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Abstract

We analyze a recently proposed method to estimate the wvolatility of a diffusion
process with high frequency data. The method is based on Fourier analysis, all obser-
vations are included in the computation without any data manipulation. By Monte
Carlo experiments, we evaluate its performance in measuring volatility under the as-
sumption that the asset price evolves according to models belonging to the SR-SARV(1)
class, which includes GARCH(1,1) as a particular case. We compare the performance
of the method to that associated with the cumulative squared intraday returns. The
forecasting capability of the models is also evaluated.

1 Introduction

An unbiased estimator of the daily asset price’s volatility is provided by the squared daily
return, an estimate that has been recognized to be very noisy. To overcome this problem,
in [8, 17, 1] it is proposed to use intraday returns in measuring daily volatility, paralleling
the use of daily returns in computing monthly volatility pioneered by [16]. Indeed, a much
more precise estimate of the daily volatility is obtained by means of the cumulative squared
intraday returns. By employing this method to measure ex post volatility, standard GARCH
models perform well in forecasting volatility compared to the poor performance obtained with
the daily squared return estimate, see [1]. To apply this method, an equally spaced time
series is built from unevenly sampled high frequency observations by interpolating the data,
thus reducing the number of data and introducing distortions caused by non-synchronous
trading, see [9].



In this note we apply the method proposed in [10] to compute the time series volatility.
This method is based on Fourier analysis and therefore on the integration of the time series
rather than on its differentiation, as a consequence all the observations are employed without
any manipulation of the data. To evaluate the method, we compare its volatility estimate
to that obtained through the cumulative squared intraday returns when the asset price
dynamics is governed by a model belonging to the SR — SARV (1) class, studied in detail
in [12]. The comparison is done through Monte Carlo experiments, and the forecasting
performance of the model is addressed. In [2] the forecasting performance of GARCH models
is evaluated when this method is employed to measure the ex post volatility of the DM-$
and Y-§ exchange rate.

We show that the cumulative squared intraday returns estimator is biased because of
the interpolation procedure used to build an equally spaced time series. The method based
on Fourier analysis is almost unbiased and renders a better forecasting performance for the
models analyzed.

2 The Method

In what follows we will concentrate on univariate diffusion processes of the kind:

dp(t) = o(t)dW (1) + p(t)dt, (1)

where W (¢) is a Brownian motion, p(t),o(t) are allowed to be random time dependent
functions. The methodology developed in [10] allows us to compute the volatility through
Fourier analysis. Here we recall briefly how this volatility estimator is constructed. We
normalize the time window [0,T] to [0, 2z]. We start from the Fourier coeflicients of dp:

ao(dp) = dp( )
ak(dp) 0 COS(kt)dp( ) ' (2)
b(dp) = L [ sin(kt)dp(t) k> 1. '

In [10, Theorem 1.2] it is shown that the Fourier coefficients of o2(t) can be computed by
means of the Fourier coefficients of dp according to
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then classical results of Fourier theory allows us to reconstruct o?(t) V¢ € [0,2n] by the
Fourier-Féjer inversion formula:

— lim Z_j (1= 5. (au(0?) cos(kt) + ba(?) sin(kt)). (6)
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3 Monte Carlo Simulations

Let p(t} =log S(t), where S{t) is a generic asset price

the assumption that the asset price follows the contis

[14]:
dp(t) = o (£)dW,(¢)

do(1) = 6(w — a*(£))dt + VIAS2(£)dWa (),

where Wy, W, are-independent Brownian motions.
aggregation in a weak sense, see {4], and its discrete
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Then we extract the observation times

(10)

‘in such a way that the time differences are drawn from an exponential distribution with
mean equal to 7 = 45 seconds. As a result, we will have a data set (tk, p(te), k =1,...,N)
with #; unevenly sampled, and o(#) recorded for every ¢.

