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1 Introduction

Two important issues of modern economic activity are: “the private and .-
social incentives to bring about technological innovations” and "how already
existing innovations are adopted in the marketplace” (Tirole [38] (1990), IT,
Ch. 10). In this paper we are concerned with the latter issue. '

Modern society has been characterized by a constant supply of technologl—
cal innovations adoptable in industry, agriculture, services, or other branches
of economic activity. Despite that, the rate at which such innovations have
been adopted, through a mass production, seems to follow a slower pace!.
Quoting Tirole ([38] (1990), p. 401): ”Few innovations are adopted instan-.
taneously.” Then the question is: What explains such a delay? The existing
theoretical literature on innovation adoption propose several models to justify

- this phenomenon?®. These models consider, singly or jointly, various econemic . - |

aspects such as: a) market structure (see, among others, Kamien & Schwartz
(1972), Reinganum (1981), Jensen (1982), Mamer & McCardle (1987), Lee &
Wilde (1980), Barzel (1968).); b) eaternalities, spillover effects, and learning
by doing (Jovanovic & Lach (1989), Jovanovic & MacDonald (1994), Ma-~
- son & Weeds (2001)); c) uncertainty surrounding the innovation profitability
(Rosenberg (1976), Balcer & Lippman (1984), Grenadier & Weiss (1997),
Farzin et al. (1998), Bessen (1999), Dosi & Moretto (2000)).

This paper analyzes, in a continuous time setting, the monopolistic choice
of innovation® adoption as well as the monopolist pricing policy. The firm

For historical accounts of the slow pace of adoption of technology innovations see, for .
example, Mansifiel (1968).
2For a review we may refer to Bridges et al. (1991) and Re1nga.num (1989).
3Here by innovation it is meant product innovation.
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‘produces and sells a durable good and no potential entrant is threating the
monopolist, hence the decision is not affected by strategic considerations.
The agent faces an uncertain market demand (this, in turn, implies that the
existing product as well as the new one exhibit uncertasin returns) and the
decision of adopting is irreversible. Moreover, time horizon is infinite and
 the thechnological change is modeled as a continual process®. = -

' Our model differs from the existing literature in the following aspects.
First, almost no previous work (at least among the once we are aware. of)
is concerned with the pure monopoly industry innovation adeption issue’.
The closest work to this one (at least in the model structure) is the papar by
Kalish (1985). Neévertheless, the latter is not set in 4 irreversible investment
framework and, moreover, its stochastic structure is far simpler than ours’.
On the other hand, the state dynamics in that paper is richer than ours.

~ Second, previous works usually assume future profitability entirely outside
the firm control (Cf. Balcer & Lippman (1984), Grenadier & Weiss (1997),
Farzin et al. (1998)). In this setting, the policymaker obseves this exogenous
evolution of technology profitability and choose the best time to adopt, that -~
is the problem become an optimal stopping problem. In contrast to this
point of view, in our model we explicitly consider the adoption strategy

. followed by the monopolist as a control variable. Moreover, we.assume that
existing product profitability is influenced by its diffusion which, in turn, is
determined by the firms’s pricing policy. This point of view has not been
considered in previous works. '

Finally, as far as we know, in economic literature we have not found a
model dealing, in a continuos time stochastic dynamic framework, with the
monopolist innovation adoption & pricing issue.

Given this setting, we conclude, consistently with empirical ewdence, that
an adoption delay may take place. However, the motivation that our analysis
provides as the major reason for this phenomenon is deeply different from the
previous one in that adoption delay is mainly a matter of residual market
demand. In other words, as long as market demand for the existing product
is above a certain level we do not adopt innovation, whereas if market demand
falls below this level then innovation is adopted as much as to catch up the
aforesaid level.  Therefore, our analysis suggests that innovation adoption

#Much of the literature models the innovation adoption decision as a once-and-for-all
event (Kamien & Schwartz (1972), Reinganum (1981), Jensen (1982), Mamer & McCardle
(1987), Lee & Wilde (1980), Grenadler & Weiss (1997),Dosi & Moretto (2000), Mason & .
Weeds (2001)). . -

5Cf. Reinganum (1981), Jensen {(1982),  Mamer & McCardle (1987), Lee & Wilde
(1980), Balcer & Lippman (1984), Grenadier & Weiss (1997), Farzin et al. (1998)

#Kalish himself observe that "the effect of uncertamty is.. to rescale the price axis”.
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is mainly used to prevent market demand to fall too low regardless when

such innovation was already available. Further, the optimal price path is,

consistently with the previous literature (cf. [33], [16]), a decreasing function
of the product diffusion, that is prices decrease as product diffuses. Moreover,

such a decreasing trend reverses when monopolist introduce innovation, that

~ 18 new products prices are higher than those of the existing ones.

From a mathematical point of view the model is formulated as a con-
tinuous time stochastic control problem’. In literature the most common
approaches used to solve such problems are the Pontryagin’s maximum prin-
ciple and Bellman’s dynamic programming (for a thorough analysis of the
connection between the two approaches we refer the reader to [39]). We
‘approach the problem by using Bellman’s dynamic programming.

In particular, our model falls in the so called regular-singular stochastic
control (cf. [11], [12], [21], [37], [26]). In fact the control variable repre-
sented by the prices acts on the state dynamics in a classical way, that is
the cumulative displacement of the state caused by the control is the inte--
gral of the control process itself, and so is absolutely continuous with respect
to Lebesgue measure; whereas the control variable relative to the effect of
innovation adoption on the state dynamics is additive and it is a real finite
variation process which may be (and actually the optimal one is) singular
with respect to the Lebesgue measure. As a result the HIB equation for
the value function is a non-linear free boundary problem (or, equlvalently,
variational inequality).

The linear-concave structure of the model would suggest that the so called
”principle of smooth fit”® (cf. [3], [25]) should apply. Nevertheless, no pre-
vious result we are aware of is applicable to our case. Here is our departure
from the previous literature. In fact, by using ad hoc methods, we prove
that the value function is twice contmuously differentiable and, as a result
we show that the principle of smooth fit applies to our case too.

"Here, by a stochastic control problem we mean a compietely observed control problem
with state equation of It6 type and with a cost functional of the Bolza type.

81t si well known that the value function which results from absolutely continuous
control of a nondegenerate diffusion is twice continuously differentiable. The principie
of smooth fit holds that this is also the case in the smgula.r control of a nondegenerate
diffusion.



2 The model ﬁrst propertles, the HJB equa-
tion t

Suppose at time zero a monopohst has already developed a new (or several
new) generation of a durable good, that is our firm has the opportunity to
introduce a new (or several new) version of an existing product by means of

product innovation. The question we will address our attention to is: When
and how, in a context of uncertamty, is it optimal for a risk neutral agent to
adopt innovation? In order to give a reasonable answer to this question we
need to formalize the environment in which the whole analysis will be carried

~ out.

Let (22, 7, P) be a complete probability space equipped with a filtration
(F:) satisfying the usual condition of right continuity and augmentation by
all P-negligible sets and carrying a standard one-dimensional (F;)-Brownian
motion W;. Given this setting of uncertainty, which is completely known and
observed by the monopolist, we define a market saturation index, X,, whose
dynamics evolves over tlme a.ccordmg to the following stochastic differential
- equation

{ K=+ [, fQUXup)s+ ffo(A- X)W, =&, £20
Xoo=z€R - o

where z,0 € R, ¢ > 0, and
Qt -A Xt Bph Aa B > 0,

represents the market demand rate at time £. The constant A can be inter-
preted as the market potential at time zero, that is A is what the monopolist
expects, at the beginning of the analysis, to sell at most.. Therefore, from
an economic point of view, the analysis is meaningful only for those X; not
exceeding A. Nevertheless, the particular structure of the dynamics enables
us to carry out the analysis in the whole real line and then we can show that
the constraint on X; is actually satisfied if the initial condition « is such that
z < A and the control pair (£, p) belongs to a prescribed set. p is the unit
price charged by the seller at time ¢. We will take p € P, where

' is Fi-progressively measurable,
'Pé{p:[o,—l—oo)—)R:pt i

E [f; [p3|mds] < oo, form=1,2,3,4.



Moreover, we will define
P, 2{peP suchthatp, >0, ¥t >0, P —as}.

The function f is increasing, positive and such that f{0) = 0, and ac-
counts for the effect of past sales on the market saturation index.

The processes &, is an index of the cumulative innovation adopted up to

time ¢ and we will take £ € V,, where

non-decreasing and

right continuous with left limits
P — almost surely,

Fi-adapted with &, =0, t <0

Vi 24 £:[0,400) »R:E,

Finally, for each z € R
AE2V, xP |
is the set of all admissible controls, whereas foreachz < A
AL 2 {(£,p) € Vo x Py such that X; < A, vt 20, P.-- a.s.}

is the set of all. economic admissible controls. :

It is worth noting that the non-decreasing feature of £, has a reasonable
economic meaning: it accounts for the fact that once monopolist has adopted
innovation he cannot go back on his decision (irreversible decision). The
negative effect of £, on X, means that market enjoys (on average) new energy
in adopting innovation.

In the sequel we will assume f to be a linear function of @, f = D@,
for some D > 0 constant, which may be interpreted as a product diffusion
coefficient. Therefore, the state dynamics evolves over time according to the
following stochastic differential equatlon

X;=a+ [y D(A— X, — Bpa)d3+ [ o(A - X)dw, — &, (2)
Xg_ =T '

which, for any (£,p) € A, admits a unique strong solution® (see [32], Ch.
V.3, Theorem 7).

It remains to formalize the. ﬁrm s costs structure. These will be divided
into production costs and adoption costs; the latter are exclusively related to
the monopolist innovation adoption policy.

%We recall that since £, is right-continuous and .Ft-a,dapfed then it is progressively
measurable with respect to (F;) (see [19], Proposition 1.13 p.5).
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- First, as it is usual in this kind of literature (cf. [6], Section 2.4) we
W111 consider the standard linear-quadratic mode] of the productmn costs:

() + cQ: +vQ7F, where ¢(-), ¢,y > 0 but we will take |
i) the fixed component of the production costs, o(: ) to be a fun'ction of

the market saturatlon index, X;, that is

o(X) & F (a - Xt)2

with o, F' positive constants;
ii) ¢ > 0 constant and v = 0. _
Hence, the profit rate, 7(X;,p;), at time ¢ will be given by:

T Xe,p) 2 (p—)Qi — Fla - X;)? | R
' = (A + BC)pt - Bptz - tig ~+ (2C¥F +,C)Xt —_ Fth — Ac — 042F_-

On the parameters A, B,c, F, and o we make the following additional as-
‘sumption: :

(A1)  4BF—1>0;
(A2) A—Bec>o;
'(A.3)_ 0<a<A-Be

Assumptions (A. 1) 1mphes that 11'(93 D) is strictly concave and upper
bounded in (z, p).

We assume that if at time ¢ the monopolist adopts 1n110vat10n dft she
incurs proportional sunk costs Id€,, with I > 0 constant. Therefore, assuming
a continuous discount factor 6 > 0 and starting at market situation z < A,
monopolist wishes to maximize her expected discounted profits

Js,é(x)éfE[ fm - e.—ét[W(Xtapt)dt_Idgt]:l | (3) )

~ over all pairs (£,p) € A, .

This is an infinite horizon autonomous regular-singular monotone follower
stochastic control. In fact, £, is a real finite variation process, but may be
singular with respect to the Lebesgue measure as a functlon of time. The
value function of our problem is given by

(@) 2 sup Jip(a) - @)
(&p)eAs :

In the sequel we will refer to this control problem as Problem (P).
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. ysis

The next assumption will be required to hold throughout the whole anal-

(A.4) §> 0%+ 2D.

Moreover, the following condition will turn out to be sufficient to yield the

o _ classical decreasing feature of the optimal monopolist pricing path (cf. [33]),

(A5)  §>0®+2D(BF —1).

.~ As we have alréady pointed out, the :—nialysis will be carried out in the
- most possible tractable way. As a result (cf. Section 1. 4), we will let the
‘state dynamics and the control variable p to move freely in the whole real

. line, that is the unique strong solution of (2) will be considered with z € R

and p € P. The following lemma enables us to prove the equivalence, at
least for initial conditions < A, between the problem analyzed without any
restriction on X and p and the one meaningful from an economic point of

- view, that is the one where we require z < A4 and (¢,p) € A,

" Lemmal Letz < A, (& p) € V.|. X 'P+, and X; the unique strong solution
" of (2). Then

- (&p) € Ay,
. thqtiSA*_=V+X'P+.

Proof. See Proof of Lemma 1 in [24]. =
By invoking Lemma 1, the following corollary can be easily proved.

Corollary 2 Let z € R, and define v, : R — R as follows

ve{z) £ sup Je (), (5)
(E;p)ev+ ><‘P'|‘

with Jz »(z) given by (3). Then for eachz < A
ve(z) = v{z),
where v is given by (4).

Proof. It is suffice to observe that for each x < Awehave A, =V, xP,
(see Lemma 1). =

The following lemma will be used in the analysis, for its proof we refer to
[20] Section 2.5 p. 77, or [9] Appendix B p. 397.
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Lemma 3 Let X, the unique strong solution of (2) corresponding to the pair
of controls (£,p) € A and initial condition z € R. Then there exists a
constant C = C(B, D, o) such that for eacht >0

| |
BX" < Claf™ + CH3VE [ el + i +lem) s

wzthm—234

Now, the linear concave structure of the problem enables us to prove the
following (for the Proof we refer to [24]).

Theorem 4 The value function v.(z) defined by (5) is concave and contin-
uous on R. Moreover, there exists a positive constant C such that for each
zelR :

——C(l‘-}— z?) < v.(z) < C: I (6)

Proof. Let z!,2* € R. Consider two policies (£',p!), (¢2,p%) €V, x P,
admissible at z' and z2, respectively, and denote by X},X? the corresponding
solutions of (2). Let A € [0,1], set z* £ X2 + (1 — A)z?, and (¢}, p*) £
MELPY) + (1 — N)(€%,p%). Then the linearity of equation (2) shows that
(£*, p) is an admissible pair at 2* and X = AX} + (1 — ) X2 is the solution
of (2) with z = 2* and (£,p) = (£*,2*). Now .

Jap(z)) = E e~ [m(X}, pd)dt — Tdg}]
: [0,00) :

> AE f e~ [r (X2, pl)dt — TdEY +
[6,00)

(1 AE f e [n(X2,p?)dt — I67)

= )\J&l,pl(ml) + (1 — )\)Jgf&lﬁ(ig).
Taking the suprema on both sides, we obtain
vg(x)‘) > Me(z') + (1 — Nv.(z?),

which proves the concawty of v.. The continuity is an easy consequence of
concavity. '

The second inequality in (6) is a direct consequence of the fact that =
is upper bounded. On what concerns the lower bound it suffices to prove it

8



- for (¢,p) = (0,0). Now, let X? the solution of (2) with such a controls, and

. | ~define Z, £ XD — A. Then Z, is the unique solution of the SDE

t B ' i
+/ —DZ,ds+/ —0Z dW,.
0

By ﬁrst applying Ito’s lemma to the function f(Z;) = (Zit)2 and then takmg

R “the expectatlon we get

E [(zt)é] = (z— A)? + (6> - 2D) /; tE [(Z.)?] ds

< (z— A + |0 - 2D)| /:E [(23)2] ds
A aﬁpﬁcation of Gropwall inequality yields
E{(2)7] < (z — AY%l™22k,

- Observing that for a constant C' > 0 sufficiently big

n(X7,0) > —C(1 +(X7)%),

and ﬁhat

(X7 <24~ X0 + 247

we conclude by using (A.4). In fact, for each z € R
ve(z) > Joolz) = E [/ —ot (X0 O)dtJ > —C(1 + %), |
0

where, we have used the same letter C to indicate, from time to time, different
positive constants. The proof is complete. =

In the sequel, the mathematical analysls about v, defined in (4), will
~ be carried out by considering its extension, v. defined by (5), to the whole
real line. Once the results have been obtained, we will check their economic
meaningfulness by looking at its restriction 0111 (—oo, A]. Therefore, whenever
in the subsequent analysis, we write v : R — R we are actually referring to
the extension of », that is we are referring tb ve. We do not adopt dlfferent

notations in order to avoid useless compllca.mons
' \
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2.1 The HJB equation |

For the control Problem (P) (see 4) we now wish to derive the Hamilton-
Jacobi-Bellman (HJB) equation on the whole real line. Based on the Dy-
namic Programming Principle (see [b]) the following heuristic argument mo-
tivates the results. For the time belrig let us assume that v : R — R ig twice
‘continuously differentiable and consider the following two cases:

First, consider the policy ” do nothmg for a little while and then proceed
optimally”; then for x € R, and every h > 0 we have

o) 2 E| I (X7 it + i),
0 i
- |
where X;? is the solution of (2) withl initial condition z and controls (£,, p;) =
(0, p). Subtracting e~**v(z) from each side, we get

v(z)(l—e) > E [[;h e‘&'fr(X?‘p,p)dt] + e E [’U(X;:’%) —v(z)] .

Now, dividing by A and letting A | d we obtain (thanks to the C* hypothesis
- made on v) ‘

bu(z) > ;o' (A —x)%0"(z) + D(A—z — Bp)v'(z) + m(z,p), Vp2>0. (7) |

Hence,

sup {AP[v](z) + n(z,p)} <0, VoeR

p=>0

where

AD(@) & 124~ 2/ (a) + D(A— < - B (o) - ola), (§)

where the superscript stands for the operator dependence on p.
Next, let z € R, h > 0, and consider the strategy ” jump immediately
from x to  — h and then proceed oﬁtz‘mally”; this yields

v(z) > —ih + v(z — h).
Subtracting v(z) from each side, dividing by A and letting A | 0, we get |

-z} -1<0, VzeR _ 9)
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In view of the above heuristic arguments, we expect that the value func-
tion v would satisfy, at least formally, the following conditions: -

sg%){A(P)[v](z)—l—fr(m‘,p)} <0 zeR, ' [_10).

—v'@ -1 < 0, zeR (11)

Now, fix Z € R and assume —9'(Z) — I < 0. Then the strict inequality
holds in a whole neighborhood B.(Z) C R (recall the assumption » € C?).
Moreover, for every z € B.(Z) there exists h > 0 sufficiently small, dependent
of z, such that v(z) > —Ih +v(z — h) and 'u(a: h) € B(%), but this means
that in Be(Z) we are better off if we do not 'adopt innovation (ie. d§ = 0).
In turn this implies that in B,(Z) the state variable is solely controlled by p
and therefore (10) has to hold with equa.hty Hence, for every z € R, v(z)
should satisfy, in a certain sense, the followir;lg variational inequality

max {sup {AP[p)(z) + w(m,p)}‘, —-v'(z) — I} =0. (12)

In the next section we will study the ex*treme case of pure pricing (i.e.
& = 0). The study of this case is _]ustlﬁed by ﬁhe following two reasons. First,
from a mathematical point of view, the subséquent analysis will heavily rely,
on a comparative way, on the value funct1on of this case in order to prove
several features of the value function of the original Problem (P). Second,
from an economic point of view, this case has a meaningfulness on its own.
In fact, such an analysis shed light on the optlma,l monopolist pricing under
demand uncertainty. We will find, consmtently with the previous literature, -
that the optimal (Markovian) pricing by a monopolist is a decreasing function
of the market saturation index. That is, as rharket saturates prlces go down
(cf., for instance, [33]) |

3 Pure pricing

We start by studying the value function of the extreme case £ = 0. Also in
this case Corollary 2 applies, hence, to begin with, the analysis can be carried
out with an arbitrary initial condition z € R for the state dynamics. More-
over, we take p € P. At the end we will verify the economic meaningfulness
of the results thus obtained. o

For every initial data z € R, we have the following state dynamics

t ‘ ot |
X, =+ / D(A - X, — Bp,)ds + / o(A— X)W,  (13)
0 - Jo .

11



and we wish to maximize the expec#ged total profits

JSim)éEU;

The corresponding value function is

He

| .uo(m)

and it is concave!®.

e~ r(X,, pt)dt} .

.s;upJ0 (:c)

e
peEP . :

Notice that (14) isa class1ca.l stochastic control problem (cf. [9D), hence
a formal application of the Dynasz Programming Pmnczple yields the fol-

lowing HJB equatlon to be satisfied

by uo(z): |
(15)

sup{A(P [u](z) -|*71l (z,p)} =0, Vze R,
with A®) [u] defined by (8) Equiva.lently
\
—02(A z) %" (z) +D(A-- z)u '(m) Su(z)
+(2aF + &)z — Fa* - Ac‘ o’F _
+sup{ (A+Bc—z —BIDu (z))p— Bp’} =0, VzeR. = (16)
The optimal (statmnary) Markov sti‘ategy is
plz) = (A n LBc _z— BDu’(m)) (17)
If we substitute (17) in (16) we obtam |
;oj(A ~ 2)%"(z) 4 D(A ~ z)u'(z) ~ Su(z)
5 (A+Be—z— BDU(@) +
+(20F + &g — Fr* — Ac— o*F =0 (18)

to be satisfied by ug(z) for every z €

To solve (18) using the method
solution of the form

u(z)

- 1°This can be proved in the same way as

= Hz* + Kz + L,

R. 2 :
of undetermined coeflicients, we try a

(19)

in Theorem 4. .
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. where the values of H, K, and L are to be determined so to satisfy the differen-
tial equation (18). An exact solution exists for this problem. The procedure.

. entails substltutmg (19) in (18), so that the left hand side is expressed in
e terms of various powers of z. For (18) to be satisfied, the coefficient of each
- power of z must equal zero, this generates a system of simultaneous equa-

- tions'which, thanks to the concavity of ug, is uniquely identified and can be
.- solved for H, K, and L. For these coefficients we have:

1

=g

(D+6-0%- N o%)2 + DY(4BF — 1)) (20)

D*(4BaF+Be—A)~(BeD+202 A~AD) (D+6—62—\/(D+6——-o'2)2+D2(4BF—1))

K= : 21
BD2(6+02+\/(D+5—02)2+D2(4BF—1)) b (21)
I = 32D2K2+(2ABD—232cp)K+4A2Ba2ﬂ+32c2m2ABo+A2—43Fa (22)

4B§ . )

Wlth H and K asin (20) a.nd (21).

_ ‘Observe that Assumption (A.1) implies H < 0 and therefore u, defined
by (19), is concave (actually, strictly concave). Now a verification theorem
will prove that ug(z) = u(z), with ug given by (14).

Theorem 5 Let u(z) = Ha? + Kz + L, then for every = € R:

i) u(z) > J2(z) for every admzsszble control process p € P;

i) u(z) = JO (z), where pf = 35 (A+ Bc— X} — BDu/(X})) and X is
the comespondmg state dynamics. Therefore

up(z) = Hx? + Kz + L, Vz cR. (23)

Proof. i) Let p, an admissible control process, we apply the Ité differ-
ential rule to ®(t, XT) = e~ %u(X}), where X? is the unique solution of (13)
corresponding to the initial condition x and the control process p = p;. Then

et XP) = u(z) + /0 ' 0o A (X7)ds + f 50 (A — XP)u! (XP)dW,.

Since u{z) solves (15) then it follows

t

: t ' _
e~ %u(X?) < ulz) —f e~ n(XP, p,)ds +/ e (A — XP)W/ (XP)YdW,,
0 (.

13



and by taking expeci:ations and by using Lemma 3 we get
u(z) 2 E Uot e~ %n(X ,ps)dS} +e B [u(XE)]- : (24)
We wish to let £ — oo in order to conclude that o : |
u(z) 2 E [ / N a”«(xg’,pt)dt} @

To this end we first observe that by assumptions (A.1) there exists II € R
such that #(z,p) < II for every (z,p) € R2. Therefore (24) can be rewritten
as follows ' -

u(z) > B [ /; t e—_és (m(XP, p.) - M) ds + fo t e_'S‘Hds] + e~ "E[u(X?)] (26)

IfE[f° e ®(X])dt] = oo then E[ ;" e~ (n(XT,p;) ~ IT) dt] = ~oco and

inequality (25) follows immediately from (26) by applymg the monotone con-

vergence theorem and observing that u is upper bounded. On the other:

hand, if E [ [;° e7%(XF)?dt] < oo then lim inf [e=%(XF)*] = 0 but|u(z)| <

a + bz? for some constants @ and b and is bounded from above hence also

lim supe~%E [u(X})] = 0. Therefore, by letting ¢ — oo through a sequence
I—oo '

for which e=*E [u(X})] — 0 and using the monotone convergence theorem
we obtain

wz) > E[ fn " e (P, ) ~ I dt 4 /; me.‘“IIdt]..
= E [ fo ~ e“ssvr(Xf,pt)dt] = J(z). (27)

Since p € P is an arbitrary control process the proof of part i) is complete.

ii) If we fix an initial condition z € R and substitute p* then (13) has
a unique strong solution X;. In fact the function p* is clearly Lipschitz
continuous as a function of z. Now we apply once again the It6 dlfferentlal
rule to &£, X}') = e u(X}) and we get

¢ _ K -
we) =B | [ etr i) +oomuog), 09

o | _
with equality since p* is the maximizer in (15). Again we need to pass to
the limit as ¢ — oco. We proceed as in part i) but this time is sufficient to
observe that, since u(z) is upper bounded, ligninfe‘“E [u(X})] < 0. Hence,
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o . if in (28) we let £ — oo through a sequence for which e~*E [u(X})] - L <0
L we get : , : ' '

u(z) S'E[ fﬂ " etn (X2, pt)dt = J%(z). (29)

.'-_:'Finally, inequality (27) together with ‘(29) yields the desired result. m

| Remark 6 We observe that the above theorem implies that the solution (19)
.. that we found by simply using the method of undetermined coefficients is the

unique solution of equation (15) in the class of quadratically growing and
- concave functions. In other words, this means that every other solution of

S (15) is either not concave or not quadratically growing.

_ - The values of H, K, and L given by (20), (21), and (22), respectively,
- yield the following optimal Markov price path:

AL Ba_ 2D+6—-02—4 /(D6—32)24-DA(4BF -1
p(..’c) . A—I_-BZBBDK . ( +o—o \/( ;BJ; ) ( )) T (30)

Now, if we ignore for a while the assumption (A.5), which has not been
really used in the previous analysis, then it can be seen that the parameters
B, D, F,§, and o can determine two different price paths. In fact, two cases
can be single out: -
Case o) 6 > 2D(BF - 1) 4 o2, then gg < 0 and prices decrease as the
product diffuses: - -
Case b) 6 < 2D(BF — 1) + 02, then j—g > 0 and prices increase as the
product diffuses.
Of course, if § = 2D(BF — 1) + o then prices are kept constant indepen-
* dently of product diffusion. '

‘Remark 7 In this setting, the optimal price path is sensible to the market
structure. For example, take two markets and fix for both of them the same
6, B, D, and F such that (A.1) holds, and assume that the first market has
-~ a sufficiently low variance whereas the second one does not. Then the first
market would exhibit o classical decreasing price path (cf. [33]), whereas the
agent operating in the second one would be better off by increasing prices as
the product diffuses (see Figure 2). '

We now need to check the economic admissibility of the solution when
z < A. To do that it suffices to prove that pf >0, Vt > 0. Then, invoking
Lemma 1 we may conclude that X! < A, vt > 0, almost surely in P, and
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therefore Corollary 2 applies. To proceed we require assumption (A.5) to
hold. _ ' - :
The Markovian structure of the optimal price path p* (see 17) implies
that we need to check that p(z) given by (30) is in fact non negative for
z < A ' : ' : :
First of all, due to assumption (A.5), prices are decreasing in z and

" 2DF(A—a)tceb
p ( ) - 6+02+\/(D+6—02)2+D2(4BF—-1)- e

by assumi)tion (A.3). Therefore, the optimal Markov price p(x) given by
(30) is positive on (—oo, A]. Hence, invoking Lemma 1 and Corollary 2, we
conclude : :

sup Jo(z) = uy() Yz < A,

pEP, ‘
which is exactly the economic admissibility we were looking for. _

Moreover, assumptions (A.1), (A.2), and (A.3) imply p(0) < 4 (see Fig-

ure 1). In fact, ' o

aﬂA(D-HS—a”—‘\/(D+6—o-2)2+D2(4BF—1))—DG(A-Bc)—QBDEFa
BD(6+02+\/(D+6—62)3+D2(4BF-1))

p(0) — 4§ =

Remark 8 Since we are working in an uncertein environment, it is inter-
esting to study the behavior of p'(z) and p(x) with respect to o2, In fact, the
sensitivity of the price path and its slope (this can be viewed as the price re-
action to the market saturation) with respect to different volatility conditions
of the market is certainly important from an economic point of view. For
?'(z) we have ' '

a#(z) = - e >
do? V(D +6—0%)? + DE4BF - 1)
Therefore, as the market volatility increases the optimal price path slope be-

comes smaller and smaller, in absolute value, although its pattern is decreas-
ing in x. Next, _ _ '

d plz) = 2DF(A—a)+cb + (4-a) 9BD?H
do? (6+02+\/(D+5—a-2)2+D2(4BF-—1))2 2BD | /(D+6-02)2+D2(aBF-1)’

0.

which is negative for every x < A since H is negative. Hence, as market
varionce increases the optimal price path exhibits smaller prices (see Figure
2). We finally observe that all these features are consistent with the previous
literature (cf. [16], [33]) ' :
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Figure 1: Optimal price path under assumption (A.5)

P = PG

<

P = psx) ' ‘
/M
[ o]

A =X

Figure 2: Optimal price paths with oy < o3 < § — 2D(BF — 1)< o3 <oy
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Remark 9 Notice that H<0 z'mplies

1

p(w ~2B (1+2BDH)>———]§

a.nd this may account for a mean- revemng feature for the optzmal 3tate dy-
namics (see Figures 1 and 3). In fact let x such that

(w)

Then the d'mft coefficient is positive 1f z < g, hence pushing upwards the dif-

fusion; whereas when z > z this coeﬂ'iczent becomes negatwe hence pushing
downwards the dzﬁuszon

X(6]

I»¢
3
q-\
P
"\
\
N
\,
):l
, 3%
\
\§

v

1) ’ . .
o . - -
0 ‘\r'f\lr'l \ ’ ' t

E[X(1)]

Figure 3: Mean-reverting effect (cf. Figure 1.1)

4 The case of non-zero mnovatlon and gen—

eral classical controls
We now turn to the general case. Consistently with the previous a.nalyms we

first work without any restriction on the state dynamlcs and on the control
vanable p, that is we will take p € ’P '
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‘Solet z an arbitrary initial condition in R and consider the general state ._
dynamics given by the SDE '

t - ¢ |
Xi==x +f D(A— X, ~ Bp,)ds —|—f (A~ X,)dW, - &,. (31)
0 Jo .
We want to maximize the functional
EEcE| ) (3 e - 12| (32)
. 0,00

over all pairs (£, p) € A. The value function is

2 sup Jea(z)- ' (33)
(FILR)

Voo ()

In the sequel we will refer to this control problem as Problem (Poo)-

We start by assuming that v, € C*(R), then a formal application of the
" Dynamic Programming Principle yields the following HIB equation to be
satisfied by ve(z) for every z € R:

sup (A7) (&) + 7(5)} <0
~I — () <0 : _ (34)
(;gng (APR(@) + w(m,p)}) (-1 —(z) =0

with Af’[u] (z) defined by (8).

4.1 Pfeliminary considerations
We first observe that for each z € R

uo(T) < Voo () 5 C, (35)

where ug, v, are respectively defined by (23) and (33), and C > 0 constant.
In fact, in (35), the upper bound is a direct consequence of the upper bound
- of = (cf. Theorem 4), whereas the lower bound is true by construction since
P x {0} C .A. Moreover, it can be proved that Vo 18 concave (cf. Theorem
4) and therefore, as it is typical in singular stochastic control problems, we
expect Vs, to be a straight line with slope —7 in a certain interval [z*, 00),
where the "free boundary” z* is to be determined. Hence (34)2 holds with
equality on [2*, 4-c0), whereas (34), holds with equality on {(—oo, z*|. In order
to get some idea about the nature of the optimal policies as well as about
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the derivation of (34), let us consider a restricted class of a.dbption policies
in which & is constraint to be absolutely continuous, as a function of time,
with bounded derivative, that is :

a= [ s
| ‘where 0 < ét < —E for almost every ¢ > 0, with € > 0 constant. Call the set
of all such a controls V.. Then, equation (31) becomes
o s ' L. £
X, = $.+f [D(A X, Bp,) —-53] ds +/ o(A— X,)dW,,
- Jo. 0
and (32) changes into |

£ () £ ) [/ ' e‘“[vr()_(t,pt) — Ié’t]dt} .
0
The corresponding value function is

v(z) £ ‘ sup Jg o).
_ {EPYEVex P

Thé HJB equation, to be solved for the value function Ve, IS
sup {AP[u](z) + 7(z,p)} + sup {(—u’(w] — I)f} = 0.
pER : ! Pl

0=<é<

The maximum in the £ control variable is then
£ =0, if (~d'(z)-1)<0

E =, i (o) -D)>0.

Hence, the HIB equa,tioh becomes
. , 1 '
sup {A*ful(z) + n(z, p)} + ~(=¥(=) - =0 (36)

- where, for z € R, (z)* indicates the positive part of x. This indicates that
the optimal innovation adoption policy is of bang-bang type, that is adoption
take place at maximum rate or not at all. Therefore, the real line is split up
into the following two regions '

By
Ry

{zeR: —v(z)-I<0}
-{:ceR: —u'(z) - I > 0},

|31 %
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where R4, Ry stand for adoption and no-adoption region, respectivé]y. Since

ve(z) is concavel!, then we expect the two regions to be separated. In other.

. words, we expect the existence of a point z* such that
= 0, if z<2f

; 1. )
£ = ;o if z> 2.

* Clearly, for z € (—o0, 2] equation {36) becomes
sup {A%[u](z) + (s, 5)} = 0.
rER : '

Since this is true for every ¢ > 0 then the same conclusions may be heuristi-
. cally drawn after passing to the limit as ¢ | 0. But, in the limit we formally
need —u'(z) — I < 0 in order to give meaning to the equation (36). The
latter inequality together with concavity of v, yield (34) to be satisfied by
Vs itself. Finally, on what concern the optimal adoption policy, if z > 2*
then adoption take place at maximur, i.e. infinite, speed, which implies that
- the monopolist will adopt an instantaneous amount of innovation in order to
‘reach immediately z*. After this initial adoption, all further adoptions take
place when the state dynamics hits z*, and this suggests an optimal adoption
policy of "local time” type.

4.2 The smooth fit conditions: The Problem (IVP.)

In the previous subsection we saw, although in a heuristic way, that the
control £ is not employed in the interval (—oo,z*), where z* is the "iree
boundary” to be determined. Such a consideration imply that, in the interval
(—o00, 2*], the value funiction is a solution of equation of (34); with equality
and a certain boundary condition at 2*. Since p € P then the maximizer
in (34); is given by p(x) = 55 (A + Bc — z — BDu/(z)) and therefore (34);
with equality becomes (18) on (—oc, 2*]. Now, relying on the fact that v, €
C%(R), we are looking for a solution of the following Problem:

there exists z* € R and u, € C?*((—00, 2%]),
‘concave solution of (18) such that
uh(2*) = ~1I, u!(z*) =0, and
up(z) < u(z) <C  on (—oo, 2",

(SFC)

11 Again this is an immediate consequence of the linear-coneave structure of the problem.
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- where thée bounds for u, are the ones required for v,, and are explicitly given
by (35). Now, assume that the pair (z*,u,) is a solution of (SFC) such that
z* < A. Then, substituting u, in (18) a’,nd evaluating at z*, we have

—DI(A——z) buy(2*) + (A-!—Bc—z —I—BJDI)2
o -|-(2aF-|-c)z ——-F(z) —Ac—o2F =0,

.' that is
| ua(2*) = g(2"),

where

o :c) A (A+Bc4—;:5§-BDI)2_' + (2a€v‘+c)z—Fzz_' .gc_QRFuDI(A-—m). (37) A

Now consider the Problem

there exists z* < A a.nd u, € C¥((~00,2*]),
- concave solution OEE (18) such that ' ' (VP.)
u(2*) =g(z"),  u.(2")=-I and ’
uo(z) < uy(z) < C’ on (—oco, 2*].

It is easily seen that if (z*,u,) is a solutlon of (IVP,) then
&)—0

and, as a result, (z ,t,) Is also a solution of (SFC) Hence, under the assump-
tion z* < A the two problems (SFC) and (IVP,) are equivalent.

~ In the sequel the analysis will be aafned at looking for a solution of Prob-
lem (IVP,). '

4. 3 A farmly of auxﬂlary regular control problems v,

- In order to solve (IVP.) we introduce a family of regular control problems

indexed by z < A. For these problems we have a state dynamics drlven by
‘the usual SDE :

: t |
X, =z+ f D(A- X, - Bps)ds-l- / o(A— X)W, (38)
0 . . ‘

with z € (—oo 7], and we maximize the functional
T |
J@) AR [ fo (X P+ €1y 8 )] (39)
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‘where g is given by (37), X, is the unique solution of (38) (with p € P), and
the stoppmg time T is defined by '

T, = 1nf{t>0 X, ==z} (40)
B The value function is
v,(z) & supJi(), (4
' pEP

and we refer to this control problem as Problem (P,).
Once again, assuming that v, € C%((—co, z}), an application of the Dy-
namic Programming Principle yields the following HIB equation to be sat-
isfied by v,

i‘éﬁ {AP[)(z) + w(m,p)} =0, z<z, | (42)

- with the following one side boundéry condition

u(z) = g(2), (43)

where AP[y] is defined by (8). Notice that, by definition, v,(z) and v/(2)
are assumed to be equal to the limits of v (z) and v)(z) as z T 2.

For every z < A, we now analyze the Problem (P,). In particular, we
are interested in checking whether v, € C?((—oc,2]) or not and if it is the
unique classical solution of (42)-(43) in the class of all concave functions w1th
at most quadratically growth as £ — —oo.

4.3.1 Basic properties of the auxiliary control problem.

We start with same basic properties of the value function v, defined by (41).
For tractability, because of the number of parameters, we repeatedly need to
restrict the admissible parameters set in order to obta.m sufficient conditions
for the solution of (IVP,).

First, the Dynamic Programming Principle holds for v,, that is the fol-
lowing theorem can be proved (for a proof see [9], section V.2).

Theorem 10 (DPP) If¢ is an f}-stopj;ing time then, for every z € (—oo, 2],

T AQ )
v,(a) = supE [ f et (X, i)t + 5T (X )|
pEP 0
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Proposition 11 Define
24 2 max {:«: <A: max {x(z,p) —_6g(z)} > 0} ) | (44)

that is 2y = A — Be — BDI where g is deﬁned by (87). Then fo'r every
z € (—00, z4] the value functzon v,(%) 18 continuous and concave on (—00, z]
with v,(z ) g(z). :

Proof See Proof of proposmon 7 in [24] n _

Being v, concave, it is also locally Lipschitz. In the following proposition
(for its Proof see [24], Proposition 8) we actually show that v.(z) is upper
- bounded, grows at most quadratlcally as £ — —oo, and its increments grow
- at most linearly. :

: Proposition 12 For every 2z < z4 there exists a constant C, > 0 such that
for x < z we have ' B

Lc;(-l +at) <) <C (45)

and
g, gt hg =20 cor ), 0 @6)

for h € R such that |h| <1 andz +h < z.
4.3.2 Ci-regularity of ..

Now, we want to show that v, is twice continuously differentiable on (—oc, z].
We proceed by proving that v, € C?([~k, 2]} for every k € N such that
~k < 2. To this purpose consider a family of truncated problems (TFy),
indexed by k, of exit time type with terminal cost exactly equal to v,. The
state dynamics of this problem is as in (38) with initial condition = € [—k, 2],
but this time we maximize the functional

: Th : _ ‘
JHz) £ E [-/0 e__“ar(Xt,.pt)dt + e~ Ten, (X7 | ,

" where

Sinfl{t>0: X, & (~k 2)}. | (47)
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Then the value function for (T'B,) is given by _
vp{x) £ sup._]:(a:), z € [—k, 2], _ (TP,)
pEP ‘

The HIB equation for v is
{ sup {A[vy](z) + m(z,p)} =0
D
'vk(—k) = ’U_z(_'—k)a vk(z) = vz(z),

with z € [—k, 2] and AP[u] defined by (8).
A straightforward application of the Dynamic Programming Principle for
vy, yields the following

(48)

Lemma 18 For every z € [—k, 2], v.(z) = w(z).

Proof. Since (—k,2) C (—o0,2) then T} < T,, P — a.s. Now, applying
the Dynamic Programming Principle to v, with the stopping time T}, we get

TeATs
v(z) = SlelgE [ /0. e_at’ff(Xt,Pt)dH-6_6(T‘AT’“)’Uz(XTZATk)]
by

peP

Th
= supE [f e~ %n( X, py)dt +e_6T’“vz(XTk)J = vy (z).
0 .

=

Therefore, we need only to prove that v, € C*([—k,2]) for each k suffi-
ciently big. The domain of (T'F,) is compact but the control space is not.
Nevertheless, sinece v,(z) = v,(z) on [—k, 2] then v is Lipschitz-continuous
in its domain. We do not know yet that v is C?, but we certainly know that *
AvP{(z) (see (77)) is bounded in [—k, 2| by a constant Ly, for each k. Hence,
by looking at (17) (with vy instead of u) we can guess that the optimum is
obtained on the set of all controls p € P such that |p;| < P, with

P > mél[l_a;g(z]'é—g ([A + Be -~ .'EI 4 BDLA,)

therefore we now concentrate on the new problem
T} '
Uk,Pk (.‘I?) é SllpE [-/ e_6t7r(xt$pt)dt + e—aTk v, (XTk)] H (ATPIC)
PEPs (1]

where P, £ {peP:|p| < P, Vt>0,P—as.}, and X, is the unique
solution of (38) with z € [k, z] and T} is deﬁned in (47), and we show that,
in fact, v p, (2) = ve(z) on [k, 2].
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Theorem 14 i) vy p, (z) with its first and second derivatives is continuous
on [~k,z|, and v} p, (x) satisfies a Lipschitz condition on [—k, z]. Moreover,
Vx,p, 18 the unique solution of

a1 (P)'u iz =
{|p1<%,{A wr (@) + n(z,p)} =0 (49)

Uk,Pk( k) = 'Uz(*-'k), U’ﬂ,P:e(z) = 'UZ(Z),

on [—k,2].
#) For each z € [—k, 2], vi p, (T) = ve(2).

_ Proof. i) This is a classical result in stochastic control theory. For its
proof we refer to [20] Theorem 1.4.5 p. 24. '
ii) By construction we have v p {z) < vg(z). In order to prove the
reverse inequality, we first observe that vy g, (z) is a C? solution of (48). In
fact, clearly the boundary conditions are satisfied.. Moreover, if we substitute
2, p, (%) in the equation appearing in the first line of (48) then we can see
that the (Markovian) maximizer on the left hand side of such equation is

(@) = 5= [A+ Be —  — BDvp, (4] (50)

but, since |v} p, ()| < L for each z € [k, 2], then for every = € [k, ]

-1

25 (A+Bc—a: - BkaPk(m)) < B.

Therefore, for each z € [—k,2]

o {AP o p]1(z) + 7(z,p)} = sup {AP v p)(z) + 7(z,p) },

for any p € R such that A® [ve.p (%) < —7(x,p) and by an application of

~ . It®’s formula to the process ey p (XP) we conclude that vy, p, (%) > vk ()

(ie. vg p () is a superharmonie function on [—k, 2] with respect to equation

(48)). m

Remark 15 We first observe that the proof of point i) of Theorem 14 does
not rely on the existence of optimal controls for the problem (AT Py ), although
a standard verification theorem would verify such an existence.

- Theorem 16 i) v,(z) is C? on (—o0, 2};
it) v, is a solution of (42)-(43).
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Proof. i} The proof follows easily by using a contradiction argument. -
ii) By construction we easily see that v, satisfies (43). Next, definé the -
Fi-stopping time 7 =T, A i, then the dynamic programming principle yields

v,(z) = supE [[ e~ n(XF, p;)dt + e“a'rvz(Xf.’)] , ' (51).
peP 0 : ) ’

where, for every p € P, X7 is the unique solution of (38) with initial state
condition z < z and control variable p. On the other hand, by applying [t6’s
differential rule, integrated from 0 to 7, to the twice continuous differentiable
function ®(¢, XT) = e~%u,(XT) we get

€70, (XP) = v,(x) + f &5 A® [y, (XP)dt -+ ] oA — X)W, (XT)dW.
0 ) 0
(52)
Now by sﬁbstituting (52) into (51) and recalling Lemma 3 we get
o= sup | [ e~ (AP OX7) + n(XE ] ]
pEP 0 '

Dividing both sides by E[7] and passing to the limit as n — co yields (42).
The proof is complete. m

Remark 17 Finally, we need to note that nothing has been said ebout unique-
ness of solution of (42)-(43). This will be our next task.

Before attacking the uniqueness question we conclude this subsection by
proving the following simple : '

Lemma 18 Let z < 24 and g(z) > H2? + Kz + L, where H, K, and L are
respectively defined by (20), (21), and (22). Then for-each z < z

v.(z) > Ho* + Kz + L. (53)

Proof. Let z be such that g(z) > Hz? + Kz + L =: g; and consider
a control problem similar to (39) but with terminal reward g, and state
dynamics given by (38); then, with z < z, set

T

v(z) £ supE {f e~ m(X,, p)dt + e_‘sT‘x{Tz@o}gl ,
- pEP 0

where T, is defined by {40). Then v,(z) € C?({(—o0,2]) by Thecrem 16,

and it can be shown that v,(z) > wvi(z). The two problems have the
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same HJB equation except for the boundary conditions. On the other hand
the application of a verification theorem similar to Theorem 5 implies that
v (z) = Hz® + Kz + L for each z < z. Therefore we now have two classical
solution, v,(z) and v (z), of (42) such that v,(x) > v, (z) for each z < z.

Notice that if there were a point o < z where v,(xo) = vi(zo), then from
v,(z) > n(z) would follow that zp is a maximum point of v; — v, hence
v.(zg) = v} (xo). But then uniqueness of solutions would imply v, (z) = va(z)
for every z < z. This is clearly a contradiction since at the boundary v,(2) =
9(2) > H2 + Kz + L =wv1(2). m

4.4 Existence and uniquehess of the solution to (IVP.)

- 'We now prove uniqueness of a pair (z*,u,) solution of (IVP,). In fact, we
will show that u, coincides with v, for an appropriate z* < A.

By using cornparison results for ordinary differential equations {cf. [31])
we show that, for every 2z < A, v, is the unique concave solution of (42)-(43)
with ug(z) < v.(x) < C for < 2, where ug and C are defined in (IVP,).
For a complete proof of the following theo_rem_we refer to [24]

Theorem 19 Let Assumptzons (A.1 ) (A.3), (A.4), and (A.5) hold and fur-
ther assume

i) 0% < D < 20%;

i) ¢ and I are sufficiently small.
Then there exists a unique pair (2*,u,) solution of (IVP,).

4.5 Optimal controls and verification theorem

We now show that u, defined in Theorem 19 can be extended from (—o0, 2*]
to R to provide a solution v € C%(R) of the variational inequality (34) in
the class of concave and upper bounded functions » € C%(R) with growth
condition

C2ux) >up(z), VzeR (54)
where ug(zx) is given by (23) and C > 0 constant (see Figure 4).

Theorem 20 Under the aondztzons of Theorem 19, af 1, : R—=Ris deﬁned
by ‘

B N | +(z), | ifa <2
v*gx)_{ :*(m) I(:I:—z) ifmg z*, : (55)
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T

Figure 4:

where z*,u, are as in Theorem 19. Then:
i) v, € C*(R); _
i) v, 13 the unique solution of (84) in the class of all concave and upper
bounded functions which satisfy the growth condition (54).

Proof. i) This is true by construction.

ii) Consider z < z* then (34); holds with equality. This implies that also
(34)3 is satisfied. (34). follows by concavity of v,.

Next, if £ > z* then (34); and (34); are readily satisfied. It remains to
prove that v, satisfies (34);. In [2*, 00), we have v,(z) = u.(2*) — I{z — 2*).
Hence by substituting into the differential equation (34);, we only need to
check that

1 A 1
(5(DI+C)—2—§+2FO!+6I) (IB'—F)Z +(_—F):C<O

for each z > z*. But the latter inequality is certainly true if
s 4FaB +26IB+cB+DIB—- A
- 4FB -1

and this is the case since 2 <z < 2"
The lower bound represented by ug (cf (23)) is certainly true for z < 2*.
For = > z* it suffices to observe that up(z*) < —I. =

=21,
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We now have the following version of the Skorohod p'roblem. '

Theorem 21 Let z*,v, as in Theorem 20. Then, for each initial condition
x € R of (81), there exists a unique pair (§,p*) € A such that with X7 the
corresponding solution (cf. (31)), the follounng conditions hold almost sm’ely

i) if £ > 2%, then X3 = 2*;

i) Xy<zv, Viz0;

%7’) g: = f[ﬂ,t] X{x» :X;=z“'}d‘£:! vt >0y |

) pf = (2B)"'[A + Bc— X7 — BDv|(X})], ¥t=>0.

Notice that local Lipschitz continuity of v, and non degeneracy of X7, at
least for z < z* < A are sufficient conditions for a unique solution to the
Skorohod problem. For a complete proof we refer to [23]. Besides we make
the following

Remark 22 &, is right-continuous, actually continuous except at t = 0
where it can exhibit a jump of size (x — 2*)t with probability one, where
(z — 2*)* is the positive part of (x — z*). Moreover, & is singular with re-
~ spect to Lebesgue measure. In fact, £} is the local time of the semimartingale
Y: at y = z*, where

| ¢ | ¢
Yi=y +[ D(A-Y, - Bp})ds+ / o(A —Y,)dW,.
0 0

We now are ready to 'prove the following

Theorem 23 Letf v, as in Theorem 20. Then
i) for every admissible pair (£,p) € A and for every x € ]R

v (z) > Jz;?;:(m):

- with Jg5(z) defined by (32);
i1) for each z € R and the pair (§*,p*) defined in Theorem 21 we have

Vs ( ) En o (m) .
In particular v, = v (cf. 33) and (7, p*) 18 optimal for Problem (Poc',‘).'

Proof Fix (£,p) € A and apply Ito’s Eormula for sermmartmgale (see
[30] pp. 278-301) to &(t, XP5) = e~ % (XP ), where XP* is the unique
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“solution of (31) relative to the initial condition z € R and the control pair
(p,€). Then

Pt
X = o)+ [ AP0 ds
_ / 500, (XPE)dE, + f S04 — XP (X)W,
[0,%] ' :

+3 e [0u(XPE) — 0, (X25) — v (X”’ faxze],

0<s<t

where AXPE & XP4 — XP¢ = —A£,. Also

At] easavi(Xff)dfs = fot el (XPH)dEs + Z e~ [ (X2 )AE] |

0<a<t
, |
= f e S (XPRYdES + | ~ (56)
-3 o [noa9axe], B
0<s<t

where £° is the continuous part of £ in the Lebesgue decomposﬂ:mn By‘.
rearranging terms one gets '

i
v(z) = — fo e85 AP[u,J(X2€)ds + e~0h0, (XP5)

8
—/ e % o(A— Xp’f)'v’ (XP4)dW,
0

' +-/0t ~S L (XP4)d, Z et [’u (XP4) — v, (Xp’g)} (87)

0<s<t

But v.(z) is a solution of (34), hence

t ¢ o
—/ e“ﬁ"A(p)[v*](Xf’E)ds?_/ e S (XPE, p,)ds.
0. 0
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Then, (34)g, the mean value theorem, and the fact that X2¢ — X2¢ = —A¢, -
yield

fot ol (XEE) .d£° > et [ XPE)——v(X”E)]

0<s<t

. / —63 l Xp, dé-c_i_ Z emﬁs I(m AEs
0

. 0<s<t
: . t . . )
> [esndg+ 3 e -nag, = [ et -na,
. 0 0<a<t (0.4 .

where Z is & point such that X4 < # < X2* for each s € [0,#] and XP¢ <
T < XP4 for those s where X 2 has a jump. Therefore, we get

o@ > [ eHn(d i -l

0,

t |
—f e oA — XP4), (XP4)dW, + e~ % u, (XP¥)
0

Now, by taking expectations, the second integral vanishes (cf. Lemma 3) and
we obtain

v.(z) 2 E [ [ e~ *m(XP4, pa)dt — Idsa]] +E [e—“u..(Xf'E)] ‘
J [0,4] _
‘Finally, we pass to the limit as t — oo and we conclude that
w(@) 2B [ e U n(xr pit— 1] = T3(a),
. {0,00) .

by arguments similar to those used in the proof of Theorem 5, part i).
ii) Now call X; the unique solution of (31) corresponding to the initial
condition z € R and the control pair (£*,p*). We consider two cases: case
a) x < z*, and case b) z > 2*.
In case a) we start from (57) and cbserve that pomt ii) of Theorem 21
and (34)q, {34), imply

- [ o= [ etnxms 69

Also, since z < 2%, then from Theorem 21 and Rerhark 22 follows that
X is continuous on [0, {] and therefore

3 e [nu(XD) - u(X2)] = 0.

0<a<t
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Next, from Theorem 21, points ii) and iii), and (56) follows that

/ et (X7 )T = f e~ (X7 )dE"
) [0,2]
= / e‘§3v:,(X:_)x{X;:X;=z,.}d§:
[0,4]

~ [ es-na.
[0,4]

After arranging terms in (57) we get

wle) = [ e Sm(pdt - 1ag)
[0.t]
T
B f e o(A— XYL (X)dW, + e o (X7).  (59)
0

Now by taking expectations and then passing to the limit as ¢ — oo we
obtain the desired result. o

In case b) we start from (57) and we observe that equality (58) still holds,
since X} < z* for each ¢ > 0. Next, we have

»—63 l dé- - E 8—53 "U AES]

0,¢] 0<s<t

/ el (X Ve =

0

\_

[
B f e5e0l(X3)dE; + f el (X7 )dEs — ) (x) ALS

(o (0,¢]

= [ et e

(0

— / _63 !(X )X{X* X*—z*}dgs
(0,4]

= f e~%(—1)de",
{0,]

Now, by recalling that X} = z — £§ = 2* and that v,(z) is a straight line with
slope equal to —I on [2*, +o0) (hence v'(z) = —I on [z*, +00)), we obtain

S e [ (X2) ~ (X)) = e — &) — vale) = va(2") — v.(a)
O<a<t ' o
— (@) - 2) =~ (2)ALL = IAL,
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Therefore,

t ' o
f A = 3 e fun(XD) - w (X))
A ._

0=t

= f e““(-I)d£§+(-—-I)A§};m f e (-1)de}.
04 | Jio4

Finally, collecting terms in (57) we get again equality (59) The desired result
is obtained by proceeding as in case a). The proof is now complete. m.

5 The original problem (P)

We now turn to the question of economic admissibility of the mathematical
solution figure out in Section 4. To this end it suffices to verify that the op-
timal price path is non-negative. Then, by invoking Lemma 1 and Coro]la;ry
2, the desired admissibility follows.

Recall that the optlma.l price path is Markovian and glven by

A+ Bc— X} — BDv'(X?)
2B . 3

pi(X{) =
hence if we compute the derivative of p* with respect to X* we get

dp*
CdX*

= _2'—135 (1+ BDv'(X™)).

In Section 3, where we analyzed the problem with zero inno'vation,‘ we had
that assumption (A.5) implies —5%(1 + 2BDH) < 0. Now, it is possible to
show (see [24]) that 2H < »"(X*) < 0 and hence .

dp*
dX*

< 0.

Thus, optimal prices decrease as the market saturates and, since X™ never
~exceeds z*, we conclude that the minimum price is reached at z*. As a result,
it suffices to prove the non-negativity of p*(z*). This follows from 2* < A,
the definition of p*, and the fact that v/(z*) = —1I.

In other words, if (A.5) holds then, by invoking Lemma 1 and Corolla.ry'
2, the original Problem (P) and the Problem (P..) (i.e. the one studied in
Section 1.4) are equivalent in that ve(z) = - v(z) for each z £ A, where Vos
and v are respectively defined by (33) and (4).

34



6 Conclusions

We now investigate a bit closer the optimal control pair (p*,£*). As we
have already point out in Remark 22, £* is a local time and, essentially,
/it is merely used to prevent the state dynamics X™* to exceed z*. Let us
~ look at this phenomenon from an economic point of view. We defined the
state dynamics X as a market saturation indez, that is X is an index of the
residual market demand faced by our agent who covers the whole market
supply. As X increases, the market gets more and more saturated and less
people buy the product. Hence, our analysis suggests how and when to adopt
new products that are already available. It turns out that innovation is best
adopted when it is used to prevent the market to saturate too much. In other
words, there is a critical level of market saturation (i.e. 2*, which depends
on the variables, included the proportional sunk costs I the monopolist incur
when introduces into the market a new product) above which it becomes
profitable to innovate.

On what concern p* we have seen that, consistently with both previous
literature (cf. [33], [16]) and empirically ev1dence, optimal prices decrease as
the market saturates.
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