 > 0,y > 0}. It results foo(¥) =
F2(y) Yy € Int(Ds) while ~00 = foo(y) < f2(y) = 0 Yy € Fr(Dwo).

It is now possibie to study the relationships existing among the coercivity
concepts and the recession function. With this aim it is worth noticing that the
coercivity concepts are not based on the recession function associated with f,
but just on the behavior of f when {|z|| — +oc; actually in the literature the
coercivity concepts are often defined by means of the recession function (%), so
that they wrongly seem to be necessarily related. Note that in the case D = X
statement #) of the following theorem has already been proved by Zalinescu
[11]; for the sake of completeness we provide an independent proof of the whole
theorem.

Theorem 3. Let us consider problem Pp.

i) if f is semicoercive on D then f2(y) >0 V¥y € Do, y #£ 0
it) f 1s strictly coercive on D if and only if f2(y) > 0Vy € Do, y #0
i) f is supercoercive on D if and only if f2(y) = 400 Vy € Do, y # 0

5 Note also that the following implication holds:

_ | flx) forze D OLZ f Des
o= {20155 = wew={FY Izl

f In [2-4], foz.' example, in the case D = X a function f is said to be coercive (strictly coercive
with our notation) if fu(y) > 0 Vy # 0 and is said to be weakly coercive if foo(y) > 0¥y # 0
and f is constant on each line with direction y € ker(fo).
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Proof. i) By means of the semicoercivity of f it results:

f() fizo)

liminf =< > liminf

=0
e —+oon izl lli—-+oe IE4]

so that f2(y) > 0Vy € Do, y # 0.

i1} =) The thesis follows directly from the definitions.

<) From Theorem 2 it is sufficient to prove that Ja, b, c € &, a > 0, such that
f(z) > a|lz|| + b vz € D, ||z|| > ¢ Suppose on the contrary that Va.b,c € R,

a > 0,3z € D, ||lz|| > c, such that f(z) < afzi +b. Choose @ = £, b = 0 and

¢=mn,n=12.3,...; then 3z, € D, |[zx|| > n, such that i!f_.il < 1. Defining

y = limg, 400 752 ] € Do, we then have f2(y) <lim,_ 4o Jlfl( o S 0 which is a
contradiction.
i17) =) The thesis follows dlrectly from the deﬁnltlons
<) Suppose on the contrary that:

lim f(a:) = inf (liminf f(@n)
ux||-~+ooo Nzl ™ {eneD [n=too fjzal

lan|| = +oo| < +oo

then A{z,} C D such that ||z,|| -~ +oco and liminfn_*_i_m{g—':‘ﬂ)- < +00; de-
noting with y = limn_,+°¢ﬂ§n"—" € Dy it results f2(y) < +oo and this is a
contradiction.

Remark 1. Note that having f2(y) = +oo Vy € Du, y # 0, that is having
a supercoercive function f, does not imply that f2(0) = 0, as it is shown in
‘Example 2 where f is k-supercoercive and lower unbounded on compacts so
that f2(0) = —oo.

In the next section we are going to deep on conditions characterizing the
existence of minimum points for a proper function f. '

As a preliminary result, let us point out the behavior of coercivity with
respect of the existence of minimum points.

Theorem 4. Let us consider problem Pp as well as the following properties:

i) f is lower semicontinuous and f2(y) > 0 Vy € Do, y # 0
i) f is strictly coercive on D and lower semicontinuous
iii) f is semicoercive on D and lower semicontinuous
i’U) SD 9{—' 0
v} f is semicoercive on D and f2(0) =0
vi) f is semicoercive on D and lower bounded on compacts over D
vii) infzep f(z) > —00
viti) f is lower bounded on compacts over D and f2(y) > 0Vy € Do, y # 0
i) f2(y) 2 0 Vy € Do

~ Then the follounng sequence of implications holds:
i) i) = i) = w) = v) S v) = vi) = vil) S i)
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Proof. 1) < i) Follows directly from #) of Theorem 3.

i1) = #4i) From definition 2 trivially follows that any strictly coercive function
is also semicoercive. Hence the result follows directly from i) of Theorem 3.

