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Abstract

This paper presents a GEI model with restricted participation where
the access to the assets markets depends upon some endogenous variables.
The proposed framework generalizes the ones described by Cass Siconolfi -
and Villanacei (1991) and by Siconolfi (1989) where the restriction on the
assets market only depends on the assets demand. The existence result is
obtained by means of a non standard degree argument.

1 Introduction

The idea under the so called restricted participation is the following one: con-
sumers are not equal in front of assets markets. When someone asks for a loan
to a bank or buys shares or derivatives at the stock exchange, must face some
restriction depending basically on his wealth. In real life, there are many cases
where the participation constraints on financial markets varies from a class of con-
sumers to another. For example, we can think of collateral securities in American
real estate market, of a credit line which is secured by financial assets and/or by
a proportion of the consumer’s wealth. So, in a two-period general equilibrium
model with uncertainty and restricted participation, consurners have to face not
only their budget constraints but also their financial constraints describing their
different access to the assets market. Even if markets are complete, i.e. it is
possible in general to move wealth from any state to any other one, personal con-
straints do not permit this possibility. In that sense, restricted participation can
be seen as a generalization of the incompleteness of markets: in fact the different
access to the financial markets makes them incomplete from the consumers’ point
of view. _ _ '

In the recent literature several restricted participation models have been pre-
sented (see Siconolfi (1988), Balasko, Cass and Siconolfi (1990), Cass, Siconolfi
and Villanacci (1992), Polemarchakis and Siconolfi {1997) and Carosi (2000)).
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While Balasko Cass and Siconolfi (1990), Cass, Siconolfi and Villanacci (1992),
and Carosi (2000) consider a model with numeraire assets and where the re-
stricted participation depends basically on the demand of assets, this paper aims
to introduce a financial constraint function which depends not only upon the
assets’ demand but alsc upon some other endogenous variables.

The set up of the model is described in section two while the third is devoted to
the existence result which is obtained by a non standard degree argument; more
precisely we present an original construction of the homotopy, which “links” the
function F representmg the equilibrium points, a,nd the well chosen function g

~for which #¢! (0) is known.

2 Set up of the model

We describe a competitive two-period exchange economy with uncertainty where
there are S, § > 1, possible states of the world in the second period. Spot
commodity markets open in the first and second period, and there are C, O > 1,
commodities in each spot, labelled by ¢ = 1,2,...,C. We label each spot by
s=10,...,8, where s = 0 corresponds to the first period. There are H households,
H > 1, labelled by h = 1,2, ...H and [ assets, labelled by i = 1,2, ..., 1 '

The time structure of the model is as follows: in the first period, commodi-
ties and assets are exchanged and first period consumption takes place. Then
uncertainty is resolved, assets pay their returns and finally households consume
second-period commodities. z;*° is the consumption of eommodity ¢ in state s by
household h; similar notation is used for the endowments, e;°. Both consumption
and endowments are elements of RS, for each household, where G=(S+1)C.

Household h’s preferences are represented by utility function uy, : ]Rf + — R,

As in most of the literature on smooth economies we will assume throughout
that

Assumption 1 1. uy is C?,
2. differentiably strictly increasing, (i.e., Duy (xp) > 0),
3. differentiably strictly quasi-concave, (1 e., Az # 0 and Duy, (zp) Az =0 =
Az” D?uy (23) Az < 0), '
- 4. and it has indifference surfaces with closure (in the standard topology of
RY) in RY, (i.e., for any u € R, Cl{z € RY, : up () = u} CRE,).

The following standard notation is also used:
rs = (27%,, on = (22)5 4, = = (24)fL, , with the obvious meaning,
p**, the price of commodity cin spot 8, p = (p* )SMO, the commodity price vector,
with the price ¢ of the numeraire commodity C. ¢' , the price of the i-th asset,
¢= ("), |
y** the yield of the i-th asset in state s in units of commodity C ,
b}, is the demand of asset ¢ by household A.
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Let Y be the S x I return matrix given by
v=
It greatly simplifies our analysis to assume that

Assumption 2 (No redundancy) We assume S > I and RankY = 1.
Define

ap ! R’ X IR-Icf-l_-{S-'-l) x R x RG - R#Jha ©Op (bh7p1 qaeh) F Qp (bh:P:‘Leh) ’

where Jj, is a finite set such that #J, < I. Then household h’s maximization
problem is the following one. For given p € R, , ¢ € RY, e € R,

NAX(zy, by,) UVh (’L‘h) s.t.
Pz + qbn < plepy (1
vz <peh+ Ly, (5=1,.,5) )
ap (bhap)Qaeh) 2 0

Assumption 3 a is spot by spot homogenous of degree zero with respect to

the prices of goods and assets, i.e., for every (b, p, g, ex) and every v € Rf_il,

(b, (VP Vom0 » 108 28) = an(bi, P, 9 €8)-
Given the above assumption, we can normalize prices using the price of the
good C in each spot. Define p\ = (p\*)%_, = ((p“)c?éa)f;o
With innocuous abuse of notation, we still denote by p and ¢ normalized prices.
Define

i 1
¢ = P
o
and R (q) = [ ;q ], we can rewrite (1) as
ATz, by, uh(mh)' -d (wh - eh{) + Bbyp > 0 Ap = (A;)szo,l,...,S (2)
ap (bh,a b.q, eh) > 0 My = ('U"J;b)je.fh ‘

where A, and p, are the Kuhn Tucker multipliers associated with the corre-
sponding constraints.



Define J;, as a subset of Ji, and
ol R = R* ok 2 by 1o (af (bh,p,q,eh))jg;l.
We assume that the restriction function a, satisfies the following properties.
Assumption 4 i) ay, is C2.

i) ay is componentwise concave in the variable by, i.e., for any j € J,, for any
bn,p,q, er, and for any Ab € RT,

AbTDbhbha’i (bhﬂpﬂ QTI eh) Ab S 0'

iil) ax permits no participation on the asset market, i.e., for any p,q, e, it is
the case that

ap, (Ospa q, eh) 2 0.

iv) For every (bs) € R? such that ai"‘ (bn,p, ¢, €n) =0,

rank (Da‘b (bhapﬂ q, eh)) = #JL
v) For every i there exists some A (i) such that for every (b,p,q,¢s) ,

D”i( 5

Let us denote by Aj, the set of functions aj, verifying Assumptions 4. Define
also A = x Ah _

We present some easy examples of our kind of restricted participation.

angs) (Baay» P, 0, €n) = 0.

Example 1 1. You cannot borrow more than a given proportion o of your
expected real wealth:

gb, < opmin {p’el}, or apmin{p’e;} — gb, > 0.
g & :

Observe that this function is concave and not C? just on a zero measure set.

2. You have to buy a financial collateral, i.e., if you want to borrow, you
have to partially cover your debt buying some ”safe” bonds which could be use
to repay your debt. Partitioning the set 7 in I' and 7%, where I? is the set of
"safe” bonds, we must have '

gthy < —Bgb2, or  — Bg*bE — gtbL > 0.

Market clearing conditions are

(M1) Y5l (zn—es) =0,
(M2) L by =0.



3 Existence of equilibria

Tn the proof of existence, fix (a,u) . Consider the system of first order conditions
to consumers’ problems and market clearing conditions.

(hl) Do:huh (:ch) - )\h(I) =0
(h.2) —® (x5, ~ ep) + Rby, =0
(h.3) ApR+ Mth,,fIh (bn,p,g,€n) =0
(h&) min {Ju'h-: a’h (bh: o q, eh)} ‘ =0 (3)
1) L (= -e)) =0
(M.2) SE by =0
Define _
==RF¥ x RHS x RET  RE#7h RS (S U % RI £= ((mha)‘habmp’h)le :P\,Q) €8

F:ExRY - RI™= (¢ e) = left hand side of (3)
To show existence, i.e. F71(0) @, we are going to use a degree argument.

Definition 1 C (M, N,0) denotes the class of functions which satisfy the follow—
ing Assumption i) to iv).

i) M, N are smooth boundaryless manifolds such that dim M = dim N;

ii) f: M — N is a C° function;

iii) 0 € N;

iv) £71(0) is compact.

Theorem 5 . Assume that .
- 1. f,g€ C(M,N,0);
. 2.0 is a reqular value for g and g~ (0) is odd;
3. there exists a CV homotopy H : M x [0,1] — N, (z,7) v H(z,T) from
f togie H(z,0)= f(x) and H(z,1) = g(z), such that H1(0)is compact.
-~ Then f71(0) £ 0.

We are going first to construct the needed function g such that g~! (0) is odd,
and then the needed homotopy . The basic idea is the following one. We need to
be careful about how to "homotopize” the restricted participation function.

Roughly speaking, using a Pareto Optimal allocation z* and an appropriate
restricted participation function a* we define g, i.e. Hy, as g : £ — (left hand side
of (3)) associated with e = #*, u and a = a*. In order to have the differentiability
of g we have to require a;” (0, ...) > 0. On the other hand, we need the compactness
of H~1(0) that is the sequentially compactness. Then along the sequence of 77,
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we need to be able to get the convergence of £&” and therefore of u. To insure
that we need either to have a;’ (b, (7°),...) > 0, so that u}’ converges to zero,
or af, (by, (1°),...) = 0, where there is no *, i.e., we need to get the true restricted
participation function, in order to be able to use Assumption 4.iv, and through
the rank condition, get the convergence of . _
To get the differentiability of g we can consider the following homotopy about
@y,

2 () = an (b, ...) +71.

‘For (by,..) such that ay, (by, ...) 2 0, our choice guarantees aj, (by,...) > 0as 7 =1
and from Assumption 4.iii, we get a (0,..) > 0. Unfortunately a}, (.) does not in
general verifies Assumption 4.iv and so it is difficult to get the covergence of pj.
To deal with this issue we take 7 € (0, 1) and consider the following continuous
functions.

_ 1
T R R.x e (=7 (1l-=) Zf T<a<l1
’ 0 otherwise
_ 1
I' - RoR.xw— e #(r-2® qf 0<z<T
7 0 otherwise

Then we construct the two following smooth bump funotlons
f_m (m)d:c ;

0 if T€[0,7)
ST Twn _
YIT = w ’Lf T (T, 1)

1 if r=1

$:0,1] = [0,1],7 1 — B s

T _T{z)dz . —
YT .1‘——% if T€(0,7)
0 if Telr1]

For any j and h, define

a’i* (bhvpa q:€h, T) = a’-;; ('l,b (T) bh:'pa q, (1 - T) en + T&Z‘:) + Y (T) )
and &, = ¢ (1) by.



s V(1)

Y

Figure 1:

Observe that the above function takes the values indicated in the following
table with respect to 7:

T ay (b, 1 4, €n, T)

U aj, (bn, P1 ¢; €n)

(O’;'F) a.}'z (d) (T) bhap': q, (1 _ 1'“) ep + T.’E;:)
7 aj, (0,p,4,(1 —7) ey + 72},)

(:F?l) a?], (0 P:q;( T) eh+7'$}:)+’}’(7')
1 a;, (0,p,q,T;) + 1

Now we are ready to construct the desired homotopy function.

Consider a Pareto Optimal allocation z* € RZE. It is known that (Balasko
1988) there exists (8}, x*) € € RETL x RS, such that (z*,6;,x*) is the unique
solution to the following system

(1) Dgu(a7) - X* =0

(2) QZDmh’U,h (33]—,,) =0 4)
(3) (s (@n) —un (:ch)),,,# =0 (
1) -zt iz, =0

Let 6] =

A



Consider now the following system we use to define the needed homotopy.

(h.l) thuh (:L‘h) — /\hq) . == ()
(h.2) ~® (zp — ((1 — 7) en + Tx})) + Rby, =0
(h.3) MR+ ppDg, 0}, (4 (7) ba, py g, (1 — 7) e + 72%) =0
(h.4) min {id, al (4 () b, p, ¢, (1 = ) en + 72t) +v (1)} =0 (8)
(M.1) Zfﬁl (mk - ((1 —7) ‘31\1 + m:h*)) =0
(M.2) 3 he1 Or =0

For given e and z*, define
H : 2x[0,1] — RI™E,
H : (& 7) — (left hand side of system (5) )

Remark 1 £ is a solution to H (£,0) = 0 iff £ is an equilibrium at e, i.e,
F{£,e)=0. - -

Deﬁne_
g:E—RM™E ¢ H(E D),

and therefore g (£} =0 is
(h.1) Dy, up (p) — Ap® = (}
(h.2) —® (xp, — =) + Rby =0
(h.3) MR+ pypDg,a; (0,p,g,2;) =0
(h4) min {4}, a}, (0,p,q,z}) + 1} =0
1) S (e - a)) =0
(M.2) ZhH=1 bn =0

We are now ready to show that g=1(0) is odd and 0 is a regular value for g.
That result is obtained showing that g~* (0) = {¢*} in Lemmas 1 and 2, and
that rank Deg (£*) = dim = in Lemma 3.

Lemma 1 £ € g=* (0), where

8
waC
(a:z*_ =z}, A= (X—BZ )5_0, = 0,u" = 0) )

&= g heH
e *5 - 5 wal 3
= () e T ()

Proof.
The result follows simply computing g{£*). We want to underline that :

al, (0,p,q,2;) + 1> 0 and p = 0.



Remark 2 From the fact that for s > 0,we have that
Dastup (23) = X*"*p™ =0,
and
Dy scup (x)) = A™,
Therefore

skt Dﬂ?*’uh (E;;)
DESCU};, (.’BZ)
Lemma 2 {£™} = ¢71(0).

Proof.
The first 3 steps are the basically the same as in the case of numeraire assets.

Consider an arbitrary E = (x A, b3 1, D, ) From the previous Lemma, it is

enough to show that if F (E, :1:*) = 0, then z;” = £
1. T=2z" =
Sitppose otherw1se ie, T 7é z*. Consider z = %— (¥ + z*) . Since F (:5 ,:c*) = (),

22h Zh —_Zh xh, = and
Zh: T = %(Xh: T + ;:rh) = %9:;. (6)

From Assumption L.iii (strict quasiconcavity of the utility functions), we then
have '

w@>ul) | (M)

But (6) and (7) contradict the Pareto Optimality of z*. Therefore, we have that
forh=1,..,H

(h.1) Daun (23) = M () =0
(h.2) —& (z}, — z}) + Rby, ={)
(h3)  MR(@+5Dsal 05T} =0 ®)
(h.4) mm{,uh, a;, (bh,p, q,mh) + 1} =0
2. A= A" N
. For any h and s,from (8.1), Dgecuy (2}) — A, = 0. Therefore, from Remark 2
A=A
3. p=p*.



From (8.1}, and from Remark 2,

L2

~5 Dﬁsuh (37;) —

_ Dysuyp (z}) .
M

D ecuy, (23)

4. b=b"=0.
From (3.h2), we have

| ’5,,:[1’7']"1-0:0,

where Y a I x I full rank submatrix of Y.

5. 1= p*.

From Assumption 4.ii), we have that as (0,p™,4,2%) > 0 and therefore
ap, (0,p**,q,2}) + 1 > 0. Then, from (8.4),

0 = min {1, of, (b,5, 3,4 + 1} = i,
6. ¢=qg".
From (8.3) and from Remark 2,

g=1 /\h s=1 R
u
Lemma 3 rank Dgg (f*) =dimE.
Proof.

z, An bn 7 P\ g
thuh_ (.’L‘h) — Ah(I) Dzuh (.‘.'C}';) _q)T Az*
~® (z, — x}) + Rby, - (p**) R (¢*)

)\hR + p’hDﬁh a'h (07 p’ q7 :L.;;) RT -(q**) . [Dbhah(ﬂ,pt*’qm*,m;)]T _)\?1*11
min {4, o], (0,p,q,3}) + 1} I
Zthl (:E}L - :U}L*) IO
Zthl by I
where
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- 20
Ah,**IC'—l

AE**IC—I
0

We can use the unit matrix I in superrow of min {4, af, (0,p,q, z}) + 1} to
clean up the column of u,. We can then erase those superrow and supercolumn.
Then we get the same matrix of the case of numeraire asset economy. [ |

Lemma 4 H~!(0) is compact.

Proof. To show this result we are going to prove that H~1(0) is sequentially
compact, i.e. every sequence admits a converging subsequence. Take a sequence
{(€”,7™)} such that (¢, 7%) € H~'(0) . First of all observe that since {7"} € [0, 1]
it admits a converging subsequence {7"} — 7. Then we are left to show that
every component of the sequence {£*} = {(zF, AR, b2, u¥)pepr » P\, @"} such that
(¢",7™) € H™1 (0) admits a converging subsequence in & since in this case {" —
€= ((fc'h, M b ﬁh) . ,ff\,c’j). and from the continuity of H we get £ € H1(0)

he
and then we are done.

The following steps 1-6 show that every component of the sequence {£"}
admits a converging subsequence in =.

Step 1. {z7} has a converging subsequence in R$Y.
By definition we have z} > 0, for every h and therefore {z}} is bounded below.

Since 3, (mh” —e (’r”)) =0, we get 3, z" < Y, e (77) and so (z39)" <

el (r") . Observing that e, (") is continuous and {r"} is a converging se-
quence, we obtain {27} is bounded above and hence it admits a converging sub-
sequence {x}} — 5. We are left to show that 7, € RCY. Since {e}} — €, there
exists a compact set [z, such that €, € I, and for any n which is sufficiently

big, we have e € I5,. Let be u = min w (er) . For a well chosen n', since
ep €

&

(€™, 7)) € H™1(0), up(z}) = @ for every n > n'. Hence 2! € Ly = {zn €
RS, :up () > u}. From Assumption on the utility function ¢lLy C RS, hence
zp > 0. _

- Step 2. {\"} has a converging subsequence in R, for every s =
0,...,S.
From the First Order Conditions, recalling p*® = 1 for every s we have Dysoun (z7)—

n = 0and \y" = Dy.cup () . Hence

)\in — 5\; = Dmicuh (.’f}h) > 0.
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- Step 3. {p\”} has a converging subsequence in ]RG:LS .

' . Cdees D,,cun(z})
From the First Order Conditions we have p*\® = —L‘;\%———— for every § = 0,..5
and h € H.
Hence
D a Up (ﬂ?h)
ps\n _ ﬁs\ _ " — >0

Step 4. {6"} has a converging subsequence in R’
- From —®(xp—ep) + Rbp = 0 we get Rby, = —® (2, —ep) Consider the S
equations referring to states s = 1,..., 5. Recall that rank[Y] = I, the vector
by, is a continuous function of (mh,eh, p). Then since {(z},€?,p\")} admits a
converging subsequence we have b} — by

Step 5. {¢"} has a converging subsequence in R,
Due to the Assumption 4.v, for every asset i, there exists a consumer A’ such that
equation (5.h.5) becomes Ap:R = 0 and so

Step 6. {u"} has a converging subsequence in R*/» x R,.
In this last step we have to distinguish some cases according to the value of
7 =lim, 0 ™. -
Case 1. ™ — 0.
Let {J&, JP} be a partition of the set of index J, such that

={ien: o (bnpgen) =0} ad JF={je: o (bu5 G 7)>0}.

If j € JB, there exists a n* such that af; (,Bh,p q y€p, %) > 0 for every n > n*
Hence for every n > n* we have u}" =0, i.e., #n — 0 for every j € JP.
Since 7™ — 0 there exists a 7 such that for any n > 7 a} (b7, p", ¢ ,eh,'rn) =

a (b, 0", q" €5, ")
If j € J{, from Assumption 4.iv, rank (Dﬁhah (bh,,p, q, €n, T )) = #JA.

Let Dg, a ag ((bh, P, 4, En, T)) be the square submatrix of Dy, ahA (whose dimen-
sion is #J2 x4 J3) such that [detDbhah (bh,p, q,En,T ) ‘ > 0and Dbh% (Bh,ﬁ, g, éh,?)
is the matrix of dimension (#J, — #J2) x (I — #J} ) which is the complement of

Dy, @] Then, there exists n’ > 7 such that (detDﬁ al® (b7, p*, g™, e, 77)| > O for

12



every n > n'. Let us take n** = max {n*,n'}. Making the needed permutations,
from equation (h.3) of (5) we get:

1 I 1

B, 17 ~ B
#J’; ,L.r,";L: Dbha'h (b5, ™ ¢ eh, ") = [n"] T
#Jj, o Dbhah (b5, 0" 4" €h, ™)

for every n > n** i.e

; |- 7]
An-Dbh, bz: p q eh,a ) nA'ﬂ

J4 - JA = JA
Then p;, ™ = 7" [ ah (b7, p™q™ e, T ”)] follows and w; ™ — 1, -
Case 2. ™" -7 € (0,7
1,

Similarly to Case let { ,JP } be a partition of the set of index Jj, such that

J,f——-{jeJh: ag;(w('f)ﬂh,ﬁ,q,éh)zo} and J,?:{j,ejh: a{*(w(?)z‘ih,ﬁ,q",éh)>o}..

- Then everything goes as in Case 1. Observe that the derivative of a; with respect
ta 3, in fact computed at 1 (7) by, - see equation (5.h3).

Case 3. 7" = T =T.

Again, similarly to Case 1, let {J#, J2} be a partition of the set of index J;, such
that

Jt={j€dn: o] (0,5,48)=0} and J2={j€Ju: al*(0,5,4,8) >0},
and again everything goes as in Case 1.

Case 4 and 5. ™" — 7 € (7,1].
In this case

al () = dl (0,5,4,8,) +v(F) >0

since, from Assumption 4.ii, a (0, 5,4, Eh) > 0 and, by construction, v (7) > 0.
‘When using the same argument presented in Case 1, we get that u™ — 0. ]
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