In [1] the integrated volatility f) o?(t+r)dr is measured it by the sum of squared intra-day
returns:

i—1

)%
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As described in [13], if p is not observed at time i/ml p(i/m) is given by the linear interpo-
lation of two adjacent observations (one before and one after the time i/m). Theoretically,

m
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by increasing the frequency of observations, an arbitrary precision in the estimate of the
integrated volatility can be reached. This could not be our case because of the interpolation
procedure. In maost of the papers estimating volatility with high frequency data, e.g. see
(1, 11], (11) is computed with m = 288, corresponding to five-minutes returns. In our simu-
lation setting we will also compute it with m = 144, corresponding to ten-minutes returns,
and m = 720 corresponding to two-minutes returns; we don’t increase further m since the
mean time between transactions is 45 seconds,

The method proposed in [10] provides us with an estimator of the integrated volatility.
Integrating equation (6) between 0 and 2w, we have

‘/0277 o?(t)dt = 2rag(c?), (12)

where ag(0?) is given by (3). Note that with this method we use all the observations and no
data manipulation is needed.

We will evaluate the performance of the estimators (12) and (11) with m = 144, 288, 720
by the statistics:
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where &% is the estimate and fol c?(s)ds is the integrated volatility generated in a simula-
tion, whose value is known in our simulation setting. We will also evaluate the forecasting
performance of the model (10), when ex-post volatility is measured by 4*. This is done by
means of the coefficient of multiple determination B2 of the linear regression

As a reference time step to build the time series through interpolation we choose five
minutes. To evaluate the effect of the interpolation procedure described above, we also
consider a ten and a two minutes time step. We recall that without manipulating the
data, we should observe smaller i and std when increasing the frequency. Iigure 1 shows
the results on simulated time series with @ = 0.7,8 = 0.25,%(1 — @ — ) = 1. The ten-
minutes estimator provides a downward biased estimate of the integrated volatility, with a
standard deviation larger than the bias. The five-minutes is also downward biased, with a
standard deviation of the same order of the bias in mean. Increasing further the frequency
the estimator is characterized by less variance but a larger bias is observed. This effect can
only be due to the data manipulation procedure described above and therefore it can be
linked to non-synchronous trading, see [9]. The Fourier estimator is characterized by the
smallest bias in mean and by a variance smaller than that of the 5-10 minutes estimate and
slightly larger than that of the 2 minutes estimate. To check the robustness of these results,
we repeated the Monte Carlo experiments on a grid of values (¢, 8,4 = (1 —a—8)7!) with 2
and 5 minutes returns. The results, reported in Table 1, can be summarized as follows: the
estimator (11) turns out to be downward biased (12 > 0), with a bias increasing with m, while
the bias of the Fourier estimator is almost null. If m is chosen in such a way that the bias of
(11) is less than its standard deviation, then the Fourier estimate provides a smaller standard
deviation. Analyzing the forecasting capability of the discrete time GARCH model (10) we
have that the Fourier estimate renders a better performance than the classical estimator

4
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of the integrated volatility: (a) estimator (11) with m = 144; (b) estimator (11)
with m = 288; (c) estimator (11) with m = 720; (d) Fourier estimator (12).
The distribution is computed with 10,000 “daily” replications.

computed with 2 and 5 minutes returns. . For completeness, we checked these results on
the following autoregressive diffusion models:

NGARCH(1,1) model, [7]: o},1 = ¥ + alr, — yo,)* + B - o} (14)

GJR —~ GARCH model, [6]: 07, =9 +a 17 + - 07 +80(—r)r} (15)
EGARCH model, [15] :log(o2 ) =4 + ao, - (|rsl +~ - 7,) + 8 - log(o?) (16)

where the f-function is given by @(z) = 1 if z > 0 and #(x) = 0 if z < 0. All these models
fall in the general class of the SR — SARV (1) models, which have the nice property to be
closed under temporal aggregation, see [12, 5], so that a continuous diffusion process exists,
with the property that the corresponding discrete process is its exact discretization. We
simulated these processes with the parameters estimated in [5] and reported in Table 2.
Table 2 reports also p1, std, R? for each model. The results in Table 2 confirm those obtained
with the continuous GARCH model, i.e. the Fourier estimator has a smaller bias and an
higher precision than (11}; moreover, it provides a better forecasting performance for the
model at hand.

4 Conclusions

The importance of measuring volatility with high frequency data has been pointed out repeat-
edly in the literature. Computing volatility with the cumulative squared intraday returns,
an equally spaced time series is built by interpolating the observations, this procedure may



ALl o — 0.06 0.1 0.15 0.2 0.25

2 5 F 27 5 F Fl 5 T 2 5 4 27 5 [
f13 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1

0.5 | std 4.4 7.7 4.9 4.5 7.8 5.0 4.3 7.9 5.0 4.6 7.9 5.1 4.6 8.0 5.1
R? | 492 470 4068 | 958 944 970 | 140 139 142 | 188 185 138 | 238 238 240

I 23.9 10.0 a1 23.9 10.0 0.1 239 10.0 0.1 23.9 10.0 a.1 23.9 10.0 0.1
0.6 std 4.4 7.7 4.9 4.5 7.8 4.9 4.5 7.8 5.0 4.5 7.8 5.0 4.5 7.8 5.0
r? 6.79 6.62 6.88 13.8 13.7 14.0 219 21.8 22,1 32.5 32.5 33.0 44.8 44.5 45.4
1
e
7

n 23.9 10.0 0.1 23.9 10.0 0. 23.9 10.0 0.1 23.9 146.0 Q.1 23.9 1D.0 0.1
0.7 | std | 4.4 77 48 44 7 4.0 4.4 ¥ 4L | 4.8 7.8 49 45 7.8 4.9
Rr2 9.67 9.43 0.79 21.5 21.2 21, 38,2 37.9 38.7 51.3 51.1 52.2 48.2 48.1 48.8
% 238 100 01 | 28.6 100 0.1 | 238 100 0.1
0.8 atd 4.4 7.6 4.9 4.4 7.7 4.9 4.4 1.7 4.¢
R* [ 152 147 153 | 369 385 37.2 | 543 538  B4§
I 23.9 100 2.1
0.9 | std | 4.4 7.8 48
R? | 30.8 20.9 309

TABLE 1: p,std, B* (multiplied by 100) for the three estimators: (11) with
m = 720 denoted by 2, (11} with m = 188 denoted by 5' and (12) denoted by
F, on a grid of values for (o, ) in (10), and v - (1 —a — £) = 1. All the values
are computed with 10000 ”daily” replications.

GIR NGARCH EGARCH
4 = 0.0687, & = 0.0312 i = 0.0554, & = 0.0952 $ = —0.1491, a = 0.1736
A = 0.8275, § = 0,1271 8 =0.8001, v =0.6048 | # =0.9512, y = —0.4815
2’ 5’ F o 57 F 27 5 F
i 23.0 10.0 -0.3 1230 10,0 -0.5 23.9 10.0 -0.2
stel 4.4 7.6 4.9 4.4 7.6 5.0 4.4 7.6 4.9
r? 37.8 a7.0 537.% 47.3 48.4 47.4 46.6 458.5 46.8

TABLE 2: p, std, R? (multiplied by 100) for the three estimators, (11) with
m = 720 denoted by 2', (11) with m = 288 denoted by 5' and (12) denoted by
F, for the diffusion processes (14-15-18) with the reported parameter values.
All the values are computed with 10000 ”daily” replications.

introduce biases because of non-synchronous trading. In this note we have shown through
Monte Carlo simulations that this estimator is biased: increasing the frequency, the variance
of the estimator is reduced but the bias in mean increases. The method based on Fourier
analysis proposed in this paper does not require any manipulation of the data. Relying
upon Monte Carlo simulations of models belonging to the SR-SARV(1) class, which includes
the GARCH(1,1), we have shown that this estimator is almost. unbiased and its variance is
smaller than that of the cumulative squared intraday returns, when the latter is chosen with
a reasonable bias in mean. Moreover, when the Fourier method is employed to evaluate the
forecasting performance of the models, their performance is better than that obtained by
employing the cumulative intraday squared returns.
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