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1 Introduction

Let ' be a closed and convex cone in R". The partial order induced by C is
denoted by >¢ and defined by

r2cyif z—yeC.

Let f be a vector function from a convex subset X C Rf to R*. We say that
[ is C-convex if for each z,y € X and for each A € (0, 1) one has

M)+ (1= NFy) Zc flhz + (1= Ny).
In the case where ' is the positive orthant cone

R i={z=(2,...,20) 2 20, i=1,...,n},



it follows directly that fis %7 -convex if and only if the n components f1, ..., f,
of f are convex in the sense of scalar functions. This fact allows us to expect
a rich caleulus for convex vector functions.

The class of convex vector functions plays an important role in the theory
of vector optimization and related areas. It has been investigated by several
authors (see for instance {7, 8, 11]and references given therein),

The concept of convex subdifferential developed mainly by Rockafellar [16],
can succesfully be extended to the vector case. Despites of numerous littera-
ture on theoretical aspects of subdifferential of convex vector functions, very
little is known about numerical results which are evidently indispensable in
applications.

The purpose of this note is to present a simple method to calculate the sub-
differential of a convex vector function when the ordering cone is polyhedral.
The main tool we are going to use is a special linear transformation, intro-
duced in [3],which replaces the ordering cone C' by the positive orthant cone
with respect to which the subdifferential of a convex function is componently-
wise computed. By an inverse transformation one obtain the subdifferential
of the function with respect to the original order.

The paper is organized ag follows. Section 2 is devoted to the chain rule of
subdifferential under linear transformations. In Section 3 (4) the calculus of
the subdifferential of a nondifferentiable (differentiable) function is solved by
means of a matrix equation. Several examples to illustrate our method are
given.

2 Linear transformations and subdifferential

Throughout this paper ' is a closed and convex cone in R™ and L is a linear
transformation from 2" to ™. The image L(C} of the cone C is a closed and
convex cone in £™. A relation between the partial order (>¢} and (>rc))
is given in the following lemma:

Lemma 2.1 For everyz,y € K" one has : © >0y = L(x) >0y L(y). The
converse 18 also true provided KerL C (.

Proof The implication (=) is straightforward. For the converse, L{z) =y
L(y) means that L{x —y) € L(C). Hence ¢ —y € C + KerL C C hecause
KerL € C, which implies x Z=¢ v. []

Now let f be a vector function from X C R’ to R”. The composite
function Lo f is then from X to R™. As a direct consequence of Lemma 2.1,
we obtain



Lemma 2.2 Let X be o nonempty convex set in RE. If f 4s C-conver, then
Lo f is L(C)-convez. The converse is also true provided KerL C C.

We recall ([11, 13, 18]) that the subdifferential of f at z € X is the set
dcf(z) ={A € LR R : fly) - f(z) 20 Aly — z), for all ye X}

where LR, ") denotes the space of n x f-matrices.
When C' = R7 | it is known that C-convexity is equivalent to componentwise
convexity, so that

Ocf(z) = 0fi(z) x ... x fn{z)
where fi,..., fr, are components of f and Af,,..., 8f, are their classical convex
subdifferential.

The following fundamental theorem states that the subdifferential of a
C-convex funtion is nonempty.

Theorem 2.1 Let X be an open conver subset of R and let f: X — R™ be
a C-convex function. Then for every x € X it results O f(x) #£ 0.

Proof The proof is trivial if C' = R™,

Let I{C) = C N (=C) be the lineality space of C' and decompose 7, ¢ as
R = [(C) x B, C = [(C) x K. Obviously, K is a pointed closed and convex
cone, Setting f = (fi, fo), we have that f is C-convex iff f, is K-convex.

A matrix A belongs to o f(x) il fly) — f(x) >c Ay — ), that is, setting

_{ A
ey
hHy) = Al2) 20 Ay — o) (2.1)
f2(y) = folz) 2k Agly — ) (2.2)
Since (2.1) holds for every matrix A;, we have that A € 8xf(z)) if and only
if Ay € Ok fa(x). Taking into account that f» is K-convex and K is pointed
closed and convex, it results that f; is locally Lipschitz so that Oy fo(x) # @

(see for instance [13, 18]). Consequently dof(z) # @ and it is characterized
as the set

a(j.f(a?) = {( i: ) .'AQ e c%—fg(:t?)}

Below there is a chain rule for convex subdifferential.

Lemma 2.3 The following chain rule is true:

Lodof(z) Cdnen(Lo fi{x)

Equality holds provided L is an isomorphism.
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Proof Let A € O f(z). By definition, one has

flw) = flzx) 2c Aly —2), Yy e X (2.3)
Hence
Lofly)—Lof(z)2pey Lo Aly—z),Vye X (2.4)

which means that Lo A € Opcy(Lo f)(z).
Now, if L is an isomorphism, then by using the above inclusion for L™1, we
obtain '

L7V 8yiey(Lo f)(a) € piqnienL™ o Lo f(x) = dc f ()
Consequently,
Oyl o f{z) € Lo daf(z)
and equality follows. ' 0

We are now interested in the case where C is a polyhedral cone given by
the following system of linear inequalities :

<& r>>20, i=1,. k. (2.5)

where £,....£, € R".
Let us denote by 7' the following transformation from R* to R*:

T(x)=(<é&,a >, <&, x>), for every z € R" (2.6)

This transformation possesses several properties [3]. Some of them are given
next.

" Lemma 2.4 Let T defined by (2.4). Then one has -
i) T is linear and Kerl = 1(C), where I(C) denotes the linear part of C.
that s 1(C) = C 0 -C:

i) T is injective if and only if C is pointed, that is [{C) = {0};

i) T is an isomorphism if and only if C is pointed and k = n.

The conclusions of Lemma 2.1, 2.2 and 2.3 applied to T yeld the next result.

Corollary 2.1 Let C be defined by (2.3) and T defined by (2.4). Let f be a
vector function from a conver subset X C R¢ to B, Then one has:

v) Foryr,yo € R, w1 2¢ 2 of and only if T(y:) Zps T{ys);

i) fis C-convex if and only if T o f is RE -convex;

iii) T o 8o f(x) C O (T o f){z) = (€ o f)(2) X .. x B(& o f)(a).
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Proof For the first statement, by Lemma 2.4, KerT = [(C) € C. Hence
Lemma 2.1 implies that y; >¢ w; if and only if T(y1) =1y T(y2). It suffices
to observe that T(C') C RE, hence T(y) >7ey T(y2) if and only if T'(y) 25t
T(32). The second statement is deduced from the first one. For the last state-
ment, the inclusion T(C) € RE implies drcy(T o f)(z) C Oy (T o f)(z). An
application of Lemma 2.3 achieves the proof. O

3 A matrix equation in nonsmooth case

From now on, f is defined on RY. The cone ¢ and the transformation T
are defined respectively by (2.3) and (2.4). In this section we study the case
where [ is non-differentiable, or more generally T o f is non-differentiable.
We have seen in i1} of Corollary 2.1 that

Todcf(2) C g (T o f)(z) = 0(&r 0 f)(z) x ... x A& 0 f)(z).  (3.1)

We will see later that the inclusion is strict. The following theorem charac-
terizes the subdifferential d¢ f(z).

Theorem 3.1 Assume that T o f is a RX -conver function. Then f is C-
convez and ¢ matriz A € Jcf(z) if and only if there exizls a matriz B €
aﬁ (T'o f)(x) such that TA = B.

Proof From Corollary 2.1 it results that f is C-convex; taking into account
Lemma 2.3 we have to show that if A verifies the equation TA = B, then
A € O f(x). In fact, since T o f is RE -convex, one derives

Tofy)~To f(z) 2 ToAly ~a), for every ye R’
By Corollary 2.1, this in turn implies
fy) = f(@) 2¢ Ay —z), Vye R

which shows that A € 8- f(z). O

In order to calculate O¢ f(z), according to Theorem 3.1 we must solve the
matrix equation TA = B.
With this aim, in what follows with respect to a matrix X of order s x ¢, the

notation
X:( Xuxw  Kux(t—u) )
Xis—wyxv X (s—u)x(t—v)

)



means that X has been decomposed in submatrices of order u x v, ux (v},

(s —u) x v, (s —u) x (t— v),respectively, with the convention that -

X = quxt
}*(s—u)xt

-X = ( Koxw  Xoxii—uv) ), when v > s and ¢ > v;

- X = Ngqp when v > ