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Abstract
In this paper a particular quadratic problem, represented by a d.c.
optimization problem is studied. Some theoretical properties of the
problem will be stated, as well as some optimality conditions and a finite
solving algorithm.
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1. Introduction
In this paper we consider the following problem:

(1.1) min f(x) = 172 xT7Qx + ¢Tx - (dTx)?
xe X={xeR" Ax=b}

where Q is a symmetric positive definite nxn matrix, ¢, deR", A is a mxn matrix, be R™.
Since the objective function f(x) is the difference between two convex quadratic functions
it follows that problem (1.1) represent a particular d.c. optimization problem, that is to say
that its quadratic objective function is a d.c. function (difference of convex functions). Let
us note that in the recent literature many papers appeared regarding to d.c. optimization,
because of its many applications in operations research, economics, engineering design
and other fields (see [9, 10, 11, 13, 14]). Let us note that any linear multiplicative
maximization problem of the kind:

max f(x) = uTx+u)(vIx+v(), xe X={xeR™ Ax2b}, uTx>+(vTx)%>0 Vx20
can be transformed to problem (I.1) with Q=uuT+vv7, c=2uuy+2vv, d:%z_- (u+v), since

UTx+ug) (vTR+VE)=-1/2 ((uTx+ug)+(vIx+v) )+ 172 (uTx+uytvTx+vg)2
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In section 2 we will provide some theoretical properties of the problem, in section 3 we
will state some optimality conditions which will allow us to determine, in section 4, a
finite solving algorithm for problem (1.1), which will work also when the feasible region
X is unbounded, finally in section 5 we will provide some further computational remarks.

2. Properties of the problem

For the sake of simplicity, from now on we will use the notation B=Q-2ddT, so that

the objective function can be rewritten as f(x)=1/2 x'Bx+cTx.
Let us now point out some properties of the problem. The following result shows
that problem (1.1) may be a convex or indefinite problem, but never a concave one.

Theorem 2.1
Consider problem (1.1). If n>2 then function f(x) is not concave.

Proof. Let xeR", x0, such that dTx=0 (note that such a vector x exists being n>2). We
then have xTBx=xTQx-2(dTx)2=xTQx>0 so that B is not negative semidefinite and
function £(x) is not concave. *

Note that theorem 2.1 shows that the function f(x) is not concave on R", obviously
f(x) may still have a concave behaviour restricted on the feasible region X.
A sufficient condition in order to have a convex problem is the following.

Theorem 2.2
Consider problem (1.1). If the following condition holds:

min yTQy22 [|dJ? [>]

llyll=1
that is to say that A>2 ||d||* [>] where A is the smaller eigenvalue of Q, then function f(x)
is [strictly] convex.
Proof. Let xeR", x#0; being dTx<||d]| ||x|| it is (dTx)2<||d]|? |[x][?, by means of the
hypothesis we also have that for any xe R" it is xTQx=||x||2 yTQy22 ||d|]? ||xI[?
[>2 ||l Ix||*] where y=x/]|x||. By means of this condition we have xTBx=xTQx-
2(dTx)220 [>0] so that B is positive semidefinite [definite] and function f(x) is [strictly]
convex. The whole thesis then follows being ming vyTQy equal to the smaller
eigenvalue of Q. *



Note that if f(x) is indefinite, then any minimum point (if it exists) belongs to the
boundary of the feasible region X (being B an indefinite matrix no critical points in the
interior of X may be minima).

Being the feasible region X a polyhedron, it can be decomposed as X=Kp+Cp,
where Kp is a polyhedral compact set and Cp is a polyhedral cone which coincides with
the so called recession cone of the feasible region X, defined in general as follows:

rec(X) = {y: I{xn}<X, {tn} <R, tg—+oo, (Zn/tn) V1
= {0}u{y: 3{xn} X, |xnll>+eo, (xn/|[xnl)—V, y=Av, 220}

Remind that if a set X is closed and convex then its recession cone is closed and
convex too and can be rewritten as follows:

rec(X) = {y: Ixe X such that x+Aye X VAi>0!
= {y: x+tAye X Vxe X VA>0}.

Also the concept of copositivity of a matrix will be useful in the rest of the paper [7];
remind that a symmetric matrix B is said to be [strictly] copositive with respect to a cone

V if and only if vIBvz0 [>0] VveV, vz0.

Lemma 2.1
Let Be R™" be any matrix, ce R" be any vector and X any closed subset of R"; consider

also the function f(x)=xTBx+cTx. If B is strictly copositive with respect to the cone
rec(X), then f(x) attains a minimum over X.
Proof. Let {x,}cX be the sequence such that f(x,)— inf{f(x)} and Ilet

wn=(Xn/||%s|)—y. Let us now prove that lim |al| < +o0; suppose by contradiction
that limnwproo Ixnll = +ee, then yerec(X) so that, being B strictly copositive with respect

to the cone rec{X), we have:

: — 1 T T —
hmnﬂ_’_m f(xn)-whmn (Xn ' Bxptc'xy) =

=lim _ |alPlim (W Bwik (Ulxall) cTwy) = 4o

.

which is impossible. Being lim [I%n| < +e= then, by means of the closure of X,

Xp—x*€X so that for the continuity of f(x) the infimum is reached as a minimum and x*



is a minimum point. .

The following sufficient optimality conditions for problem (1.1) follow directly by
means of the previous lemina.

Corollary 2.1
Let us consider problem (1.1). If at least one of the following conditions hold:

i) vIQv>2 ||dTv|]* Vverec(X), v#0 (that is to say that B of problem (1 1) is strictly
copositive with respect to the cone rec(X))

ii) min  yIQy>2||d|[?
[lyli=1.ye rec(X)

then the minimum exists for problem (1.1).

The following further lemma will be helpful in stating a necessary and sufficient
condition for the existence of a minimum for problem (1.1) [5].

Lemma 2.2

Let Be R™™ be any matrix, ce R" be any vector and X any closed subset of R"; consider
also the function f(x)=xTBx+cTx. Suppose B to be copositive with respect to the cone
rec(X) and define the following auxiliary function: g (x)=f(x)+ (1/n) xTx n=1,23,...
Then the following properties hold:

i) Vn the function g (x) attains a minimum over X, say Xp€argmin{g,(x)}

ii) the sequence {f(x;)} is decreasing and f(x,)—inf{f(x) over X}

The next result follows from the definition of the feasible set X [1, 2, 3].

Lemma 2.3

Let us consider the feasible region X of problem (1.1); since X=Kp+Cp, where Kp isa
polyhedral compact set and Cp is a polyhedral cone, then for every sequence {x,}cX
such that |[xp||—> +e0 and (x4/]|xp|[)~—>de rec(X) the following property holds: Vp>0
Xp-pde X forn sufficiently large.

The following theorem provides a necessary and sufficient condition for the existence
of the minimum for problem (1.1).



Theorem 2.3
The minimum exists for problem (1.1) if and only if both the two following conditions
hold:

i) vTQv>2 ||dTv|[2 Yveree(X), that is to say that B is copositive with respect to the cone
rec(X); '

i) Vve rec(X) such that vIQv=2 ||dTv|], it results vT(Q-2 ddT)x+v1c=0 VxeX, that is
to say that the function f(x) along the direction v is linear and nondecreasing.

Proof.=) i) Let us suppose by contradiction that Jverec(X) such that vIBv<0; being
v#0 we have also yIBy<0 where y=v/||v||. Being yerec(X) there exists a sequence
{Xn}X, ||%n||—>+ee, such that (xy/|[xp]D—y; denoting with wp=(xn/|[Xpn]}) it then results:

: =1 T T —
llmn_>+°° f(xp) = llmn__)+m (172 x ' Bxptc %, ) =

=lim el lim (172 w T Bwit (Uxal)) T ) = —eo

which is a contradiction.

ii) Suppose on the contrary that Jve rec(X), vIBv=0, 3xe X such that vIBx+vTc<0
and consider the function f(x) restricted to the halfline x+ive X VA>0. It results
f(x+Av) = 172 xTBx + A vIBx + 12 A2 vIBv + ¢Tx + A vlc so that

f(x+Av) = A (VIBx + vIc) + 1/2 xTBx + cTx. We then have, being vIBx+vTc<0, that for
A—+oo, f(x+Av)——co which is a contradiction.

¢=) Let g (x)=f(x)+ (1/n) xTx, n=1,2,3,...; being B copositive with respect to the cone
rec(X) then for Lemma 2 the function g (x) attains a minimum over X Vn, say
xp€ argmin{g (x)}, and the sequence {f(x,)} is decreasing with f(xy)—>inf{f(x) over

X}. Let us now prove that jlimn Ixall < +2=; suppose by contradiction that

limn_>+m |Ixp]| = +eo and let verec(X) such that wn=(Xy/||%n|[}—v. Note that:

(e i = i T T =
+ >11mn_)+m f(Xn) hmn_)+m (1/2 x5 ' Bxp+c ' Xp)

=tim |l=all? lim (172 Wi Bwp+ (1/][xa|) ¢Twy)

so that vIBv<0; being B copositive with respect to the cone rec(X) it then follows
vIBv=0. For condition ii), being f(xp+Av)=A(vTBxn+vTc), we have that f(x) is
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nondecreasing along the direction v; this along with Lemma 3 implies that ¥p>0 and for n
sufficiently large x,-pve X and f(x,-pv)<f(Xp); note also that for n sufficiently large

Ixa-plP<[all2. Being xn€argmin{g (x)} we have g (xn)Sg,(Xn-pv) so that;
f(xp)+(1/0)|xnl =g, (Xn)<g, (Kn-pv)=E(Xn-pv)+ 1/m)||x-p V| <E(xp )+ (1/m) |2

which is a contradiction. Being lim | |[xpl| < +== then, by means of the closure of X,

Xp—x*e X so that for the continuity of {(X) the infimum is reached as a minimum and x*
is a minimum point. ¢

Corollary 2.2

The following properties hold:

i) if problem (1.1) has no minimum then inf{f(x) over X}=-oc;

i) if inf{f(x) over X }>-co then problem (1.1) admits minimum points.

Proof. i} By means of the previcus theorem if problem (1.1) has no minimum then
Jde rec(X) such that vIQv<2 |dTv||? or Iderec(X), Ixe X such that vIQv=2 [|dTv|?
and dT(Q-2 ddDx+dTe<0

In both cases, being v a feasible direction for problem (1.1), we have that f{(x+Av)— -0,
ii) Follows trivially from i). *

Remark 2.1
Note that the previous theorem gives us some useful stop criterions for the solving
algorithm:

(2.1) if a feasible direction v is found such that vIQv<2 ||[dTv||2 then there is no
minimum for problem (1.1) and inf{f(x) over X }=-c;

(2.2) if afeasible direction v and a feasible point x are found such that vIQv=2 |[dTv{[?

and v1(Q-2 ddT)x+vTc<O then there is no minimum for problem (1.1) and
inf{f(x) over X }=-eo,



The concept of copositivity allow us to state the following global optimality
conditions for problem (1.1), which will be helpful in the solving algorithm.

Theorem 2.4

Let us consider problem (1.1), a feasible point xoe X and a convex cone VER"; let us
also define the following subset of the feasible region Y=Xn(xg+V)cX. Suppose finally
that vIQv>2 ||(:1Tv||2 Vve V, that is to say that matrix B of problem (1.1) is copositive
with respect to the cone V. Then the following properties hold:

1) if vIVExg) = vIBxg+ vic 20 VYveV then Xp is a global minimum point over Y;

i1) if X 1s a local minimum point over Y then it is also a global minimum point over Y.
Proof. i) We will prove the result by contradiction. Suppose on the contrary that Jye Y
such that f(y)<f(xp) and define v=y-xp. Firstly note that Y is a convex set (being the
intersection of two convex sets) and that, being ye Y, v=y-xo€ V is a feasible direction. It
then results:

fly) =f(xp+v)=[ 1/2 X()TBX() + CTX() 1+ VTBX() +vlic]+ 12 vIBv <
<[ 1/2 x01Bxg + ¢Txg 1= f(xo)

so that it follows, being Vi) v =vIBxg +vic 20 VveV:

0> [vIBxg+vlc]+ 1/2vIBv =172 vIBy

which is a contradiction since B is copositive with respect to the cone V.
ii) The thesis follows directly from property i) since if x is a local minimum point over

Y then Vi(xg)Tv =0 WveV. ¢

3. Some local optimality conditions

In this section we give some local optimality conditions for problem (1.1). If we add

the constraint dx=&, EeR, to problem (1.1), the following strictly convex quadratic
problem is obtained:

z(€) = -E% + min (172 xTQx + ¢Tx)
P(S)
xe X(£)



where X(€)=Xn{xe R dTx=£}. The parameter £ is said to be a feasible level if the set
X (&) is nonempty. An optimal solution of problem P(£) is called an optimal level solution
{4, 8, 12].

Clearly problem (1.1) is equivalent to problem P(§), when & is the level
corresponding to an optimal solution of problem (1.1).

In this section we give some optimality conditions which allow us to detect if an
optimal level solution is a local minimum of problem (1.1).

Let X' be the optimal solution of problem P(£") and let Nx=k be the equations of the
constraints binding at x'. We can always choose a subset of these constraints, making a
submatrix M of N and correspondingly a subvector h of k, such that the rows of M and

the vector d are linearly independent. Being problem P(§) convex, then x' is an optimal
solution if and only if the Kuhn-Tucker conditions are verified.

Since Q is positive definite and the rows of M and d are linearly independent, the
matrix of the following Kuhn-Tucker linear system is non singular:

Qx-MTu-dh ==
(3.1)  Mx =h
dTx =&

where W is the vector of the Lagrange multipliers associated to the constraints Mx=h and A

is the Lagrange multiplier of the parametric constraint dTx=&'. The solution x', u', &' of
(3.1) is then unique, note also that being x' an optimal solution then p'20.
Let us consider the parametric program:

7(E' 4+0) = (&' +0)? + min (12 xTQx + cTx)
P(E' +6)
xe X&' +0)

where X(&'+0)=X{xe R" dTx=£'+6}. Let

'@ =x'+0a
(3.2) W®) = +0y
M@ =1L +0p

be the solutions of the Kuhn-Tucker system:

Qx-MTp-dr =-c
(3.3) Mx = h
d¥x =E'+0.



Note that (or,%,B) is the unique solution of the linear system

Qx-MTu-dh =0
(3.4) Mx ~0
dTx =1

so that it results Qo =My +dB, Mo =0, dTee =1 and B = aTQuo . Note also that,
being Q positive definite, it is B >0 if and only if o 20.

Set F(8)={0: x'(8)e X}, O(8)={6: W' (0)20}, H(B)=F(®)NO(8). Clearly, x'(0) is
an optimal level solution for 8 H(8). Set z(8)=z(&'+0), z'=1/2 xTQx' + cTx". The
following lemma gives an explicit form for the function z(6), 6& H(9).

Lemma 3.1 .

If H(8){0}, then z(8) = (172 -1) 82 + (A'-2E") 8 + z'-E2 where B = aTQu.

Proof. We have z(8) = -(§' +0)? + 12 (X' + 6 o) TQ(x' + 0 &) + cT(x' + 6 @) = -£2-02 -
280 + 12 xTQx" + aTQx' 8 + 12 aTQu 82+ 8 cTo. + ¢Tx'; note also that from (3.4) it
results a7Qx' = A' - aTc. From direct substitution we obtain z(8) = (1/2p -1) 82 + (A'-
28 0 + z-E'2, ¢

Now, the following lemma can be derived.

Lemma 3.2
If A'>2E" (A'<2E"), then z(9) is increasing (decreasing) at 8=0,
Proof. We have z'(8) = (B -2) 8 + (A'-2£"). Hence z'(0) = A'-2&". *

Set
U(0) = H(0)N[0, 400}, if A'>2E';
U(0) = H(B)\(-e=, 0], if A'<28;

o = 28 -

Lif B >2.



The following theorem holds:

Theorem 3.1

a) If A" = 2&' and B 22, then X' is a local minimum for problem (1.1).

b) If 8'e U(B), then x'(8") is a local minimum for problem (1.1).

Proof. a) A' = 2€' and P =2 imply z'(0) = 0 and z"(0) = B -2 2 0; hence x'(0)=x"is a
local minimum, b) We have z'(8') =0 and z"(8") = B -2 2 0; this implies that x'(6") is a
local minimum for problem (1.1). +

Let x' be a vertex of X; in x' at least n constraints of X are binding as well as the
parametric constraint and thus x' is a degenerate basic solution. Clearly, the different
bases containing the parametric constraint are n if X' is a non degenerate vertex of X; more

than n if x' is a degenerate vertex of X. A basis B is said to be feasible if uﬁzo. To point
out the dependence of z(68), H(8), etc. on the basis B, we write z3(0), Hy(0), etc..

Theorem 3.2

a) If there are two different feasible bases B, and B, such that either 7»'31 > 2E', sup
Hg,(0) > 0, X‘Bz < 2€', inf Hp,(8) <Oor A, < 28", inf H (6) <0, Mg, > 28, sup
HBQ(O) > 0, then x' is a local minimum for problem (1.1).

b) If we have Up(B)={0} for any feasible basis B, then X' is a local minimum for problem
(1.1). '

Proof. a) In wiew of Lemma 3.2 condition A'g, > 2§, L'y, < 28' (Mg, < 28, Mg, >
2E") implies z(8) 2 z(0) in a neighborhood of 0. Hence %' is a local minimum for problem
(1.1). b) This follows directly from the definition of Ug(B). *

4. A finite algorithm for problem (1.1)

Since problem (1.1) is nonconvex, in general, it is necessary to solve problem P(£)

for all feasible levels in order to find a global minimum, assuming one exists. In this

section we will show that this can be done by means of a finite number of iterations, using
the results of the previous section.

Let & be a feasible level and suppose that x* is the incumbent global minimum for
€<, i.e. is the best optimal level solution for E<E'. Clearly UB=f(x*) is an upper bound
for the value of z(€) for £>E.

Let & ., = sup {dTx, xe X} (of course &, may be equal to +oo).
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Let us consider the parametric problem P(§'+8) for 820 and determine x'(6), w'(8),

A'(0), z(0), @ =M, if B >2, F(8), O(0), H(0) as well sup F(@B), sup O(B),

sup H(0). For each 8c0(0), z(B) is a lower bound for P(§' +8); in fact if 8<F(8), then
x'(8) is an optimal level solution; otherwise, if 8¢ F(8), x'(8) is unfeasible for P(E' +8)
but is an optimal solution of a problem with the same objective function of P(§' +6) and a

feasible region containing X(£'+0).
The following four cases can occur:

Al B >2, M'< 2& (z(8) convex and decreasing at 8=0): three subcases need to be
considered:

Ala) 0'eF(8), sup O(8) = +eo, problem (1.1) is solved; in fact if UB<z(8"), then x*
is a global minimum; otherwise x'(8') is a global minimum;

Alb) 8'eF(0), sup O(0) = 0"20", if E"=L'+0"2E ,, problem (1.1) is solved; in
fact if UB<z(8"), then x* is a global minimum; otherwise x'(8') is a global
minimum,; if £"<€ .. then we consider the new feasible level &" and the
corresponding parametric problem PE"+0) with x*=x'(0"), UB=z(8") if
UB>z(6");

Alc) sup H(B) = 0"<0", if £"=£'+0"=E_ .., then problem (1.1) is solved; in fact if
UB<z(6"), then x* is a global minimum; otherwise x'(0") is a global
minimum; if §"<€_ ... then we consider the new feasible level " and the
corresponding parametric problem P(§"+0) with x*=x'(8"), UB=z(8") if
UB>z(0™),

A2) B 22, 'z 2E' (2(8) convex (or linear) and nondecreasing at 6=0): two subcases
need to be considered:

A2a) sup O(8) = +oo, problem (1.1) is solved; x* is a global minimum;

A2b) sup O(B) = 0" <+eo, if E"=E'+08"2E .., then problem (1.1) is solved and x* is
a global minimum; if §"<€ ., then we consider the new feasible level £" and
the corresponding parametric problem P(§"+8);

A3) B <2, A'< 2&' (2(0) concave (or linear) and decreasing at 8=0): two subcases need to
be considered:

A3a) sup H(8) = +oo, problem (1.1) is unbounded, i.e. inf f(x)=-c= (note that this is
the stop criterion (2.1) or (2.2) if z(8) is linear, that is  =2);

A3b) sup H(O) = 0"<+ee, if E"=E'+8"=E . then problem (1.1) is solved; in fact if
UB<z(6"), then x* is a global minimum; otherwise x'(8") is a global minimum;
if £"<& ., then we consider the new feasible level £" and the corresponding
parametric problem P(£"+0) with x*=x'(8"), UB=z(8") if UB>z(8");

11



A4) B <2, > 2E' (2(8) concave and nondecreasing at §=0): let sup F(8) =6, sup O(8)
=02, 0, be the positive root of the equation z(0)=UB and 6*=min {62, 8.} ; four
subcases need to be considered:

Ada) 8'<0*<0?, if £"=E'+0*2E ., then problem (1.1) is solved and x* is a global
minimum; if £"<&,,,, then we consider the new feasible level £" and the
corresponding parametric problem P(£"+0);

Adb) 0%<01<0?, if £"=E'+8!=E ., then problem (1.1) is solved and x'(8!) is a
global minimur; if "<& ,, then we consider the new feasible level £" and the
corresponding parametric problem P(E"+8) with x*=x'(81), UB=z(81);

Adc) 02<01,if E£"=E'+6%=E,,, then problem (1.1) is solved; in fact if UB<z(6?),
then x* is a global minimum; otherwise x'(02) is a global minimum; if
"<& nax» then we consider the new feasible level £" and the corresponding
parametric problem P(§"+8) with x*=x'(82), UB=z(8") if UB>z(8");

Add) sup H(O) = 4o, problem (1.1) is unbounded, i.e. inf f(x)=-cc (note that this is
the stop criterion (2.1)).

Remark 4.1

Let us note that in Ala) and A2a), in order to verify the global optimality, we just
used the concept of optimal level solution; actually we have also implicitly verified the
copositivity of matrix B with respect to the cone V defined as the cone of feasible
directions from x' with respect to the set Y intersection of X and the halfspace given by

d"x=€". This can be proved noticing that along the direction e V the copositivity has
been explicitly checked, along the directions belonging to the hyperplane dTx=&' it is
given since P(&") is a strictly convex problem and x' is its global minimum, and finally
since the objective function has a lower bound 'y on the halfline x'+60, made by optimal
level solution, so that we have

lim f(x'+0v) 2 im f(x'+0a) = v

which implies that lim f(x'+8v) > -eo so that, necessarily, it is vIBv20.

Starting from the solution X' corresponding to the level ', we arrive at one of the
following situations:
i)  x*1is an optimal solution;
i) the problem is unbounded;

iii) alevel greater than &' has been found together with the best incumbent solution.

12



In order to propose a finite algorithm to solve problem (1.1), it remains to consider
an appropriate initialization and to show how it is possible to obtain the optimal level

solution corresponding to the new level £" in a finite number of iterations.
Let us solve one of the following linear programs:

P) min dTx, xeX;
(P,) max dTx, xeX.

If x" is the unique optimal solution of (P,) and £'=dTx' is the corresponding level
then X(§")={x'} and clearly x' is an optimal level solution; in this case x*=x' and only
increasing value of £ need to be considered. Analogously, if x' is the unique optimal
solution of (P,) and &'=d7x’ is the corresponding level, then x*=x' and only decreasing

value of € need to be considered. Otherwise we can start from the optimal level solution x'

corresponding to a feasible level &'; also in this case x*=x'; but it is necessary to consider
cither increasing or decreasing values of the parameter.
It remains to consider the problem of obtaining the optimal level solution x'

corresponding to the new level £"=E'+0 in a finite number of iterations. If B8=sup
H(8)=sup F(8), then x'=x'(8) and at least one new constraint is binding at x', while if
B=sup H(0)=sup O(8) at least one of the Lagrange multipliers ' (8) are zero and the

corresponding constraint can be deleted. If O>sup H(8), then x'(8) is unfeasible and the
optimal level solution x' must be determined. Starting from the level &' the level &'+sup
H(B) is obtained together with the optimal level solution x'(sup H(8)), then starting from
the level &' =E'+sup H(B) the new level &'+sup H(O) is obtained and so on until a level

&' 2" is reached. The proposed procedure is finite since for each new level either at least
one new constraint is added or at least one old constraint is deleted.

Let us consider the following numerical example:
8 1 Xl
min f(x) = 172 (x,, x,) - (% - 2x,)2,
1 2 X,
1 %20, @ x-%,2-2, 3) X;- 3%, 2 -10.
Starting from the optimal solution x’=(2, 4) of the linear program

min {X; - 2X5: Xy 20, x;- X, 2 -2, X,- 3%, 2 -10}
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we obtain the following steps:

- base {(2), P}, £'=-6, x'=(2, 4), x'()=(2-0, 4-0), u£(9)=50~219, A‘(9)=-30+129,
7’=40, x*=(2, 4), UB=4, z(0)=567 -186+4, sup O(0)=50/21, sup F(8)=4, sup
H(9)=50/21, 9‘=9/5; case Alb) holds;

- X7(9/5)=(1/5, 11/5), z(9/5)=-61/5<UB=4, x*=(1/5, 11/5), UB=-61/5=-12.2, basc {P},
E'=-6+50/21=-76/21, X’=X"(50/21)=(-8/21,34/21), X’ (8)=(-8/21+4/388, 34/21-17/389), x'(e)=-
30/21+15/380, 2'=3807147, 2(0)=-61/7607+122/210-4636/441=-0.80266%+5.80950-10.5124,
z(0)=UB=-12.2, 0,=7.51803, sup O(0)=+cc, sup F(0)=76/21, sup H(0)=76/21, case Ada)
holds:

- £'=-76/21476/21=0, x’=x’(76/21)=(0, 0), base {1, P}, x’(8)=(8, 0), u'1(9)=179,

Kr(6)=86, z'=0, Z(G)=392, case A2a) holds, sup O(0)=+ee, sup F(8)=+eo, x*¥=(1/5, 11/5)
is the optimal solution.

(-8/21, 34/21)
N /s

N 175, 115)

\

) -
/ X

(0,0

fig. 1

The path followed by the algorithm is depicted in fig. 1.
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5. Further remarks

It is interesting to point out, even from a computational point of view, that it is
possible to determine an explicit inverse of the constraint matrix related to the Kuhn-
Tucker conditions used in Section 3. More precisely, let us define the following matrix:

Q -M d
Dz[M 0 0}

dr 0 0

so that the Kuhn-Tucker system (3.3) becomes:

Lel-Lelele]

s0 that the unigue solution of the system itself is:

x'(8) x' o -c 0
EIRERNEREh
' A'(8) Al B E 1

Having an explicit form of D! allows us to directly calculate such a solution. The inverse
can be stated with the following steps:

Preliminary Step:
Calculate Q]
q:=Q'd
&:=1/(d"q)
H:=Q1-8qq" (symmetric matrix)

First Step: Chosen the binding constraints given by matrix M do:
v:=Mg
S:=(MHMTY! (symmetric matrix)
¥:=—08Sv
B:=8(1-vTy)
ou:=Q (M ™y+dB)
M;:=HMTS
B:=H-M;MH (symmetric matrix)
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Second Step: The inverse of D is then given by the following matrix:

B M;. o
D= M,T S v
~oT VB

By means of the following properties it is very easy to prove that the previous matrix is
the correct inverse of D (that is verify that DD! is correctly equal to I):

MM, =I d™;=0 HQq=0 HQH=H
(1/8)=dTQ 1d=q"Qq 0=Q T MMy+dPB)=8(q-MMq)

These properties allow us to verify, by means of simple calculations, also that:

Mo =0, dTa=1 and P =a’Qu.
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