Universita degli Studi di Pisa
Dipartimento di Statistica e Matematica
Applicata all’Economia

Report n. 189

On the Pseudoconvexity of a Quadratic
Fractional Function

Alberto Cambini - Jean-Pierre Crouzeix
Laura Martein

Pisa, September 2000

- Stampato in Proprio -

Via Cosimo Ridolfi, 10 - 56124 P[SA - Tel. Segr. Amm. 050 945231 Segr. Stud. 650 945317 Fax 050 945375
Cod. Fisc. 80003670504 - P. IVA 00286820501 - Web htip://statmat.ec.unipi.it/ - E-mail: dipstat@ec.unipi.it



1

A fractional programming problem arises whenever the optimization of ratios
such as performance/cost, income/investment and cost/time is required. De- .
pending on the nature of the functions describing for instance income, cost,
‘investment, we can obtain linear, quadratic or concave-convex fractional pro-
grams. A wide class of problems requires to optimize the ratio of a convex
quadratic function over an affine function [9, 11]. This class is particularly
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Abstract

In this paper we give a necessary and sufficient condition for the
pseudoconvexity of a function f which is the ratio of a quadratic func-
tion over an affine function. The obtained results allow to suggest a
simple algorithm to test the pseudoconvexity of f and also to charac-
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function. :

Key Words: Generalized convexity, fractional programming.
AMS: subject classifications 26B25, 90C26, 90C29, 90C32

Introduction

*Department of Statistics and Applied Mathematics, University of Pisa, Via Ridolfi 10,

56124 Pisa, Italy

tLIMOS, Université Blaise Pascal, Campus des Cézeaux, 63177 Aubiére Cedex, France

1



important since the ratio is then a pseudoconvex function and this property
ensures that a local minimum is also global [1].

The aim of this paper is to point out that pseudoconvexity may be still
achieved even if the quadratic function is not convex. Unlike [4], the followed
approach allows to establish a necessary and sufficient condition for the pseu-
doconvexity of a quadratic fractional function which can be checked by means
of a simple algorithm. These results, when applied to the sum of a linear
and & linear fractional function, allow to give a complete characterization of

this important class.

2 The fundamental theorem
Through the paper, we are concerned with the pseudoconvexity of the quadratic
fractional function

_n(z) 37Az—ad"z+a

(2.1)

on the set
X ={z: bTz+ 8> 0},

where A is a n X n symmetric matrix, a,z,b E R*, b# 0and o, F € R. In
the following, we denote by 14 (A), v_(A) and vp(A) the numbers of positive,
negative and zero eigenvalues of A respectively. :

Because it is well known (see for instance [1]) that f is pseudoconvex
on X when A is positive semidefinite (i.e. when v_(A) = 0), we assume
in this paper that A is not positive semidefinite (i.e. v_(A4) = 1). In [4],
a necessary and sufficient condition for the pseudoconvexity of f has been
established, but this condition is not easily checked. In this section we give
& new necessary and sufficient condition leading to a simple algorithm for
testing this pseudoconvexity. ‘

Some preliminaries are needed in order to achieve the main result. A
twice differentiable function f on an open convex set X is pseudoconvex on
X if and only if the two following conditions hold ([6]):

ze€ X and ATVf(z) =0= ATVif(z)h 20 - (2.2)
£€X and Vf(@)=0= f(2) < f(z) V2 € X (2.3)
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where V f and V2f denote the gradient vector and the Hessian matrix of f,

respectively. _
We apply this characterization to the case where f is a quadratic frac-

tional function.

Proposition 2.1 Assume that A is not positive semidefinite. Then fis pseu-
doconvex on X if and only if the two following conditions hold

z€X and hT[Az —a— f(z)b) = 0 => hTAR > 0 (2.4)
and
z€ X = Vf(z) # 0. . (2.5)
Proof Easy calculations give
Vi) = grpplAe - a— £ (2.6)
and
(§x+mvﬁug=Afaﬁﬁﬁapﬂmwfgmm—@ﬁ_bmx-@ﬁ;
Since '
_ KTV f(z) = 0 <= hT(Ax — a) = f(z)h"h,
then
(72 + OV F@h = WA + i /() (Fh)? — KT (Az — a)hTY]

(67z + 0)
= hTAh.

Hence, we deduce that conditions (2.2) and (2.4) are equivalent. Further-

more, when Vf(z) = 0, condition (2.3) implies ATAh > 0 for all A, in

contradiction with the assumption on A. 0

Condition (2.4) needs to check the positive semidefineteness of A on a

- subspace orthogonal to a vector v. To do that we use the following result
(I6]): Assume that A is not positive semidefinite and v # 0, then

v_(4) =1, ve A(R")

if A = v then uv < 0 (27

(VTh=0=hTAR 2 0) <> {
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It is seen, from simple arguments of linear algebra, that, when A is non
singular,
(Auy = Auy = v) = ulv = ulv.
Hence there is no ambiguity in (2.7).
The following result is straightforwardly derived from condition (2.7).

Proposition 2.2 Assume that A is not positive semidefinite. Then condi-
tion (2.4) is equivalent to the following conditions: '
P)v_(A)=1,;

ii) for all x € X there exisis u € R* { dependmg on z) such that :

Au= Az —a — _f(x)b, (2.8)

and .
u"(Az —a — f(z)b) < 0. (2.9)

We look at the implications of condition ii).

Proposition 2.3 Assume that A is not positive semidefinite and V[ does
not vanish on X. Then fis pseudoconvez on X if and only if the three
Jollowing conditions hold:

) v_(A)=1,;

ii) 3¢, T € R"® such that Ac =b and AT = a;

i) Forallz € X

R(z) = f2(z)bTe + 2f(z) (672 + B) — 2n(%) < 0. (2.10)

Proof Assume that f is psendoconvex. It results from the assumptions that
f is not constant on X. Therefore there exist z;,z, € X with f(z1) # f(z2).
From (2.8) there exist u, uy such that Au; = Az; —a — f(z1)b and Aug =
AI2 —a— (:L‘g)b

Consequently, Ac = b where

_ U — U —T1 + T

fz2) — flz1)

Substituting b = Ac in (2.8), we have AT = a where Z =z —u — f(z)ec.




In order to prove iii), it is sufficient to note that (2.9) is equivalent to
(&~ - f(@)ef" Al — & — f(z)e) < 0

and that
(z — 2)T Az — %) = 2n(z) — 2n(Z),
TAZ-2)=bT(x~z)=bTz+B—B—b%
so that (2.10) holds. Conversely,' if the conditions of the proposition hold,

then condition (2.4) holds in view of Propositions 2.1 and 2.2 and f is pseu-
doconvex on X. 0l

Now, we establish a complete characterization of the pseudoconve:hity of
f on X. The proof of the theorem is obtained from inequality (2.10).

Theorem 2.1 The function f is pseudoconvex on X if and only if one of
the following conditions holds: :

i) y_(A) =0 (i.e. A is positive semidefinite);

it) v_{A) = 1, T and c ezist s0 that A% = a and Ac=b, bTc=0,"2+8=0
and n{Z) = 0;

iii) v_(A) = 1, & and c ezist so that AT =a, Ac=b, bTc < 0 and

A= (bTE + )%+ 2n(Z)dTc L 0.

Proof Necessity: Assume that f is pseudoconvex and v_ (A) > 0. Tak-
ing into account Proposition 2.1, conditions i), ii) and iii) of Proposition 2.3
hold. Let us study the sign of the trinomial R(z) in (2.10) with respect to
the variable f(z). We examine in succession several cases according to the

sign of bTc.

1. bT¢ = 0. Then (2.10) is equivalent to
z€X= flx)(pTz+8) Sn(Z) (2.11)
(2) ¥7Z+ B > 0. Then Z € X and (2.11) is equivalent to
f(z) £ f@)Vz e X.

Hence Vf(Z) = 0 in contradiction with Z € X and condition (2.5).



(b) 5T% + B < 0. Then (2.11) is equivalent to

f(z) 2 f(z) VzelX.

Since v.(A) = 1, there exists v such that vTAv < 0 and b7v > 0.
Take some £ € X, then z; = £ +tv € X for all £ > 0. It is seen
that f(z;) — —oo when t — +o00, in contradiction with (2.10).

(¢) bTZ + B = 0. Then (2.11) is equivalent to n(Z) = 0.

2. bT¢ > 0. Consider x; defined as in 1.(b). Then R(z;) — +oo when
¢t — +00. A contradiction since Rz} <0Oon X.

3. ¥Tc < 0. Set A = (bT% + B)? + 2n(Z)bTe.

(a) A > 0. Define

Tz + 3 b’z + 0 '
V- = T, —\/Zand'n—-—w--i—x/&

Then (2.10) holds if and only if f(X) C (—o0, 7_]U[74,00). Notice
that f(X ) is an interval since X is convex and f is continuous.

i. v

ii.

(A4) > 0. There is w such that w"Aw > 0 and b"w > 0.
Then y; = & + tw € X for all ¢t > 0. Consider also x; defined
as in 1.(b). Then, f(y:) — +oo and f(z;) — —oo when
t — 400, We have a contradiction. '
v4+(A) = 0. Since v..(A) = 1, n is concave on X so that f is
pseudoconcave on X. Let us show that f is not pseudoconvex
on X. Let A be the negative eigenvalue and u be such that
uTu = 1 and Au = Au. Since R" = KerA @ (R x {u}), we
have A(R™) = R x {u}; since b € A(R"), there exists @ € R
such that b = Aau. Set ¢ = ou, then #7c = Aa?. Also for
any £ € R", y and ¢ exist such that z — Z = y + tu and
y € Ker(A). It follows that bT(z — %) = Aat. Taking into
account that aTy = a:TAy = 0, Ty = T Ay = 0, simple
calculations give

_ _ st + (%)
f(l?) - (P(t) - t/\O! + d(ﬂ—:)



and
| . \
Y= et dE.

)\a% + td(Z) — an(Z)].

Since
A = d*(%) + 2n(Z)\a?
() = ' (t+) = 0 where Aat_ = —d(Z) — VA and Aoty =
—d(Z)+VA. Then Vf(z_) = Vf(z,)=0withz_ =Z+y-+
t_uand z, =% + y + tyu. Since d(z,) = VA > 0, it results
that , € X and we have a contradiction with condition (2.5).
iii. A<0. Then R(z)<Oforallz € X.

Sufficiency: If i) holds, then f is pseudoconvex ss the ratio of a convex
function over a positive affine function. If ii) or iii) holds, then, in view
of Proposition 2.3, it is enough to prove that Vf(z) # 0 for all x € X.
Therefore, assume for contradiction that Vf(z) = 0 and z € X. Then
R(z) = 0 and Az = a + f(z)b. Hence, w exists such that Aw = 0 and
T =% + f(z)c + w. Then, because bTw = ¢TAw =0,

| bTz + 0 =bTZ + B+ f(z)bTe. (2.12)
Assume that ii) holds, then b"z + 3 = 0, hence z ¢ X. If iii} holds, then,
because R(z) = 0, f(z) is a root of the equation

AT e+ 20(b7Z + B) — 2n(Z) = 0.

I A < 0, there is no such a root, if A = 0, then f(z)bTc + BTz +8) =0
hence (6Tz + 3) = 0 in view of condition (2.12) and z ¢ X. 0

Remark 2.1 When A is singular, the gquantities bTc, d(Z) and n(Z) in
Proposition 2.8 and Theorem 2.1 do not depend on the vectors c and T chosen
such that AZ =a and Ac=b.

3 An algorithm to check the pseudoconvexity
of f |

The results stated in Theorem 2.1 allow to describe a simple algorithm to
check the pseudoconvexity of a quadratic linear fractional function.
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STEP 1: Calculate v_(A). If v_ (A) > 1, STOP : f is not pseudoconvex.

If v_(A) = 0, STOP : f is pseudoconvex; otherwise go to STEP 2.

STEP 2: Solve the linear systems Az = a and Av = b. If one of these
systems has no solution STOP: f is not pseudoconvex; otherwise go to

STEP 3.

STEP 3: Calculate b7c. If bT¢ > 0 STOP : f is not pseudoconvex. If
bTe = 0 go to STEP 4; otherwise go to STEP 5.

STEP 4: Calculate d(Z). If d(Z) # 0 STOP: f is not pseudoconvex,
otherwise calculate n(Z). If n(z) < 0 STOP: f is not pseudoconvex
otherwise STOP: [ is pseudoconvex.

STEP 5: Calculate A = d?(z) + 2n(Z)b"c. If A > 0 STOP : f is not
pseudoconvex otherwise f is pseudoconvex. '

It will be noticed that the calculation of v_(A) can be obtained in a finite

number of steps (unlike the calculation of the eigenvalues). Use, for instance,
the Schur’s complement method ({5, 6]). Next, for a better understanding of
~ the algorithm, we present some simple numerical examples.

