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Abstract

Some characterizations of pseudoaffine quadratic fractional func-
tions are studied and it is proved that these functions share a par-
ticular structure. The wider class of functions given by the sum of a
quadratic fractional function and a linear one is also studied, charac-
terizing their pseudoaffinity by means of simple conditions. The use of
pseudoaffine quadratic fractional functions in optimization problems
is also deepened on and a simple procedure which checks the pseu-
deaffinity of these functions is provided.
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1 Introduction

Quadratic fractional programming deals with constrained optimization prob-
lems where the objective function is the ratio of a quadratic and an affine
one. Due to its importance in application models, this particular class of
nonlinear programs has been widely studied both from a theoretical and an
algorithmic point of view (see for example [3], [2]).

Many solving algorithms have been given for quadratic fractional prob-
lems whose feasible region is a polyhedron. In these cases the generalized

*The paper has been discussed jointly by the authors. In particular, sections 1 and 5
have been developed by Laura Carosi, section 2 and the appendix by Riccardo Cambini,
while sections 3 and 4 have been developed jointly by the authors.



convexity of the objective function plays a fundamental role, since it guar-
antees the global optimality of local optima.

Among generalized convex functions, the pseudoaffine ones are extremely
useful since the above nice properties hold for both maximum and minimum
problems. We recall that:

a function f: A — R, where A C R" is a convex set, is said
to be pseudoaffine if it is both pseudoconcave and pseudoconvex.

[t is known (see for all [1]) that when f is a differentiable psendoaffine
function it results that

» f is nonconstant if and only if Vf(x) # 0 for every x € A

while if f is alsc nonconstant then, given a closed set X C A, the following
properties hold:

¢ there are neither local maxima nor local minima in the interior of X,

e if X is a polyhedral set then the maximum and minimum values are
reached on a vertex.

Thanks to their properties, pseudoaffine functions play a key role both in
finding eptimality conditions and in implementing algorithms for applicative
problems.

In this paper we aim to characterize the pseudoaffinity of quadratic frac-
tional functions, looking for necessary and sufficient conditions which can
be easily checked. By means of the proposed characterizations we prove
that a quadratic fractional function is pseudoaffine if and only if it can be
rewritten as the sum of a hinear function and a linear fractional one with con-
stant numerator. This result allow us to give conditions characterizing the
pseudoaflinity of the wider class of functions given by the sum of a quadratic
fractional function and a linear one,

Furthermore we prove that optimization problems, involving a psendoaffine
guadratic fractional function, can be solved through equivalent linear ones.

Finally, we provide an easy procedure which checks the pseudoaffinity of
a quadratic fractional function.

2 Preliminary results

A very well known characterization of pseudoaffine functions is the following
(see for example [1],[15]). '



Theorem 1 A differentiable function f : A — R, A C R" open conver set,
is pseudoaffine if and only if the following implication holdsVz € A, Yv € R",
v#£0, Vi € R such that x +tv € A:

Vi) v=0 = ¢,(t)=f(zx+tv) is constant

In the next section some new characterizations of pseudoaffine quadratic
fractional functions will be given using the inertia of symmetric matrices.
With this regards, the number of the negative eingenvalues of a symmetric
matrix @ is denoted by v_(Q), similarly v, (@) represents the number of
the positive eingenvalues while 14{@) is the algebraic multiplicity of the 0
eigenvalue. A key tool in our study is the following result given by Crouzeix
(see [12]).

Theorem 2 Let h € R*, h &£ 0, and let Q € R be o symmetric malriz.
Then the following implication

My=0 = v Qu >0

is verified for every v € R™ if and only if one of the following conditions
holds:

i) v_(Q) =0,
i) v Q) =1, h € QR™) and u"Qu < 0 VYu € R" such that Qu = h.

Starting form the above theorem, we can state the following property
which is a key tool in characterizing the pseudoaffinity of quadratic fractional
functions.

