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A Finite Algorithm for a Class of
Non Linear Multiplicative Programs

R. Cambini - C. Sodini (1)

Abstract. The nonconvex problem of minimizing the product of a strictly convex
quadratic function and the p-th power of a linear function over a convex polyhedron is
considered. Some theoretical properties of the problem, such as the existence of minimum
points and the generalized convexity of the objective function, are deepened on and a finite
algorithm solving the problem is proposed.
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1. Introduction
In this paper we consider the nonlinear multiplicative problem

min f(x) = (éxTQx +q x+ qo)(de + do)p
xeX={xeR" :Ax= b}

(1

where A is a mxn matrix, g, de R", be R™, p, qg. dpe R, Q is a symmetric positive
definite nxn matrix and d¥x + dy>0, xe X. Note that for p=0 the problem reduces to a
strictly convex quadratic one. This class of functions is very used in applicative problems,
such as portfolio theory, portfolio selection and risk theory [1-10].

In Section 2 we first study some theoretical properties of the problem, providing
conditions guaranteeing the existence of minimum points and proving that the objective
function is strictly pseudoconvex in subsets of the feasible region (note that the
generalized convexity of these multiplicative functions is generally studied for particular
values of p and is limited to the strict quasiconvexity). In Section 3 some local optimality
conditions are studied; these conditions allow us to propose a finite algorithm that solves
Problem (1) even when X is unbounded.

(1) Department of Statistics and Applied Mathematics, Faculty of Economics, University of Pisa, Via
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2.  Theoretical Properties

It is first interesting to point out whether or not Problem (1) admits minimum
points. With this aim let us recall the following result given in [5], where X is the
recession cone of X and £¥(v) is the recession function over X associated to f.

Theorem 2.1 [5] Consider a minimization problem involving a lower semicontinuous

function f(x) over an asymptotically-linear closed domain X. If function f is definitely
nondecreasing along the directions v € ker(f) then:

o

there exists a minimum point x*e¢ X < fX(v)20 Vve X,

This result allow us to prove conditions gnaranteeing the existence of minimum
points. These conditions are based on the following preliminary lemma,

Lemma 2.1 Consider Problem (1); the following properties hold:
) d'v20 YveX, ;
iy fXm=0 YveX,
iii) fis definitely nondecreasing along the directions v € X, such that d"v=0;
iv) if p>-2 then f is definitely nondecreasing along the directions ve X, s.t. d'v>0 .
Proof i) Follows directly being dTx + dg>0 Vxe X.
ii) Follows being f(x)<0 only in the compact set ;_ xIQx + qTx +qp<0.
iii) Consider an halfline x(8)=x,+6v, 620 and x, € X, with veX_ such that

d"v =0:the corresponding restriction is
1 )
28) = f(x(B))= [—2— 0°v' Qv+ 00" (Qx, +q) + kq](kd)’
1
where k= Exf," Oxy+q %y + g, and k, = d"x, +d, >0 ; its derivative results

Z(0) =[6v" Qv+ (0x, +)|(k, )’
which is positive for 8 >0 great enough, being k, >0 and v'Qv>0 .
iv) Consider an halfline x(0)=x,+6v, 620 and x,€ X, with veX_ such that

d"v > 0; the corresponding restriction is



1 y
2(0) = f(x(6)) = I:EQZVTQ'V +6T (Qx, +q)+ kq](edfv +k,)'
where k, = %xg Ox,+q x,+q, and k; =d" x, +d, >0 ;its derivative results
<'(0)=(6d"v+ kd)p_l[%Gz(p +2)v"Qvd"v +6c, + c(,],

where ¢, = [(p +Dd"w (Ox, +q) + vTkad] and ¢, = [kdvT(Qx0 +g)+ kqurv].
It then results that z’(8) >0 for >0 great enough, being p+2>0, (OdTv+ kd)> 0,
d"v>0 and v'Qv>0. +

The following result, which follows directly from Theorem 2.1, Lemma 2.1 and the
continuity of f, provides some conditions guaranteeing the existence of a minimum point.

Theorem 2.2 Consider Problem (1); the following properties hold:
i) if p>>-2 then the minimum exists;
ii) if 3x € X such that f(x)<0 then the minimum exists and is nonpositive.

Note furthermore that Problem (1) always admits a finite infimum, which comes out to be
nonnegative if none of the properties of Theorem 2.2 hold.

Another important property, useful from both the theoretical and the algorithmical
point of view, is the generalized convexity of the objective function; this property implies
for example that all the local minima are also global ones. Problem (1) is not a
quasiconvex program in general; neverthless it is possible to state some generalized
convexity property of the objective function on subsets of the feasible region.

Theorem 2.3 Consider problem (1) and let:
Xp05={xe X; f(x)=0} and Xneg={xe X: f(x)<0}.
The following properties hold:
1) if p=0then f is strictly convex over X ;
ii) if p=~1 then £ is strictly pseudoconvex over X ;
iii) if p<—1or p>0 then f is strictly pseudoconvex over every convex subset of Xneg ;
iv}if ~1<p<0 then f is strictly pseudoconvex over every convex subset of XpoS .



Proof If p=0 the result is trivial. Let us now denote the quadratic factor of [ with
h(x)=( ;— xTQx + qTx +qp) and let us define the function g(x)=(dTx + dg)* over X, so
that f(x)=h(x){g(x)]~!. First notice that g is convex for p<-1 or p=0 and it is concave

p(p+1) r
d" x+d)"*

Function f is strictly pseudoconvex over X if for any x,ye X, x#y, it is:

f(y)<f(x) = VIx)T(y-x)<0 ‘
Assume f(y)<f(x); not¢ that this condition can be rewritten as h(y)[g(y)]_'Sh(x)[g(x)]_1
that is, being g(x)>0 Vxe X, h(y)< h(x);% .

Being Q positive definite function h(x) is strictly convex, hence:

Vh(x)T(y-x)<h(y)-h(x)< h(x)[% - 1)=f(x)[g(y)—g<x)].

for —1<p=0 since its hessian matrix is H (x)=

It results also:
VE0)=[2(0T 1 Vh(x)-h(x)[(x)]"2Vg(x)
so that, being g(x)>0 Vxe X, we obtain
VIR I(y-x) = [0 Vh)T(y-2)-hx)[g()12Vex)T(y-x)
< [g@IT ) g(y)-gE g~ Vex) T(y—=x)
= f(x) [ [g(y)-g(x)-Vex)T(y-x)]
If p=—1 g is affine, hence g(y)-g(x)-Vg(x)T(y=x)=0 and V{(x)T(y-x)<0, so that f is
strictly pseudoconvex over X.
If p<—1 or p>0 g is convex, hence g(y)-g(x)-Vg(x)T(y-x)20 and consequently when
f()<0 it results VI(x)T(y-x)<0, that is to say that function f is strictly psendoconvex
over Xneg .
If —1<p<0 g is concave, hence g(y)-g(x)-Vg(x)T(y-x)<0 and for f(x)20 it results
V1(x)T(y—x)<0, in other words function f is strictly pseudoconvex over XpoS . *

Note that Theorem 2.3 extends the results given in [1,2,3,8] which prove only the
strict quasiconvexity of the function and just for the particular cases p=-1 and p=-2.

Theorem 2.3 points out also that it is useful to distinguish between the cases
X eg=0 and X, #(, with this aim in the forthcoming results some conditions are stated
in order to guarantee the absence of feasible points with nonpositive image.

First it is useful to define the minimum feasible level & >0, given by the sotution

of the linear problem

*

min de+d0 ]
xeX



note that the minimum & . exists since X is closed, dTx + dy>0 ¥xe X and the objective

min

function dTx + dj is linear.

Definition 2.1 Consider Problem (1) and its quadratic factor:
(LXTQx +qTx + 69
From now on we denote with:
i) x, = —Q-1q (unconstrained minimum of the quadratic factor)
ii) &, =dgdTQ1q=dTx_ +dy (level corresponding to x,)
i) q,= qoﬂ;— qTQ-1q = %ququ +qTx, +qo (value of the quadratic factor in x,)
iv) 8=2dTQ1d (650 since Q positive definite implies Q! positive definite)

Lemma 2.2 Consider Problem (1), For any given level dTx +dg=§& the quadratic
factor-

( ;— xTQx +qTx + gp)

attains the unconstrained minimum in

B =01 - 2225 )
(E-&)

with minimum value Q&) = g, + >—2% .

)
Proof Consider the minimum constrained problem
min ;—erx +q'x+q,
d'x+dy=§
the minimum point verifies the necessary and sufficient optimality condition
Ox+qg=Ad
dx+d, =&’
since Q is positive definite it is also non singular, hence x =—Q~' (¢ — Ad) and, by means
of simple calculations, we obtain

b

_,6—6
A=2 5
x=x(&)= —Q‘l(Q'—Z ¢ :3.5“ d)
2 .
and Q(¢) = %x({f)TQx(cf)+ g x(&)+q, = -;-A?dTQ-ld +g,=q,+ (¢ ";u) _ .

By means of Lemma 2.2 it possible to state the following conditions related to the
positivity of the objective function f.



Theorem 2.4 Consider Problem (1). The following properties hold:
i) if q,>0 then fx)>0 VxeX,
i) if q,<0 and ¢, +./~ég, >0 then:
f)S0 = & -8, <d"x+d, <& +.-0g, .
iti) if g,<0 and &, +./-dg, < then f(x)>0 YxeX.
Proof i) The result follows trivially being q,, the unconstrained minimum value of the

i

quadratic factor and being dTx+dg>0 VxeX.
ii) Let xeX and &>0 such that de+d0=§ ,then f(x)<0 implies Q(£)<0 and hence

(E-&) <-6q, ,thatis & ~—8q, SE<E, +:/=0g, .

iit) Follows directly from 7i) being dTx+dp>0 VxeX. *

Remark 2.1 Theorem 2.4 suggests a smart procedure to study problem (1) in the case

qu < O and 5&1 + V_5qu 2 gmin

Split the feasible region X in the following subsets, so that X=X,;UX,UX, where:
X=X {xeR": 5“ -0, sd'x+d, SE +-6q, )
X,=XN{xeR": & —~./-8g, >d x+d, }
X=X {xeR": d"x+d, > & +./-&, )
First solve the problem {min f(x), xe X;}; if the infimum/minimum value computed is
nonpositive, then it is also the infimum/minimum value of Problem (1), otherwise solve
the two other problems {min f(x), x€ X,} and {min f(x), xe X4} and compare the

obtained results, taking into account that for —1<p<0 the function is strictly pseudo-
convex on X, and X5 and hence every local minimum is a global one.

We conclude this section studying conditions which could be used as stop criterion
in algorithms solving Problem (1). With this aim, let us consider the following program
associated to (1):

min f(x)
{de+af,J =£>0"
the minimum is attained again at x(£) and the minimum values, associated to the levels

oo 4]

By means of simple calculations, we obtain the corresponding first derivative:

£>0, are given by:



() = S [(p+ DE 28, (p+ DE + p(E +g,)]

o ,
which allow us to study the behaviour of the unconstrained minimum level values.
Note also that it results:
oo if p>-2
. _J1 . —
lim &) =1Ys if p=-2
0 if p<2

Some optimality conditions, which could be used as stop criterions in solving
algorithms, can be provided when @(£) is definitely increasing,

Theorem 2.5 Consider Problem (1), let & . >0 the minimum feasible level and Jet

x*e X and £*2§, . be such that f(x*) < @(&*) . If one of the following conditions hold:

i) p>-2and & — p(p+2)8g, <0,

—&, ++/E2 = p(p+2)8q,
p+2 ’

ii) p>2, & —p(p+2)3g, >0 and £ & +

2
iii) p=-2, & >0 and &*> % ,

iv) p=-2, £, =0 and ¢, <0,

then f(x*)< f{x) VxeX, d'x+d,>&%, _

Proof We prove the result showing that these conditions imply the increasness of ¢(&),
function of the uncostrained minimum values associated to a feasible level £, so that

FE)<SPEN<PE) < f(x) VxeX, dx+dy=E28*.
i),ii) Let p>-2, being £>0 the derivative ¢’(&) is positive when

(p+2)" =2&,(p+ DE+ p(E +8g,)20,

solving the second order inequality we obtain that for % =& — p(p+2)8g, <0 function

(&) is increasing V& > 0, while for —3- =& — p(p+2)dg, > 0 it is definitely increasing

for £3& 4 TSNS P20,
p+2

jii).iv) Let p=-2, then @(&)=

5[[1—-51) +%] and ¢’(§)=2%;[§[,§—(63+®u)];

£) &
) . . E+5q - L, .
hence if £, > 0 (&) is increasing for & = —”i-ug——“ , while if £ =0 itis @'(£)>0 just

i

when g, < 0. *



3. Some local optimality conditions

In this section we give some local optimality conditions for problem (1). If we add
the constraint dTx+dg=E, EeR™, to problem (1), the following strictly convex quadratic
problem is obtained:

z(E) = min ( % xTQx + qTx +qq) &P

PEN
xe X(&)

where X(E)=XN{xeR": dTx + dy=&}. The parameter & is said to be a feasible level if
the set X(£) is nonempty. An optimal solution of problem P(£) is called an optimal level
solution.

Clearly, problem (1) is equivalent to problem P(§), when & is the level
corresponding to an optimal solution of problem (1).

In this section we give some optimality conditions which allow us to detect if an
optimal level solution is a local minimum of problem (1).

Let x' be the optimal solution of problem P(€') and let Nx=k be the equations of the
constraints binding at x'. We can always choose a subset of these constraints, making a
submatrix M of N and correspondingly a subvector h of k, such that the rows of M and
the vector d are linearly independent. Being problem P(} convex, then x' is an optimal

solution if and only if the Kuhn-Tucker conditions are verified.
Since Q is positive definite and the rows of M and d are linearly independent, the
matrix of the following Kuhn-Tucker linear system is non singular:

Qx-Miu-di =-q
3.1) Mx - h
dTx = £-d,

where | is the vector of the Lagrange multipliers associated to the constrainis Mx=h and A

is the Lagrange multiplier of the parametric constraint dTx=&'-d;,. The solution x', u', A'
of (3.1) is then unique, note also that being x' an optimal solution then w'>0.
Let us consider the parametric program:

z(E'+0) = min ( é- xTQx + gTx + qp) (E'+0)P

(P(E'+6))
xe X(E'+0)



where X(£'+0)=Xn{xeR": dTx + dy = £'+6}.
Let

X'(0)=x"+0 o
(32)  W@®=p+67y
A@®=A+00

be the solutions of the Kuhn-Tucker system:

Qx-MTu-dh =-q
(3.3) Mx = h
dTx = E-dg+0

Note that (0,7, B) is the unique solution of the linear system

Qx-Mu-dr =0
(3.4) Mx =0
dTx =1

so that it results Qa=MTy+ df, Mo =0, dToo=1 and B = «TQo. . Note also that,

being Q positive definite, it is B >0 if and only if o0 20.
Note that the solutions of the Kuhn-Tucker system (3.3) can be computed also by
means of the explicit inverse of the matrix

Q M
D=| M 0 0
a0 0

as it has been described in [6].
Set F(8)={8: x'(8)e X}, 0(8)={6: ' (0)20}, H(0)=F(8)nO(8). Clearly, x'(8) is
an optimal level solation for 8 H(8). Set z(8)=z(E' +0), z'=;— xTQx'+q"x'+qy. The

following lemma gives an explicit form for the function z(8), 6e H(8).

Lemma 3.1
If H(8)#{0}, then z(0) =(&'+0)P % BOZ+ A 6 +2).

Proof. We have z(8) = (£'+8)P (% (x+8 o)TQ(x'+8 o) + qT(x" + 6 ) + qq) = (E'+6)P

(;— xTQx'+ oTQx’ 0+172 2TQor 624+q™x'+0 qTo+qq) ; note also that from (3.3) it results

9



o TQx'=A'-0.Tq. From direct substitution we obtain z(e)=(§'+e)l’(é_ B 6241 0+2) .

Now, the following lemma can be derived.

Lemma 3.2

If pz'+ ME'>0 (pz'+ A'E'<0), then z(8) is increasing (decreasing) at 8=0.

Proof. We have z'(8) = (£'+8)P-! [B(1+;— P82+ (pA'+ BE'+ 1) 0 + pz'+ A'E']. Hence
2'(0) = P (pz'+ NE). K

If (pA'+ PE'+ k‘)2—4[3(1+;_ pXpz'+ A'E)>0, set <62 the two roots of z'(8) = 0
and, if (pA'+ BE'+ ?\,')2-4[3(1+;— pXpz'+ A'E)=0 set €', the unique root of z'(0) = 0.

Furthermore let U(8) the connected set, containing 8=0, such that U(8)={0e H(8): 6=0
and z(0) is decreasing } or U(8)={8 H(B): 60 and z{0) is increasing}.

The following theorem holds:

Theorem 3.1
a) If pz'+ A'€'= 0 and pA'+ P&+ A'>0, then x' is a local minimum for problem (1).
b) Case [3(]+;_ p)>0.
- If pz'+A'E'<0 and 62 H(8), then x'(B 2) is a local minimum for problem (1);
- If pz'+A'E">0, 62<0 and 62 H(®), then x'(6?) is a local minimum for problem (1);
c) Case B(1+-é- p)<0.
- If pz'+M'E'<0, 8150 and 6le H(B), then x'(8 ) is a local minimum for problem (1);
- If pz'+A'E'>0, 81<0 and 6'e H(®), then x'(8!) is a local minimum for problem (1).

Proof. a) pz'+ X'E'= 0 and pA'+ BE'+ A™>0 imply z'(0) = 0, z'(8) negative on the left of
0=0 and z'(0) positive on the right of 8=0; hence x'(0)=x' is a local minimum. b) We
have z'(8%)=0, z'(0) negative on the left of 6=02 and 2'(0) positive on the right of §=82;
this implies that x'(82) is a local minimum for problem (1). ¢) We have z'(81)=0, z'(6)
negative on the left of 8=0! and z'(®) positive on the right of 8=01; this implies that
x'(01) is a local minimum for problem (1). ¢



Let x' be a vertex of X; in X' at least n constraints of X are binding as well as the
parametric constraint and thus x' is a degenerate basic solution. Clearly, the different
bases containing the parametric constraint are n if X' is a non degenerate vertex of X; more

than n if x' is a degenerate vertex of X. A basis B is said to be feasible if u;;ZO. To point
out the dependence of z(6), H(0), etc. on the basis B, we write z5(6), Hg(8), etc..

Theorem 3.2
a) If there are two different feasible bases B, and B, such that either pz'+L'g, £'>0, sup

Hg(8) > 0. pz'+h'32§'<0, inf Hp,(0) < 0 or pz‘+?L'Bl§‘<O, inf Hg, (8) < 0,
pz'+7L'B2F,'>O, sup Hp,(8) > 0, then x' is a local minimum for problem (1).

b) If we have Up(0)={0} for any feasible basis B, then x’ is a local minimum for problem

().

Proof. a) In wiew of Lemma 3.2 condition

pz'+A'p, £">0, pz'+ A'g, &'<0 (pz'+ A, § '<0, p7'+ A',£>0)
implies z(0) = z(0) in a neighborhood of 0. Hence x' is a local minimum for problem (1).
b) This follows directly from the definition of Ug(B). ¢

4. A finite algorithm for problem (1)

Since problem (1) is nonconvex, in general, it is necessary to solve problem P(£)
for all feasible levels in order to find a global minimum, assuming one exists. In this
section we will show that this can be done by means of a finite number of iterations, using
the results of the previous section.

Let £' be a feasible level and suppose that x* is the incumbent global minimum for
E<E', i.e. is the best optimal level solution for E<&'. Clearly UB=f(x*} is an upper bound
for the value of z(£) for £>&'.

Let &, = sup {dTx, xe X} (of course £, ,, may be equal to +es).

Let us consider the parametric problem P(§' +8) for 820 and determine x'(0),
W'(8), A'(8), 2(8), 61<B2 [if A=(pA'+ PE'+ AN2-4B(1+1/2p)(pz'+ M'E)>01, F(O), O(8),
H(6) as well sup F(8), sup O(8), sup H(B). For each 8 O(8), z(9) is a lower bound for
P(§' +6); in fact if 6 F(0), then x'(8) is an optimal level solution; otherwise, if 0¢ F(8),
x'(0} is unfeasible for P(§'+8) but is an optimal solution of a problem with the same
objective function of P(§'+0) and a feasible region containing X(&'+8).

If p>-2, then the following two cases can occur:

11



Al)

A2)

B1)

if A<O or A>0 and 92<0, then two subcases need to be considered:
Ala) if sup O(6) = +co, then problem (1) is sotved and x* is a global minimum;
Alb) if sup O(B) = 0"<4eo, then: i) if E"=E'+0"2¢_  then problem (1) is solved
and x* is a global minimum; i) if &"<€_,, then we consider the new feasible
level £" and the corresponding parametric problem P(£"+0);
if As0 and 82>0, then three subcases need to be considered:
A2a) if sup H(0) = -+ee, then problem (1) is solved; in fact if UB<z(0?), then x* is
a global minimum, otherwise x'(62) is a global minimum;
A2b) if BZSsup H(8)<+ee, then two subcases need 1o be considered:;
A2b1) if sup O(B)=+co, then problem (1) is solved; in fact if UB<z(82), then
x* is a global minimum, otherwise x'(82) is a global minimum;
A2b2) if sup O(B) = B"<+oo, then: i) if £"=E'+6"2E . then problem (1) is
solved; in fact if UB<z(9?), then x* is a global minimum, otherwise
x'(82) is a global minimum; ii) if £"<€__then we consider the new
feasible level £" and the corresponding parametric problem P(£"+0)
with x*=x'(62),UB=2(62) if UB>z(6?);
A2c) if sup H(8)=6"<02, then two subcases need to be considered:

A2¢cl) if sup O(B)=+co and UB<z(6?), then problem (1) is solved and x* is
a global minimum;

A2c2) otherwise; i) if £"=E'+0 *=§max then problem (1) is solved, in fact if
UB<z(8™), then x* is a global minimum, otherwise x'(0") is a global
minimum; ii) if £"<€_.,, then we consider the new feasible level &"
and the corresponding parametric problem P(&"+0) with x*=x'(8"),
UB=z(6") if UB>z(8").

If p<-2, then the following two cases can occur:

if A0 or A>0 and 61<0, then three subcases need to be considered:

Bla) if sup H(B)=+c, then problem (1) is solved; in fact if UB<0 then x* is a
global minimum, otherwise the minimum is not attained and inf, . x f(x)=0;

B1b) if sup O(f)=+e and UB<0 or sup H(8)=0"<sup O(8)=0"<+o,
£"=C'+8"2E .. and UB<z(8"), then problem (1) is solved and x* is a global
minimum;

Blc) otherwise; i) if £"=£'+0"=¢_ . then problem (1) is solved; in fact if
UB<z(6"), then x* is a global minimum, otherwise x'(ﬂ*) is a global
minimum; i} if "<&, then we consider the new feasible level £” and the

12



corresponding parametric problem P(§"+8) with x*=x'(8"), UB=Z(9*) if
UB>z(8");
B2) if A>0 and 8150, then three subcases need to be considered:

B2a) if sup H(6)=+e=, then problem (1) is solved; in fact if min {UB, z(61))=0,
then x*, or x'(01) if z(81)<UB, is a global minimum, otherwise the minimum
is not attained and inf, _ y f(x)=0;

B2b) if 8'<sup H(0)=0 “<+oo, then two subcases need to be considered:

B2b1) if sup O(8)=+ec and min {UB, z(61)}<0 or 6" <sup O(8)=0"<+oo,
E'=£'+0">E  and min {UB, z(61)}<z(8"); then problem (1) is
solved and x*, or x'(8) if z(81)<UB, is a global minimum;

B2b2) otherwise; i) if £"=E'+0"=E .., then problem (1) is solved and
the global minimum is x* if UB<min {z(8!), z(6™)}, x'(®") if
7(8)<min {UB, z(8™)}, x'(0") if z(6")<min {UB, z(®1)}; ii) if
E'<E, .« then we consider the new feasible level £" and the
corresponding parametric problem P(E"+8) with s*=x'(01)
(x*=x"(0")), UB=2(81) (UB=2(8")) if min {UB, z(6")}>z(6!) (min
{UB, 2(8')}>2(6™));

B2c) if sup H(9)=8*<9 ], then two subcases need to be considered:

B2cl1) if sup O(B)=+ec and UB<min {0, 2(91)}; then problem (1} is solved
and x* is a global minimum,;

B2c2) otherwise; i) if £"=£'+8"=E . then problem (1) is solved, in fact if
UB<z(0™), then x* is a global minimum, otherwise x'(8") is a global
minimum; ii) if £"<€p,,, then we consider the new feasible level &"
and the corresponding parametric problem P(£"+0) with x*=x'(0"),
UB=2(0") if UB>z(8");

If p=-2, then the derivative of z(8) is z'(8) = (£'+8)[(BE" A")8+ A'E'-2z'| and
the following three cases can occur:

Cl) ifA'€'-22'>0 and BE'- A'>0, then two subcases need to be considered:
Cla) if sup O(8) = +eo, then problem (1) is solved and x* is a global minimum;
Cib) if sup O(0) = 0"<+eo, then: i) if "=E'+0"2E ., then problem (1) is solved
and x* is a global minimum,; ii) if §" <&, ., then we consider the new feasible

level £" and the corresponding parametric problem P(§"+0);
C2) if A'E-2z'20 and BE'- A'<0 or A'E'-2z'<0 and BE'- A'<0, then three subcases
need to be considered:
CZ2a) if sup H(8)=+eo, then problem (1) is solved; in fact if UB%B then x* is a
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global minimum, otherwise the minimum is not attained and inf, . x f(x)= %B;

C2b)if sup H(B)=0"<sup O(O)=+e and UB%B or sup H(8)=0"<sup
O(8)=8"<+o0, E"=E'+0">E__ and UB<z(8"), then problem (1) is solved
and x* 1s a global minimum;

C2c) otherwise; i) if £"=E'+0"=E_.  then problem (1) is solved; in fact if
UBSZ(B*), then x* is a global minimum, otherwise x‘(B*) is a global
minimum; ii) if §"<€ .., then we consider the new feasible level £" and the
corresponding parametric problem P(§"+0) with x*=x'(8¥), UB=z(8") if
UB>z(0");

C3) ifA'E'-22's0 and BE'- A'>0, then three subcases need to be considered:
C3a) if sup H(0)=+ec, then problem (1) is solved; in fact if UB<z(0), where
~~ kl I“2 1
=- : Z, then x* is a global minimum, otherwise the minimum is
~ BE_,"K' .
x'(0);
C3b) if 8<sup H(B)=08"< sup O(8)=+co, then problem (1) is solved; in fact if

UB=<z(0), then x* is a global minimum, otherwise the minimum is x'(0);

C3c) otherwise; i) if £"=E'+8"=L . then problem (1) is solved; in fact if
UB<z(8™), then x* is a global minimum, otherwise x'(8%) is a global
minimum; ii) if £"<€ ... then we consider the new feasible level &" and the
corresponding peirametric problem P(£"+8) with x*=x'(8"), UB=z(8") if
UB>z(8™);

Starting from the solution x’ corresponding to the level &', we arrive at one of the
following situations: '
i) x* is an optimal solution;
iiy  the problem is unbounded;

iii)  alevel greater than &' has been found together with the best incumbent solution.

In order to propose a finite algorithm to solve problem (1), it remains to consider an
appropriate initialization and to show how it is possible to cbtain the optimal level solution

cortesponding to the new level £" in a finite number of iterations.
Let us solve the following linear programs:

(P min dTx+dy, xeX;

If x' is the unique optimal solution of (P,) and &'=dTx'+d, is the corresponding

level then X(£")={x"} and clearly x' is an optimal level solution; in this case we can start
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with x*=x" and only increasing value of & need to be considered. Otherwise if
X(EN=#{x'} the optimal level solution x' corresponding to the feasible level &'=dTx'+d,

must be found and then we can start with x*=x' considering only increasing value of £.
It remains to consider the problem of obtairing the optimal level solution X'

corresponding to the new level £"=E'+0 in a finite number of iterations. If 8=sup
H(B)=sup F(8), then x‘:x'(g) and at least one new constraint is binding at x', while if
a=sup H(O)=sup O(0) at least one of the Lagrange multipliers ' (6) are zero and the
corresponding constraint can be deleted. If 6>sup H(8), then x'(g) is unfeasible and the
optimal level solution x’ must be determined. Starting from the level €' the level &'+sup
H(8) is obtained together with the optimal level solution x'(sup H(8)), then starting from

the level & =E'+sup H(B) the new level &'+sup H(O) is obtained and so on until a level

€' 2L" is reached. The proposed procedure is finite since for each new level either at least
one new constraint is added or at least one old constraint is deleted.

Let us consider the following three numerical examples: the first for the case p>-2,
the second for the case p<-2 and the third for the case p=-2.

Example n. 1

min f(x1, x) = (L (xi, xz){ 5;’ ; HZ] + (2, 1)[2] )X 2%+ 1)

M x,20, @ %,20, 3 5x;- 10x,2-2, 4 -x+3x,2 -4.
Starting from the optimal solution x'=(0, 0) of the linear program

we obtain the following steps:

- base {(2), P} (P is the parametric constraint x]+2x2=1+6), E'=1, x'=(0, 0), x'(6)=(8,
0), 1x(0)=5-50, A(0)=-2+30, 2’=-4, x*=(0, 0), UB=-4, z(8)=(1+8)*(326%-20-4),
z'(0)=(1+0)%(15/262-56-14), sup O(8)=1, sup F(8)=4, sup H(B)=1, A=445, §!=-1.073,
82=1.73966; case A2¢2) holds:

- X'(1)=(1, 0), z(1)=-36<UB=-4, x*=(1, 0), UB=-36, base {P}, E'=1+1=2, x'=(1, 0)
X' (6)=(1, 1/20), A(8)=1+1120, 2'=-912, 2(0)=(2+0)*(1/40°+6-9/2), 7/(B)=(2+6)°(5/40%+

50-23/2), sup O(6)=+co, sup F(0)=7/5, sup H(0)=7/5, A=82.5, 81=-5.633, 02=1.633:
case A2¢2) holds; -
- X(7/5)=(1, 7/10), z(7/5)=-83.3245<UB=-36, x*=(1, 7/10), UB=-83.3245, base{(3), P},

§'=2+7/5=12/5, x'=(1, 7/10), x'(0)=(1+1/28, 7/10+1/40), X(e)=17/lo+9/89, z’'=4/50,
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2(0)= (17/5+6)° (9/160%+17/10044/50), 2'(B) = (2+8)7 (45/160%+437/400+301/50), sup -
O(0)=+c0, sup F(B)=tco, sup H(B)=tes, A=51.6306, 6!=-3.2196, 02=-0.6648; case
Ala) holds and x*=(1, 7/10) with f(x*)=-83.3245 is the optimal solution.

Example n. 2

min f(xr, x3) = (L x| 3013 (2, D[ [ )pe2nae 1)

(M %20, @ %,20, 3) x;-%,2-2, @) -X+2x,2 -4
Starting from the optimal solution x'=(0, 0) of the linear program
min {X,+ 2X,: X; 20, Xy 20, x-%,2 -2, - X+ 2%, 2 -4}

we obtain the following steps:

- base {2, P}, §'=1, x'=(0, 0), x'(0)=(8, 0), py(8)=5-58, A(0)=-2430, z'=-4, x*=(0,
0), UB=-4, 2(8)=(1+8)>(3202-26-4), z'(0)=(1+0)*(-3202+76+10), sup O(8)=1, sup
F(8)=4, sup H(8)=1, A=109, 81=-1.146768, 62=5.813435; case Blc) holds;

- X'(1)=(1, 0), z(1)=-9/16>UB=-4, x*=(0, 0), UB=-4, base [P}, £&'=1+1=2, x'=(1, 0)
x'(0)=(1, 1120), A(O)=1+120, 2’=-9/2, 2(B)=(2+0)(1/40%4+8-9/2), 2'(B)=(2+8)*(-1/4
92—94-3]/2), sup O(0)=+e0, sup F(0)=6, sup H(8)=6, A=16.5, 01=-10.124038,
92=6.124038; case B1b) holds; since UB=-4<0, x*=(0, 0) is the optimal solution.

Example n. 3

nﬂnf(x],xz)=(-%(x],xz)m ;H J+(2 1){ ]—4)(x1+2x2+1)2

M %20, @ x,20, 3 X- %22, (4 -Xqt 2x, 2 4.
Starting from the optimal solution x'=(0, 0} of the linear program
min {x; +2x,: x, 20, Xp 20, Xy- Xy 2 2 - X+ 2%, 2 -4}

we obtain the followmg steps:

- base {(2), P}, &'=1, x'=(0, 0), x'(6)=(9, 0), ].LQ(B) 5-56, ?u(ﬁ)- 2430, z’=-4, x*=(0,
0), UB=-4, z(6)=(1+8)2(3/202-20-4), 2'(0)=(1+0)3(50+6), sup O(0)=1, sup F(8)=4,
sup H(B)=1; case C1b) holds;

- x'()=(1, 0), z(l) -9/8>UB=-4, x*=(0, 0), UB=-4, base {P}, £'=1+1=2, x'=(1, 0)
x'(8)=(1, 1/20), A(8)=1+1/20, z°=-912, 2(6)= (2+0)2(140%46-9/2), z'(8)=11(2+8)7,
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sup O(B)=+es, sup F(B)=6, sup H(8)=6; case Cla) holds; x*=(0, 0) is the optimal
solution.
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