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Abstract

The aim of this paper is to provide some first results regarding to -
the extension to the vector valued case of the b-invex functions. Some
definitions will be given for both the nonsmooth case and the differen-
tiable case; the inclusion relatioships among the introduced families of
functions will be studied and some results regarding to vector valued
optimization will be stated.
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1 Introduction

Several classes of functions have been studied in these last years in order to
generalize the concept of convex functions, the very well known classes of
generalized convex. functions deeply studied in the scalar case [1] and with
many recent results also in the vector case [9, 10, 12, 13, 14, 15, 17, 18],
such as the classes of generalized invex functions having many results in the
scalar case and with some interesting recent results also in the vector case

*The second author gratefully acknowledges the research support he received as Visit-
ing Fellow at the Faculty of Management, University of Manitoba (Winnipeg, Manitoba,
‘Canada), in July-August 1997. The research presented in this paper has been completed
during that visit.



7,22, 23, 25, 27, 28, 36, 37, 38, 39, 43, 47, 49, 45, 50, 52, 53, 64], the classes

of generalized b-vez and b-inver functaons so far studied only in the scalar B

case [2, 3, 4, 5, 6, 57].
The aim of this paper is to present some results regardmg to the exten—, :

sion to the vector case of the generalized b-invex concepts, providing also i ..
some results related to the use of these functions in multmb Jectxve progra.m— FRNN

ming.

to scalar functions verifying for any couple of dlstmct fe331ble pomts z a,nd_‘
y the followmg 1nequa.11hy ' '

f@) = fz) + Vi@ n(zy)

As it is known, the 1nvex1ty concept is re]ated in the dlfferentla.ble case, o

| where'n'(a: y) is a function generalizing the diﬁ‘erénce y—x which appears IR

in the differentiable convex functions. These invex functmns trlvlally verify .
also the two following. 1mp11cat1ons : :

@) < f@) = Vi@ Tney) <0
fw) < flm) = Vi@E@)nlz,y) <0

thus giving the chance to define the concepts of quasinvezity and pse'u.dom- '
vegity (with the former and latter implication, respectively).

In the early literature, by means of the above conditions, a function
has been said to be invex or generalized invex if there erists a Junction..
n(z,y) such that the corresponding property is verified. Two main problems

“arise with this approach; the first one is that the behaviour of the functions
greatly changes using different parameter functions 5(x,y), so that it may

‘seem unproper to group all of them in the same class; the second one is that -
with this approach all the real functions are quasinvex ('), thus making
useless such a definition, and the class of invex functions coincides with the
one of pseudoinvex functions (%), making unuseful the definition of one of .
these two classes. :

For this reason, in the recent literature, the generahzed invex behavmur
of a function has been linked with the particular #(z,y) function used to
verify the definition, so that the functions are classified to be n-invex, #-

" quasinvex and 7-pseudoinvex, specifying in the name of the class the partic- .

ular function n(x,y) used.

1 Just using the following 7(z,y) function, where v is any vector:

n(z,) { v fVflx)=0.
s = —f(2)] V(= .
viervim  f Vi@ #0
we can easily see that any differentiable real function verify the quasinvexity property

*Both the invex and pseudoinvex functions can be characterized, with this described -
approa.ch as the ones such that every eritical pomt is also a global minimum.



In this paper we will use this last described approach, so that from now
on the behaviour of a function will be studied with respect of the partlcula,r
function 'n(a:, y) specified in the definition. o

The same approach will be used also with respect to the b-vexity prop—.
erty, that is to say that such a property will be verified with respect to the
. particular function b specified in the definition.

In order to avoid misunderstandings, let us now remind the definitions S
of scalar generalized b-invex functions in both the nonsmooth case and the

differentiable case. With this aim, the following . preliminary deﬁnltlon of . |
n-invex set is needed. : '

Definition 1.1 A set A C R™is said to be n-invex, with  : (4 x A) — R,
if the following implication holds:

yeAm#y =#(w+M@mD€AVA€m1)

The set A is said to be my-invex, with 7, : (4 x A x [0, 1]) — R, lf the-
following implication holds: '

r,y€A x#y = (z+Imiz,y, )\)) €A VIE (0,.1)..

Remark 1.1 The concept of n-invex set is the one used in the literature
in order to define the nonsmooth generalized n-preinvex functions; such a
concept analyze the behaviour of the function on the segment [z, z+n(x, ¥)]
which is necessarily required to be feasible. This concept can be generalized
allowing the possibility to study the function not only on a straight segment.
“_but also on a curve; with this aim we have introduced the concept of 7)-
invex set which guarantees the feasibility of a curve with extremum points
in ¢ and = + (2,9, 1). Note that an 5-invex set is an ny-invex set. where ’
na is independent to ), that is to say that na(z, 9, ) = n{z,y) VA € [0,1].

Note that if ) (x, ¥, A) = 7(z,y) = y— the previous definitions coincide
with the convexity of A. '

By means of the concept of 7-invex set, the following classes of scalar gen-
eralized invex functions and generalized b-invex functions have been defined
in the literature (see for example [2, 3, 4, 5, 6, 57]). Note that, by means of
the chosen approach, we will specify in the definitions the particular func-
tions 1 and b which will be used to verify the corresponding properties. This
approach is again fundamental in order to avoid tr1v1a1 cases, as it has been
studied in [26] (3).

In [26] it has been proved that any scalar 7-pre-quasinvex function is also (B,7)-
preinvex with :

1 if f(y) > f(=)

and hence the classes of %-pre-quasinvex and (b, n)-preinvex functions coincide if (bx, n)-

RMF{OHMHM)



_ In the nonsmooth case, a scalar function fiA—- R with A CR" p-
invex set where 77: (A x A) — R™, is said to be:

1) [stmctly] (bx,n) -premvem it the followmg cond1t10n holds V:c, y e Az 7& ¥
- VAE(0,1): _

a4 n(z,y) - fle) < )\b.\(m,y, A)(f(y) =) [«

' m) (bx,n)-pre quasm’uem if the following condition holds Vz Y E Az 75 Y,

YA€ (0,1):

f(y) <fl@) = bz y,)\)(f(fc+»\n z,y))— f(z) <0

- . m) (b, n)-pre-pseudomvem if the followmg condition holds Vz,y € A4, 7’- y:

' Z']&m < 0 such that ¥\ € (0,1)
OO SN )(f(i 20, 1)) — £(2) € ML~ Nay

" where by : (A x A x (0, 1)) — R, i5 a nonnegative scalar function not

" identically equal to 0, so that by(z,y,\) >0V, y € A, z# y, VA€ (0,1).

In the differentiable case, a scalar function f : 4 — R, with A ¢ ®*
n-invex set where n: (A x 4) — R", is said to be:

o i) [striétly] (b,m)-inves if the following condition holds V,y€ A tF#

V () n(z,y) < b, ) (F (v} - fe) [

v) [strictly] (b n) -pseudomvea: if the following condltmn holds Vx,y € A,
X FE Y .

bz, ) (fy) - F(@) <0 [€] = V@) Tn(z,y) <0
vi) (b, n.)~quasz'n'uea: if the following condition holds Vz,y € A, z # y:
f) < f@) = b,y)Via)n@y) <0

where b : (A x A) — Ry, is a nonnegative scala,r function not identically
equal to 0.

As it can be ea,sﬂy seen observmg the above definitions, the basic idea
~of scalar b-invexity is to generalize the convexity concept by means of the
use of a function 7(z, y) instead of (y — z) (invexity approach) and adding a
multiplier function b5 (x,y, A) or b(z, y) somewhere in the definition (b-vexity

preinvexity is defined requiring that there ezists a function ba(x,y, ) such thai the corre-
. sponding property is verified. Note that the property that any 7-pre-quasinvex function is
also (b, n)-preinvex is based on the total ordering given in IR by the “<” binary relation;
the same property will not hold in R™ when a pa.rtlal ordering induced by a closed convex
cone €' C R™ will be used.



- approach). There is 110 need to p'oint.'oﬁi;.t;hé;t_‘when ba(z,y, ) = b(z,y) =1

- the previous functions coincide with the scalar generalized invex functions,
~ that when 7(x,y) = y ~ = the previous functions coincide with the scalar
generalized b-vex functions, and that when by(z,y,\) = b(z,y) = 1 and

L "n(g_;, Y) = y—x we obtain the very well known generalized convex functions.

~ The fact that the generalized b-invex scalar functions extend the concept

. of invexity and convexity is completed noticing that every generalized invex

or generahzed convex function is also generalized b-invex while the converse
is not true; the classical way to find counter-exmnples is to use functions b

" or b such that b,\(:n ¥,A). =0 or b(«’ﬂ, y) =0 for some «, y and A (see for

. f'-: "example [3]). |

52 Nondlfferentlable case

o In thls sectlon we ‘are gomg to ext;end to the vector case the classes of
; nonsmooth scalar generalized b-invex-functions. S
; A very easy way to carry on such an extension, is to requn’e for-a vector
valued function f = (f1,..., fm) the generalized b-invexity of every single

_component Jfi; in this way, by means for example of the definition of (by,7)-
“ . preinvexity, we obtain the following co_ndltxon '

A4 () - A(®) M@ GG - £@) Vi=1,..m

A further step is to allow the different components f; to verify the b-vexity

- property with respect to different functlons b(’) thus obtaining somethmg

3 hke the next formula:

fz(:v—l-«\n(w y))—fz(m)<f\b("(m,y, N(filw) ~ fz(-'ﬂ)) Vi=1,.

B :':: _ By means of the Paretian cone C = éRm = {v € R™ : v20}, the previous
‘ condltlon can be expressed 1n the followmg vector form :

flz + dn(z,y)) - f(:v) - ABJ\(‘”,% N(f(y) - f(2)) € —RT

" where By(z,y,\) isa dlagonal matrix functmn B: (Ax Ax (0 1)) = §Rmxm
- such that B”(m,y, A} = 0 for ¢ 7&3 and BY(z,y, A) = b/\ (z,3,A) >0 Vi.
Using the same approach starting from the definition of (b, m)- pre~
quasmvemty, we obtain the followmg vector condition:

| W) - fe)e-RY = B(z., A (f( + dn(z,y)) — f(2)) € —RY

which shows a sort of asimmetry wﬁth_ respect to the previously obtained
~one. In other words, using the preinvexity definition we obtain a condition
~ where the diagonal matrix function B) multiplies (f(y)} — f(x)), while using

' - the pre-quasinvexity definition the matrix function B multiplies (f (*+
Az, y)) — f(z)). This lack of 51mmetry is caused by the deﬁmtlon glven



in the literature for preinvexity and pre-quasinvexity; in the vector case we -
can golve the problem by means of the use of two diagonal matrix functions,

say By and Dj, multiplying (/(3) — £(z)) and ((@ + Mn(z,p) - f(@)
respectively. We can then obtain the two following properties:

Dale,3, NF (@ + Mz, 9)) — £(2)) — ABa(z, 4, M(F@) — f(2)) € —RP
Ba(@y N(f0) — (@) € ~RT = Da(,u Nz + Mi(z,v) — (@) € ~F

-Some more general conditions can be obtained allowing the function 7 to be
dependent to A and using any closed convex pointed cone C with nonempty
interior instead of just the Paretian cone R}, as it has been already done
for the vector valued generalized convex functions (see for example {12, 14]).

Using this approach, the total orderings in £ given by the binary relations
“<” and “<” are “translated” in R"™ by means of the following partlal order- -
ings induced from a closed convex pointed cone C C R™ having nonempty
interior:

a<bh +— a€b-C @y
a<b +— acb-C" '

with C? convex cone such that Int(C) € C' € C\ {0}. -

It can be easily seen that the “a < b” relationship can be translated i m_
infinitely many ways, from the stronger one ¢ € b — Int(C) to the weaker
a€b—(C\{0}).

Being Ca closed convex pointed cone with nonempty interior then the
following useful property holds.

_ _Lemma 2.1 Let ¢ C #™ be a closed convez pointed cone with nonempty
interior and let C' and C? be conver cones such that C* = C or Int(C) €
C*CC\{0} and C?=C orInt(C)C C2CC\{0}.

IfC' C C? or C? C C? then:

ac—Ch be-0? = a+b€——03 with C% = 01002'

By means of the described approach, we are now able to give the folloWing
definitions of nonsmooth vector valued generalized b-invex functions.

Definition 2.1 Let A C R™ be an ny-invex set, gy : (A x 4 x[0,1]) —
R”, let C C R™ be a closed convex pointed cone with nonempty interior.
and let f : A — R™. Let us consider also two diagonal matrix func-
tions By, Dy : (A x A x (0,1)) — RT*™, that is to say that Vz,y € A,
YA €(0,1), Vi,j € {1,...,m} it is B¥(z,y,A) 2 0, Di(z,y,A) > 0 and
B (z,y,)) = DY (x,y, X} =0 for i # j. Then function f is said to be:

i) (C*, By, Dy, n)-preinver, with C? convex cone such that €' = C or
Int(C) S C C C\ {0}, if Vz,y € 4, z £y, YA € (0,1) it is:

6
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.11) (C1,C?, BA,DA,nA)-pre-quasznvem with ¢! and C? convex cones such
that C1 = Cor Int(C} € C1 C C\{0} and C? = C or Int(C) € C?% C C\{0},
ifve,ye A, z# y, VA € (0, 1) the followmg implication holds

L B@n V) - f@)e-c = DA,(w,_y,)\)[f(sHAnx(x,y,A))— (m)l]‘G—C2

iii) (C, C?, By, D)\,n,\)'—pm-pseﬁdomvex, with C1 and C? convex cones such
that C' = Cor Int(C) € C* C C\ {0} and C? C C*, Int(C) C C? C C\{0},
ifVe,y€e A, z#y, VA€ (0,1) the following implication holds:

Bx(z,y, M[f(y) - f(z)] e -C' =
3¢, € ~C? such that

Da(5 9, M[F (& + Ina2,9, X)) = F(2)] € A1~ Ny = €

" Remark 2.1 Note that the previous definitions deal with three families of
" functions, since the cones C* and C? may be the cone C or any convex
cone (%) contained in C'\ {0} and containing Int(C). In this way we cover,
with just one notation and simply specifying the cones C* and C?, both the
- strict definitions and the non strict ones that we have in the scalar case (just
remeimber the correspondences (2.1)).

It is now worth noticing the followmg part:cular subclasses of the defined

families of functions:
- when my(2,y, A) = y—z and B,\ = D) = I,,, where I, is the identity matrix
m:X m, we obtain the vector valued generalized convex functions studied in -
- [12, 14] and named C'-convex, (C?,C?)-quasiconvex and (C?, C?)-strictly-
_pseudoconvex; ‘ ' .
- when By = by\(z,y, \)m and Dy, = dy(z,y, A\)Im, we require all the com-
ponents f; of f to verify the b-vexity properties with respect of the same

functions b and d; :
- when na(z, ¥, A) = y — 2 the previous functions represent the extensions of
the generalized b-vex nonsmooth scalar functions studied in [3];

- when By = D) = I, whe have the extensions of the generalized invex
nonsmooth scalar functions. _

- It is clear that many particular subclasses can be obtained assuming
m(z,y,A) = y—x, By = I, or Dy = I,; in order to use an uniform
notation, thus avoiding misunderstandings, and since the choosen approach
explicitly denote in the name of the classes the functions 5, B) and D,

“Note that, in order to have general results, we will consider also open cones and cones
- without the origin, that is to say sets X such that:

ke K = M¢eK VA>0



used to irerify the 'corresponding'properties, we choose in these particular
cases to delete from the names the corresponding symbol 7y, By or Dy. -

Definition 2.2 Let us consider the families of functions defined in Defini- |
tion 2.1.  ny(z,y,A) =y — =z, By = I, or Dy = I, then we will not use in
the name of the class of functions the symbol 5, B) or D, respectively.

For example, by means of the above definition:
- a (C*, D,\) -preinvex function has By = I, and ny(z,y,\)} = y — m,
- a (CY, C?, By, n)-pre-quasinvex function is characterized to have D, = Im,
-a (C1, C’2, 7 )-pre-pseudoinvex function has By = D = I,

Some examples to prove that the defined families of functions are not
trivial can be found, for the case B) = Dy = Im and n,\(:c Y A) = y a:, _1n
[12 14]. :

- As it is well known, the generalization to the vector case of convexity
concepts based on a partial ordering given by a convex cone is more general,
even in the Paretian case (that is when we consider the cone C = R7 =
{y € R™ : y20}), than the componentwise generalized convexity of the
single component scalar functions (see for example {12, 14]}). As it is shown .
in the following example, even in the Paretian case there are no relations
between the (C,C, By, Dj,n)-quasinvexity of the vector valued function -
and the componentwise generalized b-invexity of the function itself.

Example 2.1 Consider the cone C = ®3, assume m\(z,y,A) = y — = and
B, = D,\ = I3, and let A = R. The function f : A — R3 defined as f(ﬁ:)- =
(—2?, 2%+ 2, ~z) results to be (C, C?)-pre-pseudoinvex and also (C, C2)-pre-
quasinvex, since there are no z,y € A, x # y, such that f(y) € f(z)—-C;on
the other side, the first component of f is a scalar strictly concave function
and hence it is not quasiconvex, that is b-quasinvex with b = 1 and n = y—=z.

In the Paretian case there exists anyway a strict relation between the
(Ct, By, m5)-preinvexity (note that we assume Dy = I,) and the componen-
twise b-invexity of the function, as is pointed out in the following theorem
which comes out directly from the definitions. Let us note that this property
is already known for generahzed convex and generalized invex vector valued -

functions.

Theorem 2.1 Let A C R" be an ) -inver set, ny : (4 x A x [0,1]) — ®",
let f: A—R™, f(2) = (fu(2),..., fm(2)), and let C = R be the Paretian
cone. Thcn i), it) and i) hold:

i) f is (C, BA,m)-premve:v if and only if the scalar functions f, are (BA s )=
preinvex Vi € {1,...,m};



i) if the scalar functions fi are (Bf’,m)ﬁrsz’nvew Vi € {1,...,m} and at -
. least one of them is strictly ( A,n,\)-premvem, then 3CY such that Int(O) C .
_. CY ¢ C\ {0}, such that f is (C!, By, ny)-preinves;

i) fis (Int(C), By, ny)-preinves if and only if the sca.la,'r‘ functzons fi are
strictly (BY, m)-premvem vie {l,...,m}. .

- Let us now turn our study towa,rds the inclusion relationships among the
~ defined families of functions. Inside of the families, the inclusion relation-
_ships are given trivially by means of the 1nclu51ons of the used cones; for

- . - example, if C? C C?® then:
- -al(C? B)\, D, ma)-preinvex function is also (03 By,D ,\,m)-premvex,

-a (CY,C? B,\,D,\,m) -pre-quasinvex function is also (CY,C3, By, Dy, mp)-
pre-quasmvex
-a(C3C? y By Dayma)- pre-quasmvex functlon is also (C2,CY, By, Dy, mp)-
: pre—quasmvex

-a(Ct, C , Bas Dy, ma)- pre—pseudomvex functmn is also (ct, C? BA, Dy, nx)-
. -pre-pseudomvex, o

- -a (08, C1 BA,D)\,nA) pre-pseudomvex function is also (02 C , By, Dy, m)-
pre-pseudoinvex. ‘

Some inclusion relationships among different families of functions are

given in the next theorem. Note that, just as it happens in the generalized
convex case, we will prove that a preinvex function is also pseudoinvex and
that a pseudoinvex function is also quasinvex.

Theorem 2.2 Let A C R® be an ny-invex set, nx @ (A x A x [0;1]) = R,
et CCR™ be a closed convez pointed cone with nonempty interior and let
frAd-Rm

i) If f is (C BA,D,\,m)—premvea: then it is also (C',C", By, Dy, na)-pre-
pseudoinves, with Int(C) € C* C C'\ {0}

i) If f is (Int(C), By, Dy, n,\)-premvea: then it is also (C, Int(C), By, Dy, m0)-
pre-pseudoinver; ' ‘ '

- i) If f is (C*, By, D,\,m)-premvex with C* = C or Int(C) C C' C C\{0},
then it is also (C2, C%, By, Dy, m\)-pre-quasinves with C* = C or Int(O) -
c2co\{o}, ! CC’2 orC2CCt,and C* = C' N C%;

- i) If f is (CY, C?, BA,D;\,m)-pre-pseudomwex, with C1 = C or Int(C) C
¢l ¢ ¢\ {0} and with C? C C1, Int(C) C C? C C \ {0}, then it is also
_(Cl C?, B, Dy, ny)-pre-quasinver.

Proof i) We prove the result by contradiction. Suppose that f is not
(CY, CY, By, Dy, mp)-pre-pseudoinvex, so that Jz,y € 4, z # y, I € (0,1)

9



“such that By(z,y, A)[f(y) - f(2)] E. ~C" and V&, € -—01 it is
Da(,9, NF (@ + (2,4, ) = F@)] ¢ M1 = N ~

. Aésuming oy = 1ox Ba(2,9, ) [f(y) flz)] € —C’l we then have, bemg C’_.. __
a convex pointed cone,

D,\(:L‘, y:’\) [_f(-’L’ + )\T?A(-’ﬂ, Y, ’\)) - f(m)] 6’—5 )\B,\(ﬂ'" Y, ’\)[f(y) (:B)] -

so that f is not (C, By, Dy, 75 )-preinvex which is a contradmtlon
* ii) We prove the result by contradiction. Suppose that function f is not
(C,Int(C), By, Dy, )-pre-pseudoinvex, so that 3z, y € 4, z # y, IA € (0,1)
such that By(z,y, \)[f(y) — f@)] € —C and V{zy € Int(C) itis -

Di(a,y, MF(@ + Ma(@, 9, N) = F(2)] € ML~ Mgy — C |

Assuming k € Int(C) and &,y = 25 Ba(z, 4 MF(¥) = £@)] - 5y ;k e
—Int(C), we then have, being C a convex pointed cone,

.D)‘(:E, ¥, ’\) [f(33+ )\’FA(@ Y ’\)) - f(w)] ¢ AB)‘(.’L‘, Y, A)[f(y) - f(l')] - %k _O
Approaching n to +oc we then have:
Dy(z,y, A)[f (2 + Ana (2,9, ) — F(@)] & ABx(z, u, M) f () — f(z)] - Int(C')

so that f is not (Int(C), Bx, Dy, 7 )-preinvex which is a contra,dlctlon.
ii),iv) The thesis follow directly from the definitions and Lemma 2.1, .
being C' a convex pointed cone and being A(1 — A)¢,, € C2. O

Remark 2.2 Note that specifying the results of the previous theorem in the
scalar case with b = d = 1 (that is without the b-vexity properties) and even--
tually with n) = y — = (that is without the invexity property), we have that
result 4) shows that every preinvex [convex] function is also pre-pseudoinvex
[pseudoconvex], result ) shows that every strictly preinvex [strictly con-
vex| function is also strictly pre-pseudoinvex [strictly pseudoconvex], and re-
sult 4i4) shows that every pre-pseudoinvex [strictly pre-pseudoinvex, pseudo-
convex, strictly pseudoconvex] is also pre-quasinvex [strictly pre-quasinvex,
quasiconvex, strictly quasiconvex, respectively]. :

The following theorem provides some more inclusion relationships which
point out that under some particular conditions, the general classes of vector
valued generalized b-invex functions coincide with some of their subclasses.

Theorem 2.3 Let A CR" be an ny-inves set, m) : (A x A x [0,1]) — R",
- let C C R™ be e closed convex pointed cone with nonempty interior and let

10



F:A— ?Rm.. Then the following results hold.:

i)iffisa (Cl 02 B, Dy, ny)-pre- quasmvewfuﬁctwn [(C1 C?, By, m)-pre- .
quasinvez, (C1, C?, By, Dy, m\)-pre-pseudoinvez, (6'1 Cc? BA,nA)-prenpseudo-
invex| such that the following condition holds: ‘ S

fly) - flr) e -C* = By(z, N)f(y) - f(z)] € -C* (2 2)

'then it is also a (01 C?, Dy, m\)-pre-quasinvez function [(C1, Cg,m)-pre-
quasinvex, (C1, C?, Dy, ny)-pre-pseudoinver, (C1, C?, ny)-pre-pseudoinver, re-
spectwely]

i) if f is a (C*,C?, B)\,D,\,m)-pre quasinves function [(C'1 C?, D,\,m)
pre-quasinvez] such that the following condition holds: ,

| D,\(ﬂ?, Y, A)[.f(m + A’UA(.'B, yaA)) - ("B)] € -2 =
flz+dmzy,N) - fle) e-C* - (23)

.then it is also a (C*,C? BA,nA)-pre-quasznvex functwn [(C'1 cz, m)-;pr‘e- _
quasinvex]; B

i) if f is a (C1, 6'2 B, Dy, na)-pre-pseudoinvex function [(C"1 C’2 D;\,m)
pre-pseudoinvez] such that the following condition holds:

Dz, 3, V(@ + dnn(@ 3, X)) - F(@)] € Al = Ne(z,y) ~ C - =>
£ + Mz u, ) — F(2) € A1 - NE(zg) - C (2.4)

then it is also a (C', C? B)\,m.)-pre-pseudomvex ﬁmctzon fc, c?, m)-pre- -
pseudoinvex/.

Proof The thesis follows direcﬂy applying sequentially condition (2.2) (if
the case), the definitions of the generalized b-invex vector valued functions,
and then (if the case) condition (2.3) or condition (2.4). 0

Remark 2.3 Note that conditions (2.2), (2.3) and (2.4) are trivially verified
if, for example, By(z,y, ) = ba(z, ¥, A) I, and Da(z,y, A) = dal(2, y, A)Im,
with bx(z, y, A) and dx(z,y, A) positive real valued scalar functions.

Note also that these conditions may not be verified if B} (z,y,A) and’
D¥(z,y,\) are positive real valued scalar functions Vi € {1 .,m} but
there exists 4 and j such that BY(z,y,)) # B¥(z,y, ) or Di(z,y,)) #
DY (z,y,)). Note finally that condition (2.2) does not hold if Int(C) €
Cl C C\ {0} and 3z,y, A such that By(z,%,A) =0 or if C! = Int(C) and
Az, y, A, such that B"(:n,y, A) = 0.

11



As it is well known, the finite sum of scalar convex functions is a convex °

function too, and if at least one of the added functions is strictly convex
then the sum is strictly convex too. The followmg theorem shows that this L

property holds also in the vector case, in other words we will prove that the
- sum of (C, B,\,D)\,m) preinvex functmns is (C, By, Dy, n)- premvex too

Theorem 2.4 Let A C R* be an ny-invez set, Ny : (A x A x (0, 1)) 7»'?&”, : -

et C CR™ be a closed conver pointed cone with nonempty interior and let
fit A—> R™ i=1...q, beq vector valued functions. Consider also q.
nonnegative real 'values a; 2 0 and the function g(x) = i aifi(z). If all -
the functzons fi(z),i=1,...,q, are (C’ By, Dy, ny)-preinvez then

: z) g(z) is a (C, BA,DA,m)-premﬂea: functzon,

i) if 35 € {1 g} such that o; > 0 and fi{z) is (C’1 B,\,DA, n,\)-premvem, R
with Int(C) C C’1 C C’\ {0}, then g(sc) is a (C? B)\,DA,m)-p'nemvem func- o

tion.

Proof The the31s foliows directly from the hypothesm bemg Ca convex
pointed cone, since it results: : _ o

Dx(z,y, Mg(z + dma(z, wA) = (ﬂf)]—)\BX(i,"y, )[g(y) 9(9-”)]— :' .

= Z ai (Da(z, b, Wiz + Ana(z, v, ,\)) fa(w)] — ABi(2,,4) [ﬂ(y) fz(w)])

=1

D

3 Differentiable case -

By means of the same approach described in the previous section, we are -
now able to define some families of differentiable vector valued generalized
b-invex functions. Note that in the names we will use the symbols B, D and
n instead of By, D) and 7, since in the differentiable case these functlons
are required to be independent to Al :

Definition 3.1 Let A C R" be an open 7-invex set, 7 : (4 x A) — R,
let € C R™ be a closed convex pointed cone with nonempty interior and
let f: A — ®™ be a differentiable function. Let us consider also two
diagonal matrix functions B,D : (A x A) — RT*™ that is to say that
Vz,y € A,Vi,j € {1,...,m} it is By(zx,y) > 0, Dn(:c, y) > 0 and Bjj(z,y) =
Dyj(z, y) 0 for 7 # 3 Then function f is said to be:

i) (C’ B, D,n) -inver, with C* convex cone such that C? = C’ or Int(C) c
C’lgC\{O},lf‘v’_myEA,:c#y,lt_ls. .

12



D(x,y)J5(z)n(z,y) — Bla,)[f (v) - f(2)] € ~C*
i) (Cl B, D NE éﬂasmve:r with O convex cone such that ' = C or
Int(C) CCl CO\N{0},ifVr,y € A,z #y, it is:

B(z, y)lf(y) - (@) e - -C! = D(ﬂ:a:U)Jrf(m)n(ﬂc y)G -C

- i) (C,C?, B, D n)—pseudmnvem with C! and €2 convex cones such that
Cl=Cor Int(C') ccrcon {0} and c?cct, Int(C) cC?coN{0},if
'Va:,yEA w#y,1t1s ' ‘

B(a,y)f () - f(z)] € o s M%M#@M&MG Wor

Remark 3.1 Note that, ana,logously to the nondlﬂerentlable case, the pre-

" vious definitions deal with three families of functions, since the cones C! |

and C? may be any convex cone contained in C\ {0} and containing Int{C) -
and C' may also coincide with C.

Like in the nonsmooth case, with the used notations we cover, simply
specifying the cones C'! and C?, both the strict definitions and the non strict
~ones of the scalar case (just remember the correspondences (2.1)).

Some particular subclasses of the defined families of differentiable func-

‘tions are the followings:
- when 5(x,y) = y—z and B D= Im we obtain the vector valued differen-
- tiable generalized convex functions studied in [12, 14] and named C!-convex,
(C*, C)-weakly-quasiconvex and (C, C?)- pseudoconvex;
- when B = b(@, y)I;m and D = d(z, y)Im, we require all the components fi
“of f to verify the b-vexity properties with respect of the same functions b and
d; these functions have been used in [28] in order to state some optlmallty
conditions; . :
- when #(z,y) = y-~ z the previous functions represent the extensions of the
generalized b-vex differentiable scalar functions studied in [3];
- when B = D = I, whe have the extensions of the generalized invex dif-
ferentiable scalar functions.: ‘

Just like in the nonsmooth case, many particular subclasses can be ob-
tained assuming n(z,y) = y — z, B = I, or D = I;;; maintaining the same
kind of notation we have used so far, we will delete from the names, in these
particular cases, the corresponding symbol 5, B or D. '

'Def'in_ition 3.2 Let us consider the families of functions defined in Defini-
- tion 3.1. If np(z,y) =y —, B = I, or D = I, then we will not use in the
name of the class of functions the symbol 1, B or D, respectively.

_ For eicample, 'by means of the above definition:
- a (C1, D, n)-invex function is characterized to have B = I,

13



Go-a (01 'B) quasmvex functlon has D= Im and ﬂ(m,y) -y — 1,
"~ a (CY, C?,1)-pseudoinvex function has B = D=1, .
. Some examples to prove that the deﬁned families of functions are not
.- trivial can be found, for the case B=D=1I, and n{z ,y) =y—uz in
w12, 14 ' : -
.~ - -Let us now study the 1nc1us10n relat:onshlps among the deﬁned families
~ of functions. Inside of the families, the inclusion relationships. are given by
.-~ means of the inclusions of the used cones; for example, if C? ¢ C? then:
=" - a(C? B, D,n)-invex function is also (C%, B, D, n)-invex,
.- a(C% B, D,n)-quasinvex function is also (02 B, D, n)-quasinvex,
.. -a(C%C", B, D,n)-pseudoinvex function is also (6'2 Cl B, D, n)-pseudoinvex, -
' -a(CY,C?, B, D, n)-pseudoinvex function is also (C*,C3, B, D, n)-pseudoinvex.
-7 Some 1nc1u31on relat10nsh1ps among different fam111% of functions are
given in the next theorem, which follows directly from the definitions being
C a pointed convex cone. Note that; just.as it happens in the generalized
- convex case, we will prove that an invex function is also’ pseudomvex and
_‘that a pseudomvex functlon is also quasmvex ' '

Theorem 3. 1 Let A c €R" be an ope'n n-invex set, n : (A x A) — R*, let
. ~C C R™ be a closed convex pointed cone with nonempty mtemor and let
o fiA o ?Rm be a dzﬁerentmble functzon

- i) If f is (C, B D n) invez then it is al.so (C’1 CcL,B,D n)-pseudomvem with
Int(C') cclco \{0}; ‘

- i) If f is (01 B, D,n)-invez, wzth Int(C) C (3‘1 c ¢\ {0}, then it is also
C{C?ChB D,n)—pseudomvea:, with C? = C orInt(C) € C* C C \ {0},
ClCC’2 or C?2C 1, and C° = 01002 '

i) If f is (C, B, D,n)-invex, then it is also (C B, D, n)-quasinvez with |
- Cl=C or Int(C‘) C o cC\{0};

) Ifj‘ is (CY, 02 B, D,n)—pseudamvem, with C* = C or Int(C) C C* C O\
{0} and with C* C 01 Int(C) € C? C C'\ {0}, then it is also (Ol B, D 1)~

quasinves.

- Remark 3.2 Note that specifying the results of the previous theorem in
the scalar case with b = d =1 (that is without the b-vexity properties) and
eventually with n(z,y) = y — = (that is without the invexity property), we
have that result ¢) shows that every invex [convex] function is also pseudoin-

- vex [pseudoconvex], result i) shows that every strictly irivex [strictly convex]

- function is also strictly pseudoinvex [strictly pseudoconvex|, and result i)
" shows that every pseudoinvex [strictly pseudoinvex, pseudoconvex, strlctly
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" psendoconvex] is also quasinvex [strlctly quasmvex quasiconvex, strictly
quasiconvex, respectlvely]

Let us now study the inclusion relatlonsh1ps among the families of dif-
ferentiable and nondifferentiable functions defined so far. Note that, even
in the case By = Dy = B = D = I, and (2,9, A) = 7(z,9) = y — =, all
the defined families of functlons are dlS]Olllted (see [12, 14]).

. Theorem 3.2 Let A C R be an open m inver and n-invex set I (A b
- Ax[0,1]) — R* andn : (Ax A) = R"® such thatn = lim,_.q+ m\, let C C ®™

" be a closed conver pointed cone with nonempty interior and let f: A — R™
be o differentiable function. Let us consider also the diagonal matriz func-
‘tions By, Dy : (Ax A x(0,1)) = R™*™ gnd B,D : (A X A) = RT*™ such
‘that B = limy_,o+ By cmd D= hm =0+ D)\

z) If f is (C BA,D),,n,\)-premvem then it is also (C' B, D, n)-inver,

S u) If fis (CY, BA,DA,n,\)-premvem with Int(C) ¢ Ct ¢ C\{0}, Dii(z,y, \) >
0V, y, A i, and with 9y (x, v, A) = n{z,y) YA €(0,1) (that is ny is indepen-
© - dent f'mm A) then WA € (0,1) it is also (e, B, D, j)-invezx where:

- B(w,y) B(z,z + Mn(z, ) D5 L 9, X)Ba(z, v,
D(z,y} = D(z,z + Aﬂ(m,_y)}, Wz, y) = sn(e,z + An(z,y)

) If f s (Int(O), OQ,B,\,DA,n;\)-pre-quasznvem, with C? = C or Int(C) C
o C?c C\ {0}, then it is also (Int(C), B, D, n)-quasinvez, '

i) If f is (Int(C)'Cz'BA,D,\,n,\)—pre-pseudomve:c, with Int(C) € C? C
C\ {0}, then it is also (Int(C) c?, B , D, m)-pseudoinves.

Proof z) Since f is (C, By, .D,\,m) premvex we have that for any ) e (0 1)
D, y, N3 (Fl@ + Iz, 3, 0) — fl=))] — BA(»’G v Mf(y) - f@) € —C

S0 that approaching A to 07 we have the thesis, bemg C a closed cone.

i) Let now be Int(C) € C* € C\{0}; since f is (C1, By, Dy, m)-preinvex
then it is also (C, By, Dy, gy )-preinvex so that for i) it is (C, B, D, n)-invex
* and hence, fixed X € (0,1) and defined z=z+ )\n(a:, y):

D(z, z)Js(2)n(z, z) = B(=, 2)[f(z) — f(z)] € —=C;
since f is (C1, By, D, m)-preiﬁvex we have also that:

| Da(@, 3 MIf(2) = F(z)] € ABa(a,p, DF(w) - £(2)] - O,
_ and hence, being det(D,) > 0,

[f(2) — £(2)] € AD; Y2, y, 2)Balz, v, M () - f(z)] - CL.
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The foildwing result then holds, being €' a pointed convex .cone: S
D(z, 2)J5(z)3n(w, z) = Blz, 2)D5 (2,3, \) Bx(z, v, )[f () ~ fl@)] € -C"

S0 that the thesis holds, being B(m, y) = B(z,2)D;}z,y, A Bz, y, )\),
D(z,y) = D(x,z) and ii(x,y) = +n(z, 2). s
. m) Let z,y € 4, z # y, be such that Bz, y)[f(y) — f(z)] € -*Int(C'), .
then since B =lim,_,g+ B we have, by means of & well known limit theorem;
that Je € (0,1} such that BA(m,y, MFy) = F(z)] € ~Int(C) VA € (0,¢).
By means of the (Int(C) C?, By, D, m)-pre-quasmvexxty of f we then have
that D (x,y, A [A(f(m+)\m(m ¥ A))— f(z))] € —C? so that the thesis holds
approaching A to 0%,

i) Let x,y € A, £ # v, be such that B(z,y)[f(y) — f(2)] € Int(C’) .
then since B = lim)_,g+ B we have, by means of a well known limit theorem,
that Je € (0,1} such that B,\(a:, ¥ M[f(y) — f(x)] € —Int(C) YA € (0,¢).
By means of the (Int(C), C? y By, Dy, my)-pre-pseudoinvexity of f we then
have that Da(z,y, [ (F(z + (3,4, ) — £(@))] € (1 — Né(z,y) — C so
that approaching A to 0% it results D(z, y)Jf(:c)n(:c,y) €& (a: y} — C with
£(2,y) € —C?, 50 that the thesis holds. o

Some more inclusion relationships can be stated in the partlcula,r case of -
matrices By(x,y, A) and D,\(:n, % A) independent to A.

Theorem 3.3 Let A C R be an open ny-inver and n-tnvex set, my
(Ax Ax[0,1]) = R™ andn : (A x A) — R" such that n = limy_gr 1y, .
let C C R™ be a closed convez pointed cone with nonempty interior and
let f : A — R™ be o differentiable function. Let us suppose also that
the diegonal matriz functions By and D) are mdependent to A, so that"
Ba(z,9,A) = B(z,y) and Dx(z,y,A) = D(z,y).

i) If f is (CY, 02 BA,DA,nA)-pT\e -quasinver, with C' = C or Int(_C) -
C! € C\ {0} and with C? = C or Int(C) C C2 C C\ {0}, then. it is
also (CY, B, D, )-quasinvez ' .

i) If f is (C*,C?, BA,D,\,n,\)-pre-pseudomvem, with C* = C or Int(C) C
C' € C\ {0} and with C? C C*, Int(C) C C? € C\ {0}, then it is also
(c,C* B,D n)-pseudomvew .

Proof i) Let a,y € A,  # y, be such that B(z,y)[f(y) — f(z)] € —Cl
being By = B, Dy = D and f (C',C? By, Dy,n))-pre-quasinvex then
D(z, y)[3(f(z + Az, 4, \)) — f(z))] € 02 VA € (0,1) so that the thesis
follows approaching A to 07F. '
i) Let z,y € A, @ # y, be such that B(z,y)[f(y) ~ f(zx)] € ~CY;
being By = B, Dy = D and f (C1,C?, B, Dj, n))-pre-pseudoinvex then

D(z, y)[,\(f w+r\m( 4, ) — f(z))] € (1 A(z,y)—C VA€ (0,1) s0 that
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o the thesis 'follows approaching A tc_')._O_‘" sinée E(z,y) € ~C2 =

Remark 3.3 Note that specifying the results of the two previous theorems
in the scalar case with b = d = 1 and with n(z,y) = y — z, we have that .

. results i) and 4) of Theorem 3.2 correspond to one implication of the first -

order characterizations of convex and strictly convex functions, while results
i1} and iv) of Theorem 3.2 and i) and #) of Theorem 3.3 correspond to one
implication of the first order characterizations of quasiconvex, pseudoconvex
and strictly pseudoconvex functions.

Note that it has not been possible to state some first order characteriza-
tions for the previously defined nonsmooth families of functions; this be-
haviour is not strange and is already known, for example, regarding to
the vector valued generalized convex functions (see [12, 14]). The follow-
ing example point out that the previous implications are proper and are

- not first order characterizations; in Theorem 3.2 we have stated that if
" [is (C, By, Dy, my)-preinvex then it is also (C, B, D, 5)-invex, where B = .
limy_o+ B, D.= limy_o+ D and = limy_,o+ 7, in the following Example
3 1 we will show that the" converse is not true in general

Example 3.1 Assume n,\(m,y, )\) =n(z,y) =y — 2z and let f(z) = (22, z),

D= Dy = I, Ba(z,y,A) = —A 0 so that B = lim,_,g+ By = Im.

0 1 _
f(z) is (C, B, D, n)-invex since all the components of f are convex and B =
D= Im, f(z) is not (C, B,\,D,\,n,\) -preinvex since for z = 0, y = 1 and

A= we have:

fl{w+)\(y 1‘)) fi(z) — ABu (=, y,}\)[fl(y)“fl(ﬂﬁ)]=
#-0~-FL-0j=E>0.

The following theorem shows that under some particular hypothesis it is -
possible that a (C, B, D, n)-invex function is also (C, By, Dy, i )-preinvex.

Theorem 3.4 Let A C R" be an open n-inver set, 7 : (Ax A) - R" let
C C R™ be a closed convex pointed cone with nonempty interior and let
f:A— R™ be a differentiable function. If f is o (C', D, n)-invex function,
with C' = C or Int(C) C C* € C\ {0}, werifying the following properties
Vz,y € A, 2 £y, VA€ (0,1):

| D(z,5)=D(z) (3.1)
D(2)J5(2) () + (1 - V(=) €C, z=a+n(zy)  (32)

then f is also a (C,n,)-preinves functz‘on with gy = 0.
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Pmof Let 2,y € A T % s and A € (0 1), bemg f (C"1 D 17) invex and

bemg D(m,y) (x) we have

D(Z)J'f(z n(z,y) [f(y) f(ﬂ‘s')]e ~C!
D(2)d1(z)n(z2) = [f(2) - =) € e

Where z ="+ )\n( z,Y); multlplylng the first vector inequality by PN 0,

' multlplymg the second inequality by (1~X) > 0 and adding the two obtamed
'mequahmes it results, bemg Ca convex pomted cone '

SaE ~ ) - f(z)) + (1= )\)(f(w) (2))] €~ 01
; where k D(Z)Jf(z) An(z,y) —i— (1 — /\)n(z, ;c)] € C. It then results
[f (fu" + An(z,y)) - f (E)] —NIf (v) = flz)l e —k~C1

' 'and the the_Orem is proved, bemg C a convex pointed cone. - .I:I'

Remark 3.4 Note that if we. siroid‘ in the previous theorem the invexity

B : _property, thst is.to say that we assume n(a: y) =y —x, then we have:

[)\n(z,y)+(1—)\)n(z :c)]—:r—z+)\(y—z+z—~ D) =z—-z=0

0. that condition (3.2) tr1v1ally holds since 0 € C; in the case D = I, we
then have that the previous theorem states a first order characterization for -
vector. valued convex functions. This points out the different behaviour of
invexity towards convexity; in other words with respect to invex functions,
.~ we do not have a first- order characterization even in the scalar case, unless

-some very particular hypothesis are assumed, while with respect to convex
functions we have a first order characterizatlon even in the vector case (see

[12]). -

_ Analogously to the nondifferentiable case, the following theorem pro-
. vides some more inclusion relationships, showmg conditions which force the
" defined classes of differentiable functlons to coincide with some of their sub-

L classes

o ‘ Theorem 3 5 Let AC R be an open n-invex set, n: (A x A) — R, let

C C R™ be-a closed conver pointed cone with nonempty interior and let
i A — K™ be a dzﬁ’erentmble functzon Then the following results hold:

R i) if functwn fisa (C’ B D,n) quasmvex function [(C/‘1 B, n)-quasinver,

(CY,C? B, D, n)-pseudomvea:, (C,C?, B, n)-pseudoinvex] such that the fol-
- lowing condition holds:

SO -I@ -0 = Bylf) - fo)e 01 63
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 then itis also (C‘1 D, n)-quasinvex [(C’l,r,') -quasinver, (C, C?, D, n)-pseudo-
invez, (C1,C?, n)-pseudomvex, respectwely]

zz) zf f isa (C’1 B, D , 11)-quasinver fmnctwn [(C'1 D, n) quasmve:rj such that
~ the following condftwn holds:

DeEnEn € -C > emEne-0 @4
o then it is also a (O’i B n)-quasz‘ﬁvea: functz’on fCt, n)-quasinvez]; |

i) 1f fisa(C, C?,B,D ,)-pseudoinvez functzon fc,c? D n)-pseudomvem]
- such that the followmg condition holds:

L Dz, y)Jy@m(@,y) € ~C? = Iy(o)n(e,y) € ~C? - (3.5)
. ‘then it is alsoa:(Ol 02 B n)-pseudomvescfunctzon [(01 C2,n)-pseudomve:cj

The following theorem shows that even in the dlfferentlable case, the
finite sum of (C, B, D, n)-invex functions is (C, B, D , n)-invex too, thus gen-
eralizing the property of the scalar convex functlons .

‘ Theorem 3.6 Let A C R™ be an open n-invex s‘et n:(AxA) — R, let

CC R™ be a closed conver pointed cone with nonempty interior and let
fi:A—=®™ i=1,...,q beq differentiable functzons Consider also ¢
nonnegative real vo,lues a; > 0 and the function g{z) = 3L, aufi(z). If all
the functions fi(z),i=1,...,q, are (C, B, D, n)-invex then:

i) g(z) isa (C, B, D, n)-invex function,

i) if 37 € {1,...,q} such that o; > 0 and Ji{z) lz‘s (CY, B, D, n)-invex, with.
Int(C) € C* € C\ {0}, then g(z) is a (C*, B, D,n)-invex funetion.

4 Optimality Conditions

The aim of this section is to show how the defined families of functions may
be used in order to extend to the vector case the very well known properties
of generalized convex scalar functions regarding to opiimality conditions.

The optimality conditions we are going to study will be related to the
following multiobjective problems:

 _'. o _ C-min f(x)
_PU={CI;“§£” Fomy d@EV

where A C B, ¢ C R™ and V C R* are closed convex pointed cones with
nonempty interior and f : 4 — R™ and g : A — R* are vector valued
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o _functlons Problem Py is an unconstramed vector optlmlzatmn problem
and, as usual, a point .y € A will be said to be a Cl-efficient pomt for
problem PU, with Cl=Cor Int(C’) c 01 c C\ {0}, if:

Ey €A y# 1:0, such that f(y) € f(zo) —

_whlle it will be said to be a local C'-efficient point for problem Py, w1th.:_ _
S Cl=CerInt(C)CClC O \ {O} if there exlsts a suitable nelghbourhood

i :_"Im of zq such that:
' Ey € AN Iy, y 75 aco, such that JFy) € f(a:o)

S _'_'Problem Py is a constrained vector optimization problem and a feasible
. point 2o € A (that is g(zo) € —V) will be said to be a C!- -efficient point for
'ﬁ-problem Pg, with cl=cC or Int(C) € C’l C O\ {0}, if:

- Ay €A, Y # T, such that f(y) € f(zo) - C! and .g(y) € -V.

. Inthe follomng subsections, we will analyze the properties of vector valued

. b-invex functions regarding to the global optimality of local optima, critical
S pomts, and points verifying the Kuhn-Tucker conditions (see also the vari-

ous papers listed in the References for results using generalized invexity or
generalized convexity). Note that generalized invex functions and general-
. ized b-vex functions have been also used in Duahty (for such results refer to

" [4, 5, 8, 23 28 63)).

- 4 1 Global efficiency of locei' optima

Let us consider Problem Py and let us assume the set A C R" to be n,\-mvex,

Cmi(Ax Ax[0,1]) - %,

The scalar quasiconvex functions are known to have the property that
_ every local minima are also global optima; the followmg theorem generalizes .
. this property to the vector case. : -

Theorem 4.1 Let us conszder problem PU wzth A C R™ ny-invez set, 17,\
(AxAx[0,1]) >R [ffisa (C*, C?, mp\)-pre-quasinvex functzon verifying

the following property:
)\lir(r)rr Mz, y, Ay =0 (4.1)

then every local C?-efficient point is also a global Ci~eﬁ'icient one.

Proof We prove ‘the result by contra,dlctlon Suppose that g € A is a
- local C2-efficient point but not a global C'-efficient one, that is to say that
- 3y € Asuch that f(y) € f(z0) — C. This along with the (CY, C?,ny)-pre-
quasinvexity of f yelds that f(wo + M(xe,y, ) € f(zo) — C? ¥) € (0,1)
. -which in turn implies, being limy._,g+ An(zo, y, \) = 0, that zp is not a local
02-efﬁc1ent pomt which is a contradiction. O
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4.2 Global efficiency of critical points

Let us consider Problem P;; and let us assume A C R to be an n-invex set,
n:(Ax A) — R*, and f to be a differentiable function.

The following theorem generalizes the very well known property of ps;éudo-'_
convex functions, which guarantees the global optima,lity of critical points. -

With this aim we will denote with C* = {a € ®™ ; a ¢ > 0 Vc€ C} the

positive polar cone of C and with C** ={a € 8™ :aTc >0 Ve e C, c# -

0} the strictly p051t1ve polar cone of C' (remind that if o € O"', o aé 0, and
c € Int(C) then a”c > 0). .

Remind that in the vector valued case 20 € A is sald to be a cmtzcal
~ point if one of the two following conditions hold: -

Jo: € Ct* such that oT Jp(zp) = 0
Ja € O\ {0} such that af J¢(zo) = 0

Theorem 4.2 Let us consider problem Py with § differentiable and A C R
open n-invez set, n: (A x A) — R". Let f be (C1,C2, D, n)-pseudoin'uem
with Int(C) C 02 C C\ {0}, such that Dy(x,y) >0Vi=1,. _

If 3o € Ctt such that aTJf(:co) = 0 and the following condztzon holds

aeCtt = of(D@y)tect (42

then zq is a global Cl-efficient point.

Pmof We prove the results by contradlctlon Suppose that Tg € A is s not

a global C'-efficient point, that is to say that Jy € A such that fly) €
f(zo) — C. This along with the definition of (C?, 02 D, n)-pseudoinvexity

yields that D(zo, ¥)J¢(x0)n(xo,y) € —C2.
Being C? C C\ {0} and o € C** and taking into account condition

(4.2) we then have that: _ 1
0 > (o7 (D(z0, ) ) (Do, y)I¢(@o)n(z0,9)) = a7 Jx(zo)n(zo,v)
 which contradicts o J;(xo) = 0. | _ o
Iﬁ the same way it is possible to prove the following a.nalbgous result.

Theorem 4.3 Let us consider problem Py with f differentiable and A ¢ R"
open n-invez set, n: (Ax A) — R". Let f be (01 Int(C’) D n)—pseudomvem
such that Dy(z,y) >0 Vi=1,.

If 3o € C*\ {0} such that o.rTJf(sco) =0 and the following condatzon_ :

holds:
a€CT\{0} = o"(D(z,y)) "' €C*\{0} (4.3)

then xo is a global C-efficient péﬁ'nt.
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- ~ be (O, C?,)-pseudoinvex and (C, Int(

Remark 4.1 Note, for example, that particular diagonal matrix functions
D(z,y) such that Dji(z,y) >0Vi=1,...,m and verifying conditions (4.2)
and (4.3) are the ones of the kind D(z, y) = b(z, y) I, where I;, isthe mxm
identity matrix and b(z, y) is a positive scalar function; just note that in this -

case it results (D(z,y))™! = (b(a:,ﬂ 'g.)]}n)“1 2.5(“3:1_,551711; _

Remark 4.2 Note that the same résult of Theorem 4.2 and Theorem 43
holds with no need of conditions (4.2) and (4.3) assuming the function f to
C), n)-pseudoinvex, respectively.

4.3 Sufficiency of Kuhn-Tucker conditions

. Let us now consider Problem Fp and let us assume A C R to be an n-invex
- set, n: (Ax A} — R, and f and g to be differentiable functions.