Corollary 3 Let h € R*, h £ 0, and let QQ € R, Q # 0, be a symmetric
matriz. Then the following implication

Rfo =0 = +¢"Qu=20 (1)

s verified for every v € R if and only if one of the following conditions
holds:

i) (@) = n—1 (hence @ 1s positive semidefinite or negative semidefinite)

and h € Q(R™),

i) v (Q) = 1 (@) = 1 (hence Q is indefinite), h € Q(R") and v"Qu =0
Vu € R" such thal Qu = h.



Proof. First note that, from Theorem 2,
Plo=0 = v"Qu<o
is verified for every v € 1™ if and only if one of the following conditions holds:

a‘) ]/+(Q) = 03
b) v (@) =1, h e QR") and v'Qu > 0 Yu € R" such that Qu = A.

<) If i) holds and @ is positive semidefinite then vy (@) =1, v_(Q) = 0,
h € Q™) and v Qu > 0 Yu € ®*. Thus i) of Theorem 2 and condition
b) hold, hence hTv = 0 implies v Qv > 0 and vTQv < 0, so that Conditicn
(1) holds. The case ) negative semidefinite can be proved with the same
arguments. If ) holds then both conditions &) and #) of Theorem 2 are
verified; again hTv = 0 implies vTQv > 0 and vTQv < 0.

= ) First note that Condition (1) holds if and enly if

{F'v=0 = 2TQu>0} and {Kv=0 = +TQuv<0}

and this happens if and only if one of conditions i) and ) of Theorem 2
holds together with one of conditions a) and ). Observe that conditions a)
and 1) of Theorem 2 imply ¢ = 0 which is a contradiction. Conditions a)
and ;) of Theorem 2 imply condition i) and the same happens if 5) and i) of
Theorem 2 hold. If otherwise conditions ) and #) of Theorem 2 are verified
then condition 4) follows immediately. The result is then proved since all
the possible exaustive cases have been considered. a

3 Pseudoaffinity of quadratic
fractional functions

In this section we are going to characterize the pseudoaffinity of quadratic
fractional functions of the following kind (1):

527Qz + ¢"x + q0
Tz + by

(2)

defined on the set X = {z € R* : bTx + by > 0}, where @ #0is an xn
symmetric matrix, ¢,r,b € R* b # 0, and qo,by € R, Note that being @
symmetric, it is @ # 0 if and only if 14(Q) < n — 1.

flz) =

'Note that the pseudoconvexity of this class of function has been recently studied in
6] and [9].



Remark 4 Jt is important to point out that function f in (2) is not constant,
Suppose by contradiction that f is constant, that is f(x) = k and Vf(z) =
Qeta—J@b _ oy e x. Cons i X and | R
ot b = z € X. Consider an arbitrary z; € X and let o €
be such that o # 0 and oy € X it results Qzy +q— kb = Qozy + g — kb and
hence Qz1 = a@z, which implies Qz; =0, i.e. Qz = 0Vz € X. Since X is
an n-dimensional halfspace it must be Q = 0 which contradicts the definition
of (2).

The next theorem gives a new characterization of the pseudoaffinity of
based on the behavior of ¢} along the directions orthogonal to ¥ f(z).

Theorem 5 Function f defined in (2) is pseudoaffine if and only if the
following implication holds Vx € X, Yo € R*, v # 0, Vt € R such that
T+t e X

Vi@ 'v=0 = 2TQu=0

Proof. Trom Theorem 1 f is pseudoaffine if and only if the following
implication holds Vz € X, Yo € R, v #£ 0:

Viz)v=0 = ¢(t)= f(x+tv)is constant

By means of simple calculations we have that:

_ Qz+g— fa)h
bTIE—I— bg

$o(t) = [z +tv) = flz) +

Vf(z)

218207 Qu + t(Vx + by )V f(z)Tw
by + b(} -+ thTy

Lg2,7T v

When Vf(z)Tv = 0 then ¢,(t) = f(z) + ey 8nd this restriction
comes out to be constant if and only if 27 Qv = 0. [ |

The following further characterization, based on the inertia of Q, can now
be proved.

Corollary 6 Function f defined in (2) is pseudoaffine if and only if one of
the following conditions holds:

i) (@) = n—1 (hence Q is positive semidefinite or negative semidefinite)

and Vf{z) € Q(RY), Vf(z) £0, ¥z € X,

i) v(Q) = v:(Q) =1 (hence @ is indefinite), VF(z) € Q(R™), Vf(z) #
0, Vz € X and w"Qu = 0 Yu € R* such that Qu = Vf{z).
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Proof. < Follows directly from Theorem 5 and Corollary 3.
= Suppose by contradiction that there exists € X such that Vf(z) = 0.
Since f is pseudoaffine V f{z) = 0 implies that f is constant and this contra-
dicts (2) as it has been already pointed out in Remark 4. Since Vf(x) #£ 0 -
Vz € X, the result follows directly from Theorem 5 and Corollary 3. ]

Now we aim to prove that all the psendoaffine quadratic fractional func-
tions can be rewritten in the same way. TFor this reason we first prove the
following lemma.

Lemma 7 Let us consider function f defined in (2). Then:

Viz)e QR V2 e X & TG R such that QT =q and Q=1

and, in particular, for any given z € X

_ ) _z+T— fla)g :
Qu =V f(x) = TWa ik + & with k € ker(Q)
and U.TQ’U = (b%fﬁl;? with:

p(z) = (f(2))" 6" + 2f(2) [bo — b7Z] + (4% — 2q0)
Proof. Suppose that

_ Qz+q— fz)b

Vf(x) bz + b{)

Q") Vre X

and let us prove that
J7,y € R™ such that Q7 = ¢ and @y = b.

Since f is not constant, Jzi,zy € X such that f(z;) # f(x;) and hence
Juqp, up € N such that

Qur =@z +¢— f(z1)b and Qup = Qug +q — f(z2)b.

This implies that
Uy — Us — L1 + To
= b
(i)

and hence 7 € " such that Q7 = b. It follows also that Qu; = Qxy + g —
f(z1)Q7 which implies ¢ = Q(u; — 21 + f(z,)7) and hence 3% € R™ such that
®T =q.




Suppose now that Iz, 7 € R"™ such that QT = g and Q7 = b; then
_ z+7T— fr)y
Vf(m)'—Q( bT.fL"l‘b() )‘J

so that Vf{x) € Q(R") V2 € X. From the above proved equivalence it
follows that Qu = V f(z) if and only if

z-+T— fle)7
@ (u W) =0
and this happens if and only if

<U_$+f—f@m

o T b ) =k € ker(Q).

The whole result is finally proved noticing that:

_ 'GT"E‘-‘“BT (z+7 = f(@)7)7(Qz +q— [(2)b)]

_ (f(2))26Tg + 2 (2)(by — b7F) + (¢TZ — 240) |
(b7 4+ bg)® '

Using Lemma 7 we are able to state the following result, related to Con-

dition 4} in Corollary 6, which will be a key tool in characterizing the pseu-
doaffinity of f.

Lemma 8 Function f defined in (2} can be rewritten in the following form:

— 3T a7y

where o, B,y € R, o % 0, if and :o'n,ly if
w(@)=n—-1,Vf{z)c QR") Vr € X.
Moreover it results V f(x) 5 0 Vz € X if and only if v < 0.
Proof. =) By means of simple calculations @ = [2abb7], hence vp(Q) =
n — 1. Since Vf(z) = o {1 — ___’7_2_} bitis Vf(z) € Q(R™),vz € X.

(bT.’I,' + bg)
<=) From Lemma 7 our assumption becomes

vp(Q) =n—1 and 3,7 € R™ such that QF = ¢ and Qy = b.



Since b # 0 and dim{Q(R")) = 1 then Q% = ¢ if and only if Sy € R such
that ¢ = ub.

Since b € Q(RN") and dim(Q(R*)) = 1 then b is eigenvector of @ and hence,
being ) symmetric, there exists & € R, a #£ 0 such that @ = [2ahbT] and

7= gﬂ%ujb, 2677 = L. Consequently

_ a2+ pbTe g _

f(.'.l:) - bT.T + b(}
o |(b"z+ bo) — bo] 2 ubTx + by — pibo + a0
- bTx + by
@b% — tibo + go

= T —
=ab z+ (up— aby) + T
1
The result then follows defining 3 = (u — aby) and v = b2 + = (go — pbo) -
To prove the second part of the lemma, note that '

Vi) = o 1~ g

with a # 0, b 5 0. Hence it results Vf(z) # 0 Vz € X if and only if
(67% + bo)” # 7 Vz € X, (3)

By definition {y € R: y = bTx + by, z € X} = R, . so that (3) holds if and
only if v < 0. [

We are now ready to provide the following characterization of quadratic
fractional pseudoaffine functions.

Theorem 9 Function f defined in (2) is pseudoaffine on X if and only if f
is affine or there exist o, 3,v € R, a # 0, such that f can be rewritten in the
followrning form:

84

3T v
flz)=ab x+ﬁ+bT.r+bo

with ~ < 0.

Proof. =) Since f is pseudoaffine, either condition i) or condition i) of
Corollary 6 holds. If i) is verified the results follows from Lemma 8§ noticing
that f is affine when v = 0. Suppose now that condition #) holds; from
L.emma 7 it results

v (@) =v(Q)=1, FTZFe R st. QT=qand Q7 = b, p(z)=0Vxc X



with Vf(x) # 0 Yz € X. Being f nonconstant then p(z) = 0 Vo € X if and
only if 87y = 0, b7Z = by and ¢°% = 2¢g5.
Since v_(Q} = v4(Q) = 1, from the canonical form of @ we get § =

[uu? — vu”] where v and v are eigenvectors of Q with u7v = 0. From Q==

By =77Q7 = 0 we have

_ _ _\ 2 —

7 Qy = (u"y) - ("7 =0
so that v'7 = £+ 477, Then

b=Qy=u (fu,ng) — (’UTy)- RS (uTg) (u + dv),

where 0 = 1. By defining ¢ = 2u1T§ (¥ -~ dv) and performing simple calcu-
lations we get

(ab” +ba”) = [uu” — "] = Q

Note that a and b are linearly independent. Let & € R" such thas Qcc =g
and define ap = a?TF. Tt results

g = ab’T+ baTT = aby + bag

1 1
gy = "Q"QTE = iboﬂT‘f + angE = agbo

1
§mTQ:c +qtz+q = (bTz+b)(a"z + ag)

hence f(z) = a'z + ag.
<) If f is affine it is trivially pseudoaffine. The whole results then follows
directly from Lemma 8 and Corollary 6. |

Remark 10 The proof of Theorem 9 points out that:
i) when v_(Q) = v (Q) =1 f is pseudoaffine if and only if it is affine,
ii) f may be affine when v(Q) =n — 1 (case v = 0),
iil} f is pseudoaffine but not affine only if 14(Q) = n — 1 (case v < 0).

It is worth noticing that in Theorem 9 it cannot he v > 0, as it will
be shown in Example 12. However, in this case it is possible to prove that
function f is pseudoaffine at least on two disjoint convex sets.



Corollary 11 Consider function f defined in (2) and suppose that there
exist o, 3,y € R, a # 0, such that f can be rewritten in the following form:

e hT ary
flz) =ab $+ﬁ+bT:c+bg
i) if v <0 then f is pseudoaffine on X.
i) if v > 0 then f 4s pseudoaffine on Xy = {z € R" : bTz + by > /5} and
Xo={2eR":0<bz+b <7}

Proof. i) It has already been proved in Theorem 8.

i) Observe that Vf{z) = ——wa-?—g[(bT:c +bo)” — 4]b, and consequently

(T + bg)

Vf(z) # 0on X; and X,. The result trivially follows from Corollary 6, being

Q = [2abb”]. _ »
The following examples use conditions in Theorems 6 and 9 in order to

check the pseudoaffinity of three quadratic fractional functions.

Example 12 Consider problem (2) where

9z} 4 242 + 1622 + 621 — 825 + 1
B 3z + 4o )

/()

Observe that f is not pseudoaffine since it is nonconstant and V f(z) vanishes
at 3z1 + 4z, = 1. In this case we get:

18 24 6 37,
Q——[24 32:|1q_|:8:,:b_|:4:|1b0_0? QD_]‘:

by simple calculations we obtain 1p{Q) = 1 = v (@), f(z) = 3x1 +4zs +

1
24—k = :
+ EY—— ence y=1>0

Example 13 Consider problem (2) where

f(z) = 8x% + 223 + 1822 — 83132 — 242123 + 122015 + 1021 — 5y — 1523 — 4
' N =2y + o + 323 — 3 '

In this case we get:

16 -8 —24 10 —2
Q=| -8 4 12 |,g=| =5 |,b=] 1 |,bp=-3, gg=—4
—24 12 36 ~15 3

10



Since ¢ is semidefinite positive with vo(Q) = n—1, we have to verify condition
1

i) of Corollary 6. Note that Vf(z) = (2 + ) b#40

) () (—2x; +CE2+3.’E3——3)2

Ve € X, Vf(z) € Q(R?), hence f is pseudoaffine. The same result can be

obtained by means Theorem 9. In fact simple calculations give

1
w*2.’73]_—l—fL'g—i-—?)$3 —3’

flz)= -4z + 229 + 625 + 1 —

1
so that o = 2, v = 3 < 0 and hence f is pseudoaffine.

Example 14 Consider problem (2) where

_ —8a% — 2433 + 3223 + 163109 + 64mazs + 1639 4 1623 + 2

f(z) —871 — 87y — 1675 — 4

In this case we get:

—-16 16 0 0 ~8
Q=] 16 48 64 |,q= |16 | ,b=| -8 | .bp=—4, =2
0 64 64 16 ~16

() is indefinite with v, (Q) = v_{Q) = 1, hence f is pseudoafline if and only
if it is affine (see also Remark 10). In fact, by means of simple calculations
we obtain

1
f(CE) =T — Jxq9 — 223 — 'é*,

4 A wider class of quadratic functions

The aim of this section is to study a class of functions wider than the one
considered so far. Specifically speaking, we aim to characterize the pseu-
doaffinity of the following type of functions:

527Qx + g%z + g
o + b

g(z) = +cfe = flz)+ (4)
where as usnal X = {z ¢ R : blz+ by > 0}, Q is a n x n symmetric matrix,
g,2,0,c € R, b+ 0, and go, by € R; note that g is of the kind (2) when ¢ =0
and ¢ # 0. First of all observe that if f is psendoaffine then g is trivially
pseudoaftine; on the other hand it may happen that g is pseudoaffine even if
f is not. This is pointed out in the following example.

11



Example 15 Consider problem (4) where

x? + T2y — &1 + 220 + 1

)= — T
9(z) 1+ 29 '
2 - 2 1 1
Observe that f(z) = i +$1$2 f;_‘_ Bl T — 1+ ix::g is not
1+ T2 1+ 2
pseudoaffine while
o(z) = —zr1+ 222 +1
| &1+ ¥

is pseudoafline being a linear fractional function.

The characterization of the pseudoaffinity of g follows from Theorem 9.
Theorem 16 Let g be of the kind (4); the following statements hold:

i) g is affine if ond only if f is affine;

ii) g is pseudoaffine but not affine if and only if either @ + bc™ + ch =0
or there ezist o, § € R, o # 0, such that:

ba —
Q + b + b = 2abb”, g+ by = £, bg<¥

Proof. i) The result is trivial provided that ¢ is the sum of f and an
affine function.
i) By means of simple calculations g can be rewritten as follows

127(Q + be” + bz + [g + boc] Tz + %
bTr + by

glz) =

If Q@+ bcT + cb* = [0] then g is a linear fractional function which is known
to be pseudoaffine. In the other case, from Theorem 9, g is pseudoaffine but
not affine if and only if there exist o, 3,7 € R, a # 0, such that it can be
rewritten in the following form:

ary

3T
g(z) = ab .r-l—ﬂ‘f'ﬂw—

T with v < 0

and so

52720007 |z + (8 + abo)bTx + (Bby + or}f)
bz + bO

glz) =

12



This means that:

Q+be” + b = 20T, g+ boe = (8 + abo)b, a0 = B +ary.

?

=bg_£bﬂ_qﬂ

Defining & = A+ aby, 5o that 8 = & ~ aby and 7 = 2N _aﬁ bo -

the result then follows from ~ < 0. |
Note that Theorem 16 can be applied also to functions of the kind (2)
just assuming ¢ = 0.
The next examples clarify the use of the conditions given in Theorem 16.

Example 17 Consider again function g in Example 15. Observe that

o1 2] = [2 ] wmnne (] mre=[7]

@ + e + b? = 0 and hence g is pseudoaffine.

Example 18 Consider problem ({4) where

2
Ty — 2.’,13'1332 + 356'2.’1’)3 — 2(131 b 2.732 + 3.’1’)3 —4
= — 4z 4+ 6z3.
g(a:} —2x -+ To+ 333 — 3 1L+ %2+ b7

Observe that since

0 -2 0 -2 -2 —d
Q=1]1-2 0 3|,q=|-2},6=11 |,e=]| 1|,
0 3 0 3
go = —4, by = —3, it results
F 16 8 —24
Q+bm+cb"=| -8 2 12 | = 2abb" with a =2,
| —24 12 36
[ 10
g+boc=| —5 | =¢&b with ¢ = -5,
| —15
19 &by qo
BR=0g<c =24 %
O 2 a b

hence g is pseudoaffine.

13



5 Final remarks

Theorem 9 shows that every pseudoaffine quadratic fractional function £,
is the sum of a linear and & linear fractional one. This properties can be
efficiently used in order to study problems of the kind

1T T
. st e+ g x4+
min / max f(z) = 2 Qv g %
zeS bz + bo

(5)

where § € X. It has been already stated that function f, when it is pseu-
doaftine and the corresponding @ is indefinite, can be written as

‘ (aTm + ao) (bT:n + bg)
' Bz + by

fz) = =a"x+an z€X
so that
argmin{f(r)} = argmin{a”z} and argmax{f(z)} = argmax{a’z}.
zeS zeS res zES
Define now ©(t) = at+8 + 1153 we have proved that when f verifies condition

(@) =n—-1,Vf(r) € QR") Vz € X,

it can be rewritten as

= ab” W),
@) =obzt B+ e = o(b72)
Since ¢'(t) = « (1 — m) when 7 < 0 (Le. f is pseudoaffine} we have
1]

that ¢'(t) > 0 [< 0] if and only if & > 0 [< 0] and hence:
a > 0 = argmin{f(z)} = argmin{d"z}, argmax{f(z)} = argmax{b7z},
reS xS xCS rES

a < 0 = argmin{f(z)} = argmax{d"z}, argmax{f(z)} = argmin{b"z}.
zeS TeS zes zes

Note that, being @ = [2abbT], it is & > 0 [< 0] if and only if @ is positive [neg-
ative] semidefinite. We can then conclude that, whenever f is pseudoaffine,
its optimal points can be studied by means of a linear problem.

