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1 Introduction

Modern society has been characterized by a constant supply of technological
innovations adoptable in industry, agriculture, services, cr other branches of
economic activity. Despite that, the rate at which such innovations have been
adopted, through a mass production, seems to follow a slower pace!. Quoting Ti-
role ([36] (1990), p. 401): *Few innevations are adopted instantaneously.” Then
the question is: What explains such a delay? The existing theoretical literature
on innovation adoption propose several models to justify this phenomenon?.
These models consider, singly or jointly, various economic aspects such as: a)
market structure (see, among others, Kamien & Schwartz (1972), Reinganum
(1981}, Jensen (1982), Mamer & McCardle (1987), Lee & Wilde (1980), Barzel
(1968).); b) externalities, spillover effects, and learning by doing (Jovanovic &
Lach (1989), Jovanovic & MacDonald (1994), Mason & Weeds (2001)); c) un-
certainty surrounding the innovation profitability (Rosenberg (1976), Balcer &
Lippman (1984), Grenadier & Weiss (1997), Farzin et el. (1998), Bessen (1999),
- Dosi & Moretto (2000)). :

In this paper we analyze, in a continuous time setting, the choice of innova-
tion® adoption made by a competitive firm (cf. [25]). The firm produces and
sells a durable good and no strategic considerations are analyzed. The agent
faces an uncertain market demand and the decision of adopting is irreversible.
Moreover, time honzon is infinite and the technological change is modeled as a
continual process®. In contrast with [25] here it is assumed a finite amount of

! For historical accounts of the slow pace of adoption of technology innovations see, for

example, Mansifiel {1968).
2For a review we may refer to Bridges et al. (1991) and Reinganum (1989).

3Here by innovation it is meant product innovation.

4Much of the literature models the innovation adoption decision as a once-and-for-all event
(Kamien & Schwartz (1972), Reinganum (1981), Jensen {1982), Mamer & McCardle (1987),
Lee & Wilde (1980), Grenadier & Weiss (1997),Dosi & Moretto (2000), Mason & Weeds
(2001)}.



innovation available to the firm®. This is the essential difference with respect
to [25] together with the fact that a competitive firm is price-taker, hence only
the singular control comes up. For the rest, the model shares the same math-
ematical structure as in [25]. As a result, the problem falls in the so called
"finite-fuel” singular stochastic control®. Despite the presence of the finite-fuel
component, the mathematical analysis of the problem is considerably simplified
becanse of the classical control absence. As a matter of fact, previous results
on the subject apply to our analysis (see [31], [6]).

From an economic point of view, it is remarkable the fact that, in spite
of the limited innovation available, the optimal adoption policy chosen by a
competitive firm is, in essence, similar to the one used by a monopolist. In
other words, also the competitive firm adopts innovation, at least as long as she
runs out of it, mainly to keep market demand above a certain profitable level
(cf. [25]). _ : ‘

Before getting into the analysis details, we briefly illustrate the way we are
going to follow in the mathematical analysis of the problem. "‘We actually use
a device first introduced in [6] (a probabilistic analysis of such device is given
in [18]). The idea is that of studing separately the two extreme cases of no
innovation at all and the case of infinite innovation available. Once this has been
done, it can be shown that the original problem, actually the value function of
the original problemni, is an appropriate combination of the two extreme value
functions. :

2 The model, éssumptions, and first properties

Let (Q, F,P) be a complete probability space equipped with a filtration (F;)
satisfying the usual condition of right continuity and augmentation by all P-
negligible sets and carrying a standard one-dimensional (F;)-Brownian motion
W;. Given this setting of uncertainty, which is completely known and observed
by the firm, we define the market saturation indezx faced by the firm, X;, as the
unique solution of the following SDE

{ Xe=a+ [y D(A— X)ds+ fj (A~ X,)dW, — &, (1)
Xy ==,

5Very likely, the whole innovation available to be adopted by the firm is finite, since, in
contrast with the monopolist case, in a competitive market the snergies available to be spent
by the agent in creating new innovation are far less than the ones available to a monopolist.
As a result, a competitive firm has far less innovation readily available to be introduced in
the market. ]

6These are control problems in which the total variation (in the whole time interval where
the analysis is carried out) of the control process is bounded by a fixed positive constant.
Problem of this type arose first in the sixties in order to analyze the hest way io control
a spacecraft. In these models the control variable is the total amount of fuel used by the
spacescraf up to time ¢ 2 0. With this interpretation it is appropriate to impose a conatraint
on such a control: hence the name finite-fuel. Important contributions on this subject are,
among others, [3], [31], [6]}



where z < A, 0 > 0, and D > 0. Similar to the monopolistic case, the constant
A can be seen as the relative market potential at time zero, that is A is wha,t
the firm expects, at the beginning of the analysis, to sell at most.

The process &, stand for an index of the cumulative innovation a.dopted up
to time ¢ and we will take { € V., where :

- non~decreasing,
~ right continuous with
- left limits, P — a.s.;"

V+.:= {-{0,-1—00)-“?]1?.& 28
Fi-adapted with £, =0, t <0

It'is worth noting that the non-decreasing feature of £, accounts for the fact
that once the firm has adopted innovation he cannot go back on his decision
(irreversible demsmn) Moreover the negative effect of ¢ on X; (see (1)) means
that market enjoys new energies in adopting innovation. '

In the sequel we will assume that the total amount of innovation available to -

- adoption is finite. Formally, the maximizatioh will be done by taking £ € Vi,
Cwith
Vi ={E€-V.|_suchtha.t£°°<M P-as},

where the positive constant A{ stands for the total amount of innovation ava.ll-
able. We will refer to Vi as the admissible control sét,

It ‘remains to formalize the firm’s profité structure. First, since the firm -
does not control prices then her profit rate 7 is simply a concave function of
the market saturation index, that is 7 = 7(X;). In order to avoid usefulness
mathematical complications we wﬂl take the follomng profit structure

(z) = A* — 2°

Observe that once all the potential chents have bought tha.t is when z = A, then
profits are zero and the only thing the firm can do.is to introduce innovation
and start again. Second, the innovation adoption costs are exactly modeled as
in the monopolistic case. Therefore, once again, assuming a continuous discount
factor & > 0, the firm wishes to maximize her expected discounted profit -

e ;="E'l f[u'm) %st_'{w(xt)d:—fdgt] @

over all £ € Vys. On the parameters we make the follomng a.ssumptlon '
Al §>c%+2D. B

As we already said this is an infinite hbrizon'a.utonomous singular monotone
follower’ ”ﬁmte—fuel” stochastic control. The value funetion of our problemis
given by R : '

Mmoo

The following lemma shows that no solution of (1) exceeds A.




Lemma 1 Let x < A, £ € V.., and X, the unigue strong solutz‘o'ﬁ of (1), then
' PiX, <4 ¥t>0=1 '

Proof. Let X the solution of (1) with £ == 0, V¢ > 0. Then, due to the
geometric brownian structure of the equation when £ = 0, it follows

P[X) <4, vi20]=1

Next, consider the right-continuous semimartingsle Z; := X; — Xf , then Z, is
the unique solution of the foﬂomng SDE

t
Zy= | —-DZ ds—e—/ ~0Z,dWs — &;.

Arguing as in [13}, let ¢, be a sequence of C?(R) functions’ such that

p(2)=0, for z<0,
0<¢nl2) <1,

wa(2) T 2T, for n — 00,
¢n(z) < 2(na?) 71

Then, by applying Itd’s formula for semimartingales (see [32]) to ¢,(Z:) we
obtain

0nlZ) = alto)+ [ ~DIAEM ] [ P @I+

+ ﬁ BUACRL AR f =0 Zug(Z0)AW, +

+ 3 {en(20) — ¢n (Ze)] - ¢ (Ze-) AZ:} (@
O<ast
where, AZ, = Z, — Zy. = ~AE, = £, — &,_. Moreover

f o (Z,-) d(—E,) =
0,

f

- [z~ 3 teh (2 a8

<8<t

#

f PuZNdEE+ Y {9 (Zeo) AZY,

0<s<c

where £¢ is the continuous part, in the Lebesgue decomposition, of £,. Now, by
taking the expectation of both sides of (4) and observing that:

78uch a sequence could be

I ze_'r'-l:, for z >0

@) =9 0 forac0  n=12.



1} wn{—€o) = 0, for every n,

i) — [ ¢, (Z,)deS < 0, for every n, _

iif) ¢, (Zs) — v, (Z,—) <0, since p,, is non decreasing for every n, we get
t 1 3 .

Bipn(z0) <B| [ ~Dziei(zis] + 38| [ o @) ez)as).

y o .

Now, the first term on the right-hand side above is non-positive since !, (Z,) = 0
when Z, < 0, and the last is bounded above by 0'2t/ n. Hence, as n — 00 we get
E[(Z;)*] £ 0, for every t > 0, and the conclusion follows from the sample path
right-continuity of Z;. m

‘Now, in order to handle the finite fuel feature of the problem®, it simplifies
matters if we first study a control problem in a two-dimensional state space and
then look at our original problem as a restriction of the latter. Formally: Let’s
introduce a new state variable, ¥, as defined: ¥; =y — £,, where Y; represents
the remaining innovation at time ¢ if y was available at time ¢ = 0; congider the
following two-dimensional stochastic differential equation :

{ X, =+ [ D(A—X,)ds + [ o(A~ X,)dAW, — &, 5)
Vi=y—¢& ’
where (z,y) € (—o0, Al x Ry =: D; and maximize
%WMMEU‘ewW&Wwwd ©
[0,20)

over all pairs £ € V,, where V,, the set of admissible control at y € R,, is
defined as follows :

Vy={{ €V, suchthat £, <y, P —a.s.}.
The value function of this prbblem is given by

v{z,y) = sup Jioy (2, y) _ (7)

Of course, v.(z) = v(z,M) and from now on we will concentrate on the
analysis of the two-dimensional problem. First, the linear concave structure of
the problem enables us to prove the following

Theorem 2 The value function v(z,y) is conecave and continuous in (z,y) and
increasing in y. Moreover, there exists o constant C' > 0 such thai for each
Azy) €D

| ~C(1+2%) vz, ) £ C : (8)

8See [3], [31], [6].



Proof. Continuity and concavity can be proved exactly the same way we
used in Chapter 1. Next, fix z < A and take y',y? € R.. such that y* < 32,
then V1 C Ve and

v{z,y') = supE [ e~ [m( Xy )dt — Idg,)
£EV 1 [0,00) .

IA

sup E [ [ e tmra— Id&}] = v(z,47)
£€V,2 [0,00)

which is what we claimed.

. The second inequality in (8) is a direct consequence of the boundedness of
7. To prove the first inequality it is suffices to prove it for y = 0. Now, let xpP
the solution of (1) with £ =0 and define Z; := X0 _ A. Then Z; is the unique
gsolution of the SDE .

t t
Z = (z—A)+ f ~DZ,ds + f 0 Z,dW,.
0 0

By first applying Ito’s lemma to the function f{Z;) = (Z;)® and then taking the
expectation we get

E[(Z)?] = (z— AP+ (0*—2D) fu "B [(2,)?] ds
< (z— AP+ |0*—-2D| fot E [(2.)%] ds
An application of Gronwall inequality yields |
E[(Z,)?] < (z - A)%el" 20l
Observing that _
| (X)) = A2 — (X9)° > 222 - A2,

~ we conclude by using A 2

v(z,y) = v(z,0)=E [ fo oo_e_“fr(X,,)dt] >E [ fﬂ ” e (~227 — Ag)dt]
—C(1+27).

v

2.1 Some heuristics: The HJB equation

We now derive, though in a heuristic way, the HIB equation for v(:r:,y); Invok-
ing the Dynamic Programming Principle, and assuming that v € C?(D), the
following heuristic arguments motivate the conclusions.
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First, consider the policy "do nothing for a little while and then proceed
optimally”; then for z < A, y € B, and every A > 0 we have

h
v(z,y) > E [[ e Stm (XN dt + e"'jhv(X,?,y)] ,
)

where (X?,y) is the solution of system (5) with initial condition {z,y) and
controls ¢, = 0. Subtracting e %" v(z, y) from each side, we get

vz, )1 —e ") > B |:fh e;atvr(Xf)dt +é‘5“"E [v(Xh ) —v(z,v)] .
_ 0

Dividing by h and letting h | 0 we obtain
50(2,9) > 50%(A— 2V vaal,y) + D(A - 2uslmy) +7(2). (9)
Hence, |
Dle](z,9) + 7(z) <0, ¥(z,5) €D
where |
Dp](2,9) £ 50%(4 — )?vea(2,) + D(A— 2)oa(z,) ~ olz,y), (10

here subscripts indicate the partial derivatives.
Next, let + < A4, y € Ry, and 0 < & £ y and consider the strategy " jump
immediately from = to z — h and then proceed optimally”; this yields

U(ﬂ?’y) 2 -—Ih—t—v(x—h,y—h).

Subtracting v(z,y) from each side, di';riding by h and letting A | 0, we get
_Ui(may) - ﬂ’y(may) -1 < 01 V(:r:,y) S (""‘GD,A] X (0, -I-‘OO). (11)

In view of the above heuristic arguments, we expect that the value function
v should satisfy, at least formally, the following conditions:

Div){z,y) +7(z) < 0, (z,9) €(—o0, 4] x [0,+00), (12)
—vp{z,y) —wylz,y) —1I < 0, (z,¥) € {~o0,4)x {0, +o0) (13)

Now, fix (Z,7) € (—o0, 4] X (0, +-00) and assume ~v,(Z, §) —vy (T, F) ~1 < 0.
Then (13) holds with the strict inequality in a whole neighborhood B.(Z,§7) C
(=00, 4] % (0,4cc). Moreover, for every (z,y) € Be(%,7) there exists b > 0
sufficiently small, dependent of {z,y), suéh that v(z,y) > —Th+v{z —h,y—h)
and v{z — h,y — h) € B(Z,§) but this means that in B.(Z,§) we are better off
if we do not adopt innovation (i.e. df = 0). In turn this implies that in B.(Z,7)



the state variable evolves freely and therefore (12) holds with equality. Hence,
v(z,y} should satisfy, in some sense, the following variational inequality

max {D[v]{x, y) + mw(xz); —ve(z, y) — vy(z,4) — I} =0, (14)

for every (x,y) € (—o00,A] x (0,+cc). An appropriate boundary condition for
(14) is ' o

| vz, 0)=u(z), Vo <4, - (15)

where 4%(z) is the value function corrésponding to the problem with £, = 0.

In the next two sections we are going to analyze the two extreme cases of no
innovation at all and the case of infinite innovation available, Once this has been
done we will see how the value function (7) can be obtained as an appropriate
combination of the extreme cases value functions.

3 Extreme case: no innovation

When no innovation is available the state dynamics became the following un-
controlled diffusion

t ¢
xgl=m+f D(A—Xf)ds+f oA — X0dW,,
’ .JO 0

with initial condition x < A. The value function is simply
. I o0 [o «]
wW(z) 2 E { f e“Stw(Xf)dt] =E [ f e %42 - (X?)z)dt] ,
0 0

where we clearly expect u%(A) = 0. Therefore, applying the dynamic program-
ming principle, we deduce that, for each z < A, u° should satisfy the following
HIB equation ' '

{ 162(A — 2)%v"(z) + D(A — o) (z) — bv(z) + 7(z) =0

v(A)=0 (16)

The differential equation in (16); is a second order linear differential equation of
Euler type; therefore it can be integrated by quadrature. The general solution
is

fu(;ﬁ) =Cy(A~ x)’“ + Ca(A— ..'V:)"2 +H(A- .av:)2 + K(A—x), (17)
where Cy, Cy are two arbitrary real constants,
1 2A
T o -2D K= D4 4§’
and Aj, Ay are the two real distinet roots of
1

502)\2 — (-302 + D) A—6=0.

H (18)



For Ay, A2 we have

A

i

= :
o2 (-;-0'2 +D— \/(é o2 + D) + 20'2-6) ' (19)
o 59 + D 502 +D) +202%6 . (20) .

Now, A1 < 0 and Assumption (A.1) implies H < 0 and Ay > 2. Therefore, since
'u® has to satisfy (8) and (16), we conclude that Cy = C3 =0 and

ul(z) = HA-z)? + K(A—=), | (21)

A2

for each © < A. Hence, u° is concave, although this feature could have been
seen immediately. '

4 Extreme case: infinite innovation

If the firm has infinite innovation available to be introduced into the market
then the state dynamics is '

t £ '
Xy =z + f D(A— X,)ds + f (A - X,)dW, — &, (22)
0 0
where the initial condition is such that z < A, and £ € V. Hence, we maximize
JP(r) 2 E [/ e [m(X,)dt — IdEt]] , (23)
) [0,0c) . .

over all £ € Vi. For each « < A, the value function becomes

Voo (T} £ sup Jéx’(ﬂf)a (24)
vy '

and it is concave with growth condition given by (8).
Again, assuming that ve, € C?((—oc, A]), a formal application of the Dy-
namic Programming Principle yields, for each z < A, the following HJB for

{ 10%(A — z)%v"(z) + D(A — )0/ (x) — Sv(z} + A —2® < 0
(@) -I<0
(1o02(A — z)2v"(z) + D(A — z)v'(z) = bv(z) + A% — &2} (—v/(z) - ) = 0.