It is very well known that, in a scalar minimization problem, if the
objective function f is pseudoconvex and the constraints are quasiconvex -
then the Kuhn-Tucker conditions are sufficient global optimality conditiona.
By means of the following theorems, we will extend such a result to the vector
cage; note that, without loss of generality, the sufficiency of the Kuhn-Tucker
. conditions will be stated with respect to a feasible point zo binding all the
* constraints, that is to say that g(z) = 0.

Theorem 4.4 Leét us consider problem Fo with f and g differentiable func-
- tions and A C R” open n-inver set, n: (A x A) —» R, Assume 79 € A to
be such that g(zo) = 0 and let f be (C*, Int(C), Dy, n)-pseudoinves and g be
(V, Dy, n)-quasinves such that Dj?(a:,y) >0 and D;’:(a:, y>0vi=1,...,m.
Suppose that the following condition holds: ' .

Jdas e C’+\ {0}, Jay € V*, such that a}"Jf(:co] + ang(xg) =0
as well as the next properties: | -
ey eVt = ol(Dy(z,y)teVH (4.4)
a €CH\{0} = af(Ds(z,p)) € Ct\ {0} (4.5)
© then g is a global C-efficient point. |

Proof We prove the result by contradiction. Suppose that Jdy € A such
that f(y) ~ f(ze) € —C* and g(y) = g(y) — g(z) € ~V; by means
of the hypothesis we have that Dy(zg,y)J;(xo)n(ze,y) € ~Int(C) and
Dy(wo,y)Jy(zo)n(zo, y) € —V. Being ay € Ct\ {0} and taking into ac-
count the hypothesis we then have that:

0> (a7 (D(zo, ) ™) (D (0, 9) Iy (zo)n(z0, ) = oF Jp(zo}n(zo, y)
02 (ag (Dy(w0,4)) ™) (Dy(o, y) Jy(z0)n(0,3)) = ol J, (wo}n(wo, y)
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~so that 0> (aTJg(zo) + of Jy(zo))n(x0, y) Which contradicts af J5(zo) + |
g Jg(zo) = 0. - ' : ' - O

o _ Note the the previous result slightly'generalizeé the one preseﬁted in [28]
- which is related to the particular case Dy(x,y) = dy(z,y) I, and Dy(z,y) =
“dy(z, )1 with dy(z,y) > 0 and dg(z,y) > 0; note that under these assump-
-. tipns it is (Dy(z,y))" ! = E}'(%:‘,‘ﬁIm and. (Dg(z,y))" ! = 'd,T"i,ﬂIs so that
conditions (4.4) and (4.5) trivially holds,

Remark 4.3 Note that the samé‘re_sult can be obtained without the use of
- conditions (4.4) and (4.5) assuming f to be (C1, Int(C), 5)-pseudoinvex and
g tobe (V,n)-quasinvex. '

Speciali'zing the previous result for a scalar minimization problem, that
is for a problem Py with a scalar objective function f, we can easily verify-
that the previous theorem extends the known sufficiency of the Kuhn-Tucker

- - conditions.

o Corollary 4.1 Let us consider proﬁlem Po with f differentiable scalar func-

" tion, g differentiable vector valued function and A C R" open n-invex set,
n:(AxA)— R Assume xq € A to be such that g(xo) = 0 and let I be
[strictly] n-pseudoinves and g be (V, Dy, n)-quasinves such that Dz, y) > 0
Vi=1,...,m. Suppose that the following condition holds:

Jog € V' such _t.ha.t. Vf(xo) + ag’.]g(m'g) == 0

a8 well as _the next property:

ag eVt = ag'(Dg(a:, yHtevt
then %o is a global [strict] minimum point.

. Proof Firstly note that in the scalar case m = 1 it is C = Ry and
- Int(C) = C'\ {0} = Ry, so that a (C1,Int(C), Dy, n)-pseudoinvex func-
~ tion with D (z,y) > 0 results to be n-pseudoinvex if C1 # C while it
is strictly n-pseudoinvex if C! = . We have also that O = € so that
ay € Ct\ {0} simply means that ag is a positive scalar number; being
D{'(z,y) > 0 we then also have that condition (4.5) trivially holds. The
thesis then follows directly from Theorem 4.4 assuming o =1 0

It is possible to state some different versions of Theorem 4.4 just chang-
ing the generalized b-invexity property of the objective function J and the
- constraints g; these versions are listed in the followings and their proofs are
‘analogous to the one of Theorem 4.4.
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| .Theorem 4.5 Let us consider problem Pc wzth f and g dzﬁerentmble ﬂmc-

: _- - tions end A C R" open n-inves set, . (A x A) ~ R™. Assume zp € A
T to be such that g(zg) = 0 and let f be (C',C% Dy, n)-pseudoinves, with

o = C\ {0}, and g be (V, Dy, n)-quasinvez such that D}"(:c y)-> 0 and
.,-‘-D“‘(a:, yy>0Vi= 1 ., M. Suppose that the followmg condition holds:

E]af €. C++ ﬂag evt, such that afJf(aso) +al Jy(zo) = 0

R "as well as the next pmpertzes

o €V == aT(Dy(z,9))! € V+
ar €Tt = - O‘f(Df(fc,y)) Leott

7.'.."then Zq is @ global Cl eﬁ'iczent point.

5_ 'Theorem 4.6 Lef us consider problem Pc with f and g dzﬁerentzable func~

L tions and A C R"™ open n-invez set, : (A x A) — R", Assume zo € A to

o be such that 9(zo) = 0 and let f be (C7, Int(C‘),Df,n)-pseudamvea: and g
- be (V Int(V) Dy, n)—pseudomvem such.that D“(:c, y) > 0-and Di(z,y} > 0
": Vi=1,. ,m .S‘uppose that the follo'wmg condztzon holds: :

- Elaf €Ct, Jag€ V. ; (af,ag) # 0, such that a}'.ff(a:o) +a Jg(wo)
P well as the nest property: | '

(C“fa%)e(c'+xv+)\{0} = -
| (a}“wf(m )l (Dylz,)) ™) € (CF x V4 \ {0}

' j.then aso is & global C‘1 -efficient pomt

Theorem 4.7 Let us consider problem Pc with f and g dzﬁ”erentmble Junc-
tions and A < R™ open n-invez set, 11.; (A x A) — R*. Assume 20 € A

. to be such that g(xo) = 0 and let F be (e, Df, n)-quasinver and g be

- (W, Int(V) Dy, n)-pseudoinvez such that D”( ¥ > 0 and D"(m,y) >0

_ Vz =1,...,m. Suppose that the following condztzon holds

Jay € C*F, Fay e VT {0}, such that oy Jf(:rg) + Jg(:co)
as well as the next properties: .

o5 € C”' -—-“->‘ d?(Df'(a:, y))'.‘1 ect
o €VI\{0} = T(Dg(w,y)) e V+\{0}

o then xo '.-,s a global C- eﬁ‘iczent point.
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Theorem 4.8 Let us consider problem P with [ and g differentiable func-
tions and A C R" open n-inver set, : (A x A) — R". Assume xo € A
to be such that g(xo) = 0 and let f be (C1, D¢, n)- quasmvew and g be -
(V, V2, Dy, n)-pseudoinvez, with V2 = V \ {0}, such that D' F(z,y) > 0 and
' D;’(a:, y} >0Vi=1,...,m. Suppose that the following condztwn holds

Eaf € Ct, o, e VH, such that o .If(:cg) + ol Jy(z0) = 0
as well as the next properties: '

ar€Ct = of(Ds(z,y))teCt
ag €Vt = ol (Dy(z,y))"t eVt

then xg is a global C'-efficient point.
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