Example 3.1 Consider the guadratic linear fractional fzmctzon f:R - R,
where

-1 2 -1 3 : —/3
A=| 2 -1 =1 ], a=| -3 |, b=| 3+2V3
(223) = (3) (=)

B=-3-3V3, acR

STEP 1

The eigenvalues of A are —1,1,0; u_(A) =1, go to STEP 2
STEP 2

=

= (~1,1,0) 15 a solution of the system Az =a and ¢¥ = (2+83,1,0) is

a.solutzon of the system Av == b; go to STEP 4.
STEP 8§



It results bTc = 0; go to STEP 4.

STEP 4
It results d(Z) = 0 and n(%) = 3 + a. It follows that the function f is

pseudoconver if and only if a > —3.

Example 3.2 Consider the quadratic linear fractional function f: %3 — R,

where
-1 2 =1 4 -2
A= 2 -1 -1 ), a = 1 ), b= 1
-1 -1 2 -5 1
B=4, e R ‘
STEP 1

The eigenvalues of A are —1,1,0; v_(A) =1, go to STEP 2

STEP 2 '

T = (1,2,—1) is a solution of the system Az = a and ¢& = (1,0,1) is a
solution of the system Av = b; go to STEP 8.
-STEP & '

It results bTc = —1 < 0; go to STEP 5.

STEP §
It results A = 20 — 2. It follows that the function f is pseudoconver if and

only if a > 10.

4 An application

In this section, we apply the results of Section 2, in order to characterize
the pseudoconvexity of a function f which is the sum between a linear and

a linear fractional function, that is

'z +a
e+ 0

on the set X = {z : bTz + B > 0}, where ¢,d,b € R*,, F € R. We exclude
the trivial cases where b = 0 or ¢ = 0. Such a kind of function arises, for
instance, in transportation problems ([8]).

This function f is of the form (2.1) with

flz)=¢"z+ (41) -

A= qu+ bg", a=~(fg+d).
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Some partial results about the quasiconvexity and/or the quasiconcavity of
the function are established in [10, 7]. In this section, we give a complete
characterization of the pseudoconvexity. We start with a lemma, Whlch points
out some properties of the symmetric matrix A.

Lemma 4.1 Assume that ¢ and b are linearly independent. Then v, (A) =
v-(A) =1 and b,qg € A(R").

Proof Notice that Av = (bTv)q+ (g7 v)b for all v € R". Hence vp(A) > n—2.
Take v, w be such that ¥Tv = ¢Tw = 1 and ¢"v = bTw = 0, such v, w exist.
Then Av = ¢ % 0 and Aw = b # 0 but ¥TAv = wT Aw = 0. Hence A can-
not be neither positive semi definite nor negative semi definite and therefore
vi(A) > 1and v_(A) 2 L O

Next, we apply Theorem 2.1 to the function defined in (4.1).

Theorem 4.1 The function is pseudoconvez on X if and only if one of the
Jollowing conditions holds

i)g=kb, k>0;

i) there is t € R such that d = tb and o > 1£.

Proof First of all, let us note that i) is equivalent to i) of Theorem 2.1.
We consider in succession the following two cases.

e g = kb with k < 0. We will prove that ii) is equivalent to iii) of Theo-
rem 2.1. Obviously we have v_(A) = 1.
Since Ab = 2k||b||?b, choosing ¢ = W , we have Ac = b. On the

other hand :
d=1tb ¢ a=-—(Bg+d) € A(R") & there exists T such that AT =
a.
Z can be chosen as

P o= _(ﬁk + t)b

2k||Blf>
It follows that
1 L
o= o <0, ("E+8)= L andn(z) = a— (X2

so that A = 222 Tt follows that @ — 3 > 0 is equivalent to A < 0.
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e b and g are linearly independent. We will prove that ii) is equivalent

to ii) of Theorem 2.1.
We choose ¢ such that 87¢ = 0 and ¢7c = 1, such a ¢ exists and verifies

condition Ac = (gTc)b+ (bTc)g = b. As in the previous case
d=1tb < there _ea:z'sfs Z such that AZ = a.

Since AZ = (¢TZ)b + (b"Z)q = —tb — Bg, T can be choosen such that
'z = ~p, gT% == —t. Furthermore n(Z) = —ft + c, so that n(Z) <0
if and only if a > 4. : :

[

Remark 4.1 In case i) of Theorem 4.1 f is of the form

f($)=qT$+t+bT$‘T+ﬁ with 7 = a~ 8> 0.
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