(25)

This is a free boundary problem. We are going to solve it by direct computa-
tions. In other words we will impose the smooth fit conditions® at the unknown

98ee (3], [18].



boundary, and, thanks to the particular simple structure of the equation, we
will be able to explicitly find out the free boundary and the value function.
Therefore, since the general solution of (25); is given by (17), we are looking
for a point z* < A and a pair of real constants Cy, Ca such that

Wzt =T :
foedzal (26)
First of all, the growth condition (8), required for v, implies C2 = 0 since
Az > 2. Henee, conditions (26} become the following non-linear algebraic system

V(a*) = —MCy(A— 2=l —2H(A —5*) ~ K =
v(@*) = A (M — DOy (A —a*)1—2 + 2H = 0,

to be solved for z* and . Such a solution is explicitly given by

I- K
T = A e (27)
-2H
C : (28)
T - Digrap™™

where H, K, and Ay are respectively defined in (18) and (19). We first recall
that A; < 0 and then observe that if X > I then ¢y > 0. Now, two cases can.
be single out: Case a) I > K; Case b} I < K.

Case a) I > K. In this case z* should be greater than or equal to A, but a
straightforward computation would prove that the function u°, defined in (21)
is a solution of (25). In other words the free boundary problem disappear (see
Figure 1).

For Case b) (see Figure 2) we prove the following

Theorem 3 Let I < K and consider z*, Cy as in (27) and (28). Then
i) z* < A and Cy > 0;
i4) the function

B(z) = { Ci(A-z) + HA- 22+ K(A-1), z € (—o0, z*|
C1(A ~ 2" )™ + H(A~ m*)z_ +K(A—2*)—I(z—2z*), z¢&la*, 242]9)

is a two times continuous differentiable concave solution of (25) satzsfymg the
bounds in (8).

Proof. i) This is obvious.

ii) ¥ € C?*((—c0, A]) by construction. Moreover, for each # < x* the function
v(z) = M(A — 1)Ci(A — z)*172 + 2H is increasing, hence it reaches the

10



Figure 1: Case ) I > K

maximum at z*, and ”{2*) = 0. This imply ‘the desired concavity of #. The
bounds in (8) are easily seen by noting that Cy > 0, and
uo'(.:c )=-2H(A—2")— K = I+ K =M] < —1I.
AL —2

Finally, we need to prove that 7 is a solution of (25). If z < z* then (25)y
is satisfied with the equality and (25); follows immediately. To verify (25)2 it
suffices to notice that 7 is concave.

We now turn to the interval [z*, A]. Clearly (25); and (25)3 are satisfied
with equality. It remains to prove (25);. Since z* < A and

{ 15%(A - a*)20"(2*) + D(A — &)o' (z*) ~ 60(x*) -+ A2 — ()2 =0
ﬁ’(m*) = ] X 1
’I‘._J”(w*) ﬁ(}

it follows that

s(o%) - —DI(A~ m)a + A2 — (m*)zl‘

Therefore, for each z € [z*, A], we have

oa) = “RHATII A @F oo, (30)

11



with #(2) = —I, and 7/{z) = 0. If we substitute 7 into (25)1 we get
(#—a*) (DI -z" —x+6I)<0.

First, the last inequality is certainly true for z = z*. For z € (z*, A] we may
divide both sides by (z — 2*) and we get '

DI—z*—z4+8I<0,

to hold for each z € [z*, A]. Now, the expression on the left hand side of the
last inequality attains its maximuwm on [z*, 4] at = = z*. Therefore, if z* is-
- such that o '

S DI+46I

2 5 |

then #(z) defined in (30) solves (25); on [z*, Al. Now, by using concavity of

on (—oo,2*] we can show that z* actually satisfies (31). In fact, ¥ satisfies (25);
with equality on (—oo, z*|, and by deriving one more time we get

(31)

%aﬂ(A — 2)%0"() + (D(A — 2) — 0> (4 - 2)) V"(z) ~ (D + 6)7' (@) —2u =0,

At z = z* we have
%oj(A — ") (2*) + (D + )1 — 2z* = 0.
Now, since 7 is concave in a left neighborhood of z* then at ™ we must have
%0‘2(44 —2")*u" (2*) = 0.
Equivalently, z* must be such that
(D + 8§ —2z* <0.

Therefore 7 satisfies (25); aiso on [z*, A]. The proof is complete. m

‘We now state theorems on the existence of optimal controls and on the
equivalence of v, defined in (24) with ¥ defined in (20). We need to consider
separately the two cases aforessid.

First, we deal with Case a), that is we assume I > K. For the proof of the
following theorem we refer to [24], Theorem 32.

‘Theorem 4 Assume I > K. Let u® and JE°(z) defined, respectively in (21)
and (23). Then
i) for every £ € V4 and for eachz < A

u(z) > I (z);
i) for£, =0 andx < A4
u®(z) = Jg°(x).

12



Figure 2: Case b) I < K

Remark 5 As a result, when I > K, we have u®(x) = voo(z) for each z < A.

In Case b), that is when I < K, the following theorem states the existence
of a particular admissible control that later on will turn out to be optimal.

Theorem 6 Let «* as in (27). Then for each z < A, there exists a unigue
£ € V4 such that with X} defined by (22), the following conditions hold almost
surely: : ‘ '

i} if z € (z*, A], then X§ = z*;

) X <z*, Vt>0;

'LH) E: = f[o,f,] X{X;:X;'=m‘}d£:: vt 20

This is again a.Skorohod problem. As we have seen in Chapter 1, the non
degeneracy of X}, at least for < z* < A (which is actually our case), is a

sufficient condition for the existence of a unique solution. For a complete proof
we refer to [23]. '

We finally state the following verification theorem (for its proof we refer to
Theorem 28 in [24]) that, for I < K, guarantiss :
. B(x) = vo(z), =« <A,

with ¥ and w, respectively defired by (29) and (24) | .

13



‘ : | .
Theorem 7 Let z* be as in (27) and let © be defined (29). Then
1) for every §¢e 1)4_ ' :

(z) = JE°(x), z < A;
i) for £] defined in Theorem 6

o) = J@(z), =<A

5 The origihal problem

‘We now turn to prolLlem (7). For it, the following theorem can be proved (for
the proof we refer the reader to (31], Theorem 3.3, p.796 and [6], Theorem 4.2,
p- 887). ' .

Theorem 8 Assume (A.1) and I < K. Then, fo'r every y > 0, the value
Junction v(z,y) of the finite-fuel monotone stochastic control problem (7) can
be decomposed as

U2, Y) = voo(2) + 0(z — ¥) — V(@ ~y), Vr< A4, (32)

where u® is the expected total profit in the case of zero innovation (cf. (21), and
Voo 18 the value function of the problem (24) with infinite innovation,

Again referring to [31], Theorem 3.4, p.797 (see also (18], Theorem 1, p.
5580, for a probabilistic approach), it can be proved the following

Theorem 9 Assume (A1) and I < K. Let £ € V. be the optimal control
process for the infinite innovation problem (24), and define

T(y) 2inf{t 20: & >y}
Then, the control process £¥. € V.., given by

i34 é.{ 5:, tozsjf(f,)T(y) (33)

is optimal for the control problem (7); that s

v(z,y) = Jou (2, 7)),
where Jex (2, 7) is delined by (6).

Remark 10 We point out that according to (33), in the case of a finite amount
v of available innovation, it is optimal to adopt innovation as if one possessed
an infinite amount of it, until the supply is exhausted.

14




6 Conclusions

Comparing the results between the monopolistic case studied in [25] and the
competitive one here studied, we conclude that, despite the fact that a com-
petitive firm has a finite amount of adoptable innovation, she employes such a
resource in exactly the same way as the monopolist does. That is the adoption
policy does not depend of the amount of innovation available and this turn out
to be a quite astonishing conclusion.

In addition to that and in contrast with the previous literature, our model
motivates the, empirically evident, innovation adoption delay mainly as a matter
of market demand and product diffusion on the market itself (that is market
saturation).
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