On the other hand, in the case v > 0, even if f is not pseudoaffine on X,
Problem (5) can be still studied by means of linear problems, splitting the
set X as X = X; UX, U X;, where

X, = {$E§]%n:bT$+b0>\/’?},
Xy = {zeR:0<bT0+b <A},
Xz = {zeR": b7z +b =/},

14



and defining the sets

™ = arg min{bTx}, SM = argmax{bTz},
reSNX, FESNXq
Sy = arg min{b7 2}, SM = argmax{b’z},
2CSNXo 2€SNX2
7 =argmin{32"Qz + ¢"z}, S = argmax{127Qx + ¢"x}.
rESNXa TESNXa

In fact, if o > 0 then ¢'(t) > 0 when t + by > /¥ while it is /() < 0 when
0 <%+ by < /7, hence we get

argmin{f(0)} = argmin {f(2)}, argmex{(f(@)} = argmax {f(@)}

zes zeSTUSHM S zeSPus LM

analogously for o < 0 it is

awgmin{f(z)} = orgmin {f(x)}, argmex{f(@)} = sgmax {f(@)}

reSMusTUSR reSTUSMUSH

Appendix - Pseudoaffinity Test

Characterization in Theorem 9 suggests the following procedure, written with
MapleV, which check the pseudoaffinity of a quadratic fractional function.
This procedure divides the numerator of function f by its denominator
and computes the quotient and the reminder. If the reminder is zero, then the
function is affine and the procedure stops; otherwise the procedures checks
the degree of the quotient and the reminder; if they are 1 and 0, respectively,
the procedure recalls a subroutine which establishes the pseudoaffinity of f.

Procedure 19
## Subroutine ##

cage_pseudo := proc(reminder,index)
local g,i,alpha,gamma;
g:=vector(vectdim(b));
for i from 1 to vectdim(b) do glil}:=coeff(quotient,x[i]) od;
alpha:=g[index]/b[index] ;
if equal(vector(vectdim(b),0),evalm(g-alpha*b))
then gamma:=reminder/alpha;
if gamma<O
then writeline(default,"f is pseudoaffine on ");

VoWV VOV VYV VYV Y vy

15



VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

>
>

print (X={evalm(transpose(b)&*x+b0)>0})
else writeline(default,"f is not pseudoaffine on ");
print (X={evalm(transpose (b)&*x+b0)>0});
writeline(default,"but it is pseudoaffine on ");
print (X1={evalm(transpose (b)&*x+b0)>sqrt (gamma)},
X2={0<evalm(transpose (b)&*x+b0) and
evalm(transpose(b)&*x+b0)<sqrt (gamma)})
fi;
writeline (default,"and f(x)=");
quotient+(reminder/evalm{transpose (b)&*x+b0))
else writeline(default,"f iz not pseudoaffine");
vriteline(default,"quotient and denominator not proportional");
print ()
fi;
end;

## Main Procedure ##

isaffine := proc(Q,q,q0,b,b0)
lo¢al num,den,reminder,i,index,vars;
num:=evalm{{1l/2)*transpose (x)&*Qirx+transpose (q) &*x+q0);
den:=evalm{transpose (b)&*x+b0); '
index:=0:i:=1:
while (index=0 and i<= vectdim(b)) do
if b[i]<>0 then index:=i fi:
ir=i+1:
od:
reminder:=rem(num, den, x[index], ’quotient’);
if reminder=0
then writeline(default,"f is affine and");
writeline (default,"f(x)=");
quotient
else vars:=seq(x[i],i=1..vectdim(x));
if degree(reminder,{vars})=0 and degree(quotient,{vars})=1
then case_pseudo(reminder,index);
else writeline(default,"f is not pseudoaffine");
writeline(default, "wrong degree of quotient
and/or reminder");
print ()
fi;
fi;
end;

The following examples show the use of Procedure 19 in order to check
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the pseudoaffinity of the functions in Examples 12, Examples 13 and 14.

Example 20

> n:=2:

> xi=vector(n):

Q:=matrix(n,n, [18,24,24,32]):
q:=vector(n,[6,8]):

g0:=1:

b:=vector(n,[3,4]):

b0:=0: .
isaffine(Q,q,q0,b,b0);

VoW OV VY Y Y

[ i8 not pseudoaffine on

X = {0 < 31y +4$2}

but it is pseuodaffine on

X1 = {1 < 31 +4.’EQ}, Xg = {—3371 —4re < Qand 3z +4r— 1 < 0}
and f(z) = 3$1+45L’2+2+m

Example 21

> n:=3:

x:=vector{n):
Q:=matrix{(n,n,[16,-8,-24,-8,4,12,-24,12,36]):
q:=vector(n,[10,-5,-15]):

ql:=-4:

b:=vector(n,[-2,1,3]):

b0:=-3:

isaffine(Q,q,q0,b,bd);

A A A T T Y Y

f 15 pseudoaffine and

f(ﬂ:') = —'433]_ R 2.‘1?2 + 6:133 +1— m

Example 22

> n:=3:

> x:=vector(n):

> Q:=matrix(n,n,[—16,16,0,16,48,64,0,64,64]):

> q:=vector(n,[0,16,16]):

> q:i=2:

> b:=vector(n,[-8,-8,-16]):
> b0:=-4:

>

isaffine(Q,q,q0,b,b0);

[ is affine and
f(.tfj) =TI — 3272 —-2233 - %

17



References

[1] Avriel M., Diewert W.E., Schaible S., Zang I., (1988), Generalized Con-
cavity, Mathematical Concepts and Methods in Science and Engineering,
vol.36, Plenum Press, New York.

[2] Barros A. L., Discrete Fractional Programming Techniques for Location
Models :

(3] Bazaraa M.S., Sheraly H. D., Shetty C.M, (1993), Non Linear program-
ming, Second edition John Wiley & Sons, Inc., New York. '

[4] Cambini A., Martein L., (1986), “A modified version of Martos’ algb—
rithm”, Methods of Operation Research, vol. 53, pp. 33-44.

(5] Cambini A., Carosi L., Martein L., (1999), “On the supremum in frac-
tional programming ”, Report n. 153, Department of Statistics and Ap-
plied Mathematics, University of Pisa.

[6] Cambini A., Crouzeix J.P., Martein L., (2000), “On the pseudoconvex-
ity of a quadratic fractional function” Report n. 189, Department of
Statistics and Applied Mathematics, University of Pisa.

[7] Cambini R., (1994), “A class of non-linear programs: theoretical and al-
gorithmical results”, in Generalized Convezity, S. Komlési, T. Rapcsdk
and S. Schaible eds., Lecture Notes in Economics and Mathematical Sys-
tems, vol.405, Springer-Verlag, Berlin, pp.294-310.

[8] Cambini R.,{1998), “Composition Theorems for Generalized Concave
Vector Valued Funetions”, Journal of Information & Optimization Sci-
ences, vol.19, n.1, pp.133-150.

[9] Cambini R., Carosi L., (2000), Pseudoconvexity of a particular quadratic
fractional problem, Report n. 191, Department of Statistics and Applied
Mathematics, University of Pisa.

[10] Chew K.L. and E.U. Choo, (1984), “Pseudolinearity and efficiency”,
Mathematical Programming, vol.28, pp.226-230.

[11] Craven D.B., Fractional Programming, (Heldermann-Berlin 1988)

[12] Crouzeix J.P., (1998), “Characterizations of Generalized Convexity and
Monotonicity, a survey.” in Generalized Convezity, Generalized Mono-
tonteity, Crouzeix J.P. et AL eds., Kluwer Academic Publisher, pp.237-
256,

18



[13] Ellero A., (1996), “The optimal level solutions method”, Journal of In-
formation & Optimization Sciences, vol. 17, n. 2, pp. 3655-372.

[14] Komldsi S., (1993), “ First and Second Order Characterizations of Pseu-
dolinear Functions”, Buropean Journal of of Operation Research, Vol. 67,
pp.278-286.

[15] Martos B., Non linear programming theory and methods, North Holland,
Amsterdam, 1975

[16] Schaible S., (1995), “Fractional Programming” in Handbook of Global
Optimization, Edited by R. Horst, P.M. Pardalos, Kluwer Academic
Publishers, Dordrecht, 495-608.

19