1) =+ iv) Let {x,} C D be a sequence such that f{z,) — inf,ep f(x). If
{x,} is unbounded (|iz,|| — +o0) then by means of the semicoercivity on D of
f we have that Jzo € D such that f(xo) < liminf|zj.jo,, f(7) < infrep f(7)
so that zy € Sp and hence Sp # (. If {x,} is bounded, that is Iy > 0 such that
l|zr|| < g, then it is possible to extract a converging subsequence {z,;} C {z,}
such that, being D closed, z; — T € D; from the lower semicontinuity of f we
then have 1an€D flx) = liminf; .4 f(a:;,) > f(Z) so that T € Sp and hence
Sp # 0.

iv) = v) The semicoercivity of f follows directly from the definition choosing
xp among the points of Sp; being Sp # @ then f is also lower bounded so that
f2(0) = 0 by means of i) of Definition 3.

v, = vi) Follows directly from i} of Definition 3. :

vi) = vii) Suppose by contradiction that inf,ep f(z) = —oo and let {z,} C
D be a sequence such that f(z,) — infrep f(x) = —o0. Being f semicoercive
on D the sequence {z,} is bounded and this contradicts the fact that f is lower
bounded on compacts over D.

vii) = viii) Function f has a finite infimum on D, hence it is trivially lower
bounded on compacts over DJ; suppose now on the contrary that Jy € Do,
y # 0, such that f2(y) < 0. Let {x.} C D, |izn| — +0c0, be the sequence such
that:

D} = lim F(@n) with o,
Foolv) = llyll lim S lzall  fiwl

It then results:

i 1O g B0 g

and this is a contradiction.
viii) = ir) Suppose on the contrary that f2(0) < 0; being f lower bounded
on compacts over D it follows from i) of Definition 3 that:

lim inf f(x)
lzl—+oon flzl|

s0 that Jy € Do, ¥ # 0, such that f2(y) = —oc and this is a contradiction.
iz) = viii) Just note that, by means of the definition, f£(0) = 0 implies that
f is lower bounded on compacts over D.
~ vi) = v) By means of the prev1ously proved implications, we have that vi)
implies iz) so that f2(0) =

The following examples point out that the implications given in the previous
theorem are proper.
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Es:ampié 4. Let us consider the following functions f: & — R U {4+oc} and let
D=X=%:

i) f{xr) = 0 is a continuous semicoercive function which is not strictly coercive:
hence in Theorem 4 i) = 7).
. 0 forx<0 . . .
i ) = ive ={r:x :
it) f(x) {3: +1for x>0 1S semicoercive and Sp = {v: x <0} # 0 even if
J is not lower semicontinuous; hence in Theorem 4 iv) = ii1).
2
r® forxz <0
i) f(z) = — . is supercoercive with f2(0) = = it i
) f(z) {mg—lforx>0 8 supercoercive foo(0) = foo(0) =0 but it is
not lower semicontinuous and Sp = @ with infyex f(x) = —1 > —o0; hence
in Theorem 4 v) # iv). Note that this example shows the importance of the
lower semicontinuity of f in order to have minimum points, providing that:

f is supercoercive, f2(0) = 0 and inf f(z) > —c0 # Sp # 0.

iv) f(:c)z{ 4 forz #£0

is lower bounded on compacts with finite infimum,
+ooforz =0 :

even if it is not semicoercive; hence in Theorem 4 vii) = vi).
— log(z?) f 0. N |
v) f(z) = { _T_go(om ) fzi z f 0 is. lower semicontinuous, hernce lower bounded
on compacts, and f2(y) = foo(y) = 0 Yy € R, even if f is not semicoercive
and inf cx f(x) = —oo; hence in Theorem 4 viii) % vii). Moreover, the
converse of ) in Theorem 3 does not hold and f2(y) > 0 ¥y € R™ is a
necessary but not sufficient condition for the existence of a finite infimum.

4. Existence of Optimal Solutions

Theorem 4 underlines the importance of the recession function and coercivity
properties for optimality conditions. It comes immediately out that strictly co-
ercivity on D together with the lower semincontinuity is a sufficient optimality
condition while f2(y) > 0 for every y € Dy is a necessary one. When the fea-
sible region D is the whole space, these conditions coincide with the standard
ones existing in the literature, but is worthy noting that in general we cannot
replace fZ with fo as it is shown by Example 3 where the function f(x,y) has
minimum points over D = ®2 and fP(y) > 0 ¥y € Dy while fooly) = —o
Vy € Fr(Dy). Analogously to the unconstrained case, condition f2(y) > 0 is
necessary but not sufficient for the existence of the minimum points and this
suggests to investigate the behavior of f along the direction y # 0 such that
f2w) =0

The goal of this section is to state results characterizing the existence of
minimum points analyzing the behavior of the objective function f along the
directions y € ker(f2). In particular we will generalize in different ways the
following resuit.
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Proposition 1 (Auslender [2]). Let us consider problem Pp with D = X and
suppose function f to be lower semicontinuous. Sp # O if and only if both the
two following conditions hold:

i) foo(d) 2 0 Vd € R™,
1) V{xn,} C R™, such that ||x,|| — o0, it — d € ker(foo) and the sequence
{f(zn)} is bounded above, there exist p, €]0,1], 2, — z, with ||d - zi| < 1,

such that for n sufficiently large:

f(zn — ||Za|| pnzn) < f(Tn)

The generalization of the previous Proposition 1 is based on the following
lemma (Attouch {1} gives a result similar to statements i) and i) in reflexive
Banach spaces, while Zalinescu [11] proves an analogous theorem under stronger
assumptions). :

Lemma 1. Let us consider problem Pp and suppoée function f to be lower semi-
continuous. Suppose also that f2(y) > 0 Yy € Dy, and define, for any integer
n > 1, the following auziliary function:

(@) = f@) +enlz)?, n=1,2...
where en > 0 Vn and €, — 01, Then the following properties hold:

t) 3z, € argmin{gn(z),z € D} for any integer n > 1;
it} imy, Ly oo flzn) = infoep f(2)
| If the sequence {e,} is also strictly decreasing then:

- @t) [|za]l £ [[@nyall for any integer n > 1;
i) the sequence {f(z,)} is decreasing;

Proof. i) Being f2(y) > 0 Vy € D it comes out that function gn is super-
coercive on U for any integer n and hence for Theorem 4 there exists x,, €
argmin{g,(z),xz € D}. _ '

it) Let z be any element of D. By means of the definition, for any integer n
we have:

2
f(@n) < flza) tenlznl” = gn(Zn) < gnl(z) = f(2) + €n ”2“2

so that:

lim f(:cn) < HEI}Flm flz) + e, ”2:”2 = f(z) Vz D

n-—-v-f—oo
and hence lim,,_, ., f(2,) = infzep f(z). _
1) Let us consider, for any n, the following inequalities:
J(zn) + en ”anQ = gn(Tn) < n(Tag1) = f(Tny1) + €n |l$n+1”2

F(nt1) + €npr 1 Zns1]]” = gna1(Tg1) < gnpr(za) = Fan) + ensa llan?
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adding these inequalities it vields:
2 2 2 2
en [iZnll” + €nt1 [Tnt1ll” € €nl|Traall” + €ngr flznll
so that:
2 2
(€n = tng1) |20]]” < (€n — €ng1) |Zns ]|

Being the sequence {¢, } strictly decreasing it is (€, — €,41) > 0 so that I|:f:,-1||2 <
1Zns1]l and the thesis is proved.

iv) By means of the definition of g,1;(z) and being |[znl® < ||Tns1®, we
have that for any n:

2
F(@pg1) + €ntt |Zns1l” = gnt1{Znt1) < gna1(zn) =

= f(zn) + €na H-’En”2 < fzn) + €ns1 [[Tns ”2
so that f(Zp+1) < f(zn) and the thesis is proved.

By means of Lemma 1, we are able to state the following characterization for
the existence of optimal points.

Theorem 5. Let us consider problem Pp and suppose function f to be lower
semicontinuous. Sp # @ if and only if both the two following conditions hold:

i) f2(y) 2 0 Vy € Do, |

i) V{zn} C D, such that ||zall — +oo, 22 ¥ € ker(fL) and the sequence
{f(zn)} s strictly decreasing, there ezist {pn} C10,1], {za} C X, {vn} C X,
with Jvn|| = 1 and (||Zn]| (v — Prza)) € D, such that for n sufficiently large:

lon — 2nll <1 and  f{llzall (vn — prza)) £ f(zs)

Proof. =) Condition i) follows directly from Theorem 4; as regards to condition
i) let yop € Sp # 0 and assume p, = 1, v, = ‘I‘I%:*ﬁ and z, = Ili:'c:lln; it results
(lznll (vn = Pnzn)) = Yo € D, [lvalt = 1 and, for n sufficiently large, {|vn — znll =

{I%ﬂllf < 1, so that the thesis is proved since f(yy) < f(zn) being yo € Sp.

<) Let g, = f(z) + €, |!:1:||2, n=12,..., with {e,} strictly decreasing; by
means of condition i) and Lemma 1 we have that Jz,, € argmin{g.(z),z € D}
¥n and that {f(z,)} is decreasing with limp..y00 f(z,) = infzep f(x). Let us
now prove that if the sequence {z,} is unbounded then we can not extract
~ a strictly decreasing subsequence of {f(x,)}. Suppose by contradiction that
izn|l — 400 and that {f(x,)} is strictly decreasing (substituting {z,} with a
subsequence if necessary): let y = limy,_, o0 ﬁﬂﬂ, being f{z,} < f(z1) we have

{l(ﬁ:’”) < limpoyoo {—I(ﬁ’l—l) = 0 so that, by means of the definition, it

results f2(y) < 0 and hence, for i), y € ker(foo). By means of ii) there exist
pn €)0.1], zn.vn € X, with {jun]l = 1 and ([lznll (vn — prza)} € D, such that

limn ...—.+00
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for n sufficiently large |lvn — zn|| < 1 and f(||Znl] (tn — Przn)) < fzn); it then
results:

£(n) + 12l = ga(zn) S gulllzall v ~ pz2)
= F(lnll (50 = prza)) + - Plonl (25 — przo)ll

1 .
< f(@n) + = llzal® lvn = pnzall”
and hence, being 0 < p, < 1, [lvn]| = 1, and |lu, — z,|| < 1:

1< “Un - pnzn” = “vn - ann T+ Pntn — Pnzn”
= llon(Y = pn) + palvn — zn )|l < fvnli (1 = pr) + pn llvn — 24l

which is impossible.

We then have that {f(z,)} does not admit any strictly decreasing subse-
quence regardless the sequence corresponding {x,} is bounded or unbounded.
In the latter case Jg such that f(z,) = f(z4) Vn > ¢, x, € D, and hence
infzep f(x) = limp4oo f(Tn) = f(zq) so that the infimum is reached as a
minimum. If otherwise {z,} is bounded then it is possible to extract a subse-
quence I, - yg € D such that, by means of the lower semicontinuity of f,
infzep flz) = limp—, 4o f(En) = f(yo), implying that the infimum is reached as
a minimum. The proof is then complete.

Remark 2. It is worth noticing the differences existing between Theorem 5 and
the known Proposition 1:

i) in Proposition 1 the unconstrained case is considered, while in Theorem 5 we
study a constrained problem, covering the unconstrained case just assuming
D=X; :

if) in Proposition 1 vy, is fixed to be equal to ]T%:'ﬂ , While in Theorem 5 v,, may
be any vector with {|v,| = 1;

iii) in Proposition 1 it is required that [v, — 2,| — |lv — z|| < 1, while in Theo-
rem 5 we simply assume that definitively |fv, — z,|| < 1, thus we cover also
the case |jvn — z,|| — v = 2| = 1; '

iv) in Proposition 1 all the bounded above sequences {f(z,)} are considered,
while in Theorem 5 just the strictly decreasing ones.

The following useful corollary can also be stated,'providing a practical con-
dition to determine the existence of optimal points. Note that this result can not
be derived from Proposition 1.
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Corollary 2. Let us consider problern Pp and suppose function f to be lower
semicontinuous. Sp # O if and only if both the two following conditions hold:

i) f2(y) 2 0 Vy € Do,
1) Vi{z,} C D, such that ||x,|| — +oc. Ili‘: T Y E ker(f2) and the sequence

{fxn)} is strictly decreasing, there exists {y,} C D such that for n suffi-
ciently large: '

lynll < llznll  and  f(yn) < flzn)

Proof. =) Condition 1) follows directly from Theorem 4; as regards to condition
it) we just have to choose yg € Sp # 0 and assume y, = yo Vn.
<) Assume pn = 1, vn = iy and 2, = F4e it results {p.} CJ0,1],

lenll = 1, (|znll (Wn = przn)) = yn € D so that, by means of the hypothesis, for
n sufficiently large it is:

o= zoll = 251 <1 a0 F(l (on = prin)) = () < ()

so that the thesis follows directly from Theorem 5.

Another useful result can be stated when the set D is asymptotically-linear.
Remind that a nonempty closed set D C X is said to be an asymptotically-linear
set if Vp > 0, ¥{z,} C D such that |z,| — +o0 and W‘:E—:'ﬂ — y, for n sufficiently
large it is (z, — py) € D (see Auselender [4]).

Note that directly from the definition it follows that the finite intersection
or the finite union of asymptotically-linear sets is still an asymptotically-linear
set. Note also that, as it has been proved in Auselender [4], an asymptotically
polyhedral set D is also asymptotically-linear (7).

The following sufficient condition holds.

Corollary 3. Let us consider problem Pp and suppose function f to be lower
semicontinuous and the set D C X to be asymptotically-linear. If the two fol-
lowing conditions hold: -

i) £2(y) 2 0 Vy € Dec,
i) V{rn} C D, such that {|z,| — +oo, I;Qil — y € ker(f2) and the sequence
{f(xzn)} is strictly decreasing, there exists p > 0 such that for n sufficiently

large fzn = py) < flzn),

then the optimal set Sp is nonempty.

" Remind, see {4], that a set D) C X is said to be a simple asymptotically polyhedral set if
Jp > 0 for which the set Dy, := DN {x : |jz|| > u} admits the decomposition D, = K + M
with K compact and M a polyhedral cone. D is said to be asymptotically polyhedral if it is
the intersection of a finite number of sets, each of them being the union of a finite number of
simple asymptotically peolyhedral sets.
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Proof. We just have to verify condition 4} of Corollary 2. Assume y,, = (z, —py):
being D asymptotically-linear then for n sufficiently large it is y,, € D, by means
of the hypothesis it is also f(y,)} < f(z,). We are left to prove that for n
sufficiently large it is ||z, — py| < ||z ||; with this aim let us firstly note that:

lim yTz,= lim 37 lim ||33n|l=|'|y||2

t |zl = +oc;
n—=+0C 0 b - 0O H:{;n“ Ti— 400 ]

lin
#p - OC
. o 2
then for n sufficiently large it is y"z, > 4p||y||” and hence:

2 2 2 2
Zn = pyll” = llzall” - prT-'E'n + P2 lyll” < fiznl
so that definitively ||z, — py|| < ||z || and the thesis is proved.

It is now worth to compare Corollary 3 with the following result.

Proposition 2 (Auslender [4}). Let us consider problem Pp and suppose func-
tion f to be lower semicontinuous and the set D C X to be asymptotically-linear.
If the two following conditions hold:

i) infrep f(2) > ~00 and foo(y) > 0 Vy € Doe, y # 0,
i) f € F (8), that is to say that V{x,} C X, such that ||z,|| — +oo and =T

¥ € ker(fso), Vp > 0, for n sufficiently large it results f(zx, — py) < flzn),
then the optimal set Sp is nonempty.
Note that Corollary 3 is more general that the result by Auslender since:

i) in Proposition 2 fo.(y) > 0 is required, while in Corollary 3 f2(y) > 0, with
Fooy) 2 fooly), is just needed;

ii) as it has been proved in Theorem 4, condition i) of Proposition 2 implies
condition ¢) of Corollary 3, while the converse is not true;

iii) in condition 4] of Proposition 2 all the sequences V{z,} C X are considered,
while in 72} of Corollary 3 just the feasible sequences such that {f(x,)} is
strictly decreasing are used; _

iv) in condition #) of Proposition 2 all p > 0 are considered, while in Corollary
3 just one of them is used. :

Directly from Corollary 3 follows the next result which generalizes the suffi-
cient condition, given in Auselender {2,3], related to asymptotically polyhedral
sets and based on the hypothesis that the objective function f is constant along
the directions y € ker(f.) (in other words, based on the hypothesis that fis
weakly coercive). |

8 Note that this condition is equivalent to Definition 7 given in [4], page 51. To prove this
note that from one side it represent the particular case of Def.7 with én = f(xn); on the other
side it implies Def.7 since Sy(a) C S¢(6) Va < B so that for any ¢y, if 2, € St(€n) then
f(zn) < en and zn — py € Sp(f{xn)) C Syien).
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Corollary 4. Let us consider problem Pp and suppose function f to be lower
semicontinuous and the set D C X to be asymptotically-linear. If function f is
nondecreasing along the directions y € ker( 2 then:

Sp# b =  f2(y) >0 Vye Dy

We conclude this section looking for conditions related to the boundedness
or unboundedness of the set Sp of minimum points.

- Theorem 6. Let us consider problem Pp and suppose function f to be lower
semicontinuous and the set Sp to be nonempty. Then:

i) if Sp is unbounded then f2(y) > 0 Yy € Do, and ker(f2) +# {0}.

Suppose also D to be a closed convexr set and f to be constant along the
directions y € ker(f2); then:

i) Sp is unbounded if and only if f2(y) > 0 Vy € Dy and ker(f2) # {0}.
Proof. i) By means of Theorem 4 we just have to prove that ker( 2y £ {0}
Let {z,} C Sp such that |jz,|]| — +oco and let T2 — ¥ € Do it results

0 < f2(y) < limp— oo -{(il- = 0 and hence y € ker(f2).

) <) Let y € ker(f2), y # 0, and let xo € Sp; being D closed and convex
then xo + Ay € D VA > 0, being f constant along the directions y € ker(f2),
y # 0, we have also f(zp) = f(zo+ Ay) YA > 0 and hence o+ Ay € Sp ¥\ > 0.

The next result follows directly from Theorems 4 and 6.

Corollary 5. Let us consider problem Pp and suppose function f to be lower
semicontinuous. Then:

i) if f2(y) >0 Vy € Dy, y #0, then Sp is nonempty and bounded.

Suppose also D to be a closed conver set and f to be constant aloﬁg the
directions y € ker(f2); then:

i) Sp is nonempty and bounded if and only if f2(y) > 0Vy € Dy, y #0.

The following examples point out the importance in Theorems 6 and 5 of the
convexity of D and the constant behavior of f along the directions y € ker(f2).

Ezample 5. Let us consider the following functions f : #2 — R and sets D C %2:

i) flz,y) =yand D={z >0,y > 1} U {z >0,y >x} D is nonconvex and
Sp = {(0,0)T} is bounded even if y = (1,0)T € ker(f2);

i) f(z,y) =y — = and D = R2 <5 D is convex, f Is not constant along the
direction y = (1,0)7 € ker(f2) and Sp = { (0,0)T} is bounded.

The following theorem is useful when the set D has empty interior, or when
it is known "a priori” that there are no minimum points in the interior of D,
such as in many mathematical programming problems.
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Theorem 7. Let us consider problem Pp and suppose function f to be lower
semicontinuous, nondecreasing along the directions y € Do, and constant along
the directions y € ker(f2), suppose also D + Do, with D € D + Do, to be a .
closed conver set. If at least one of the following conditions hold:

i) the set of minimum points for f over (D + Dy ) \ D is bounded,
i) D+ Do s strictly conver and the set of minimum. points for f over Int{D -+
Do)\ D is bounded,

then S5p is nonempty and boﬁnded if and only if f2(y) > 0 Vy € Do, y # 0.

Proof. By means of Theorem 5 we just have to prove that if Sp is nonempty
and bounded then f2(y) > 0 Vy € Dy, y # 0. For Theorem 4 2y >0
Yy € Deoi suppose now by contradiction that 3y € ker(f2), ¥ # 0.and let
Zo € Sp. Being f nondecreasing along the directions y € D, we have that
flze) € flzo + Ay) VA > 0, Yy € Dy, so that zo is a minimum point for f
over D + Dy,; since D + D, is a closed convex set and (D + D)oo = Doo then
To + AY € D + Do, YA > 0; being f constant along the directions y € ker(f2)
we then have f(xo) = f(zo + A7) VA > 0 and hence all the points zy + A7,
VA > 0, are minimum points for f over D + Do; note also that being Sp
bounded X > 0 such that xgp + AF € (D + Do) \ D, YA > A > 0. The set of
this minimum points is unbounded, which contradicts condition 4). If #) holds
then, being D + D, strictly convex, zo + A7 € Int(D + Dy,), VA > 0, and hence
xo + AT € Int(D + Do) \ D, YA > X > 0, which is again a contradiction being
this set of minimum points unbounded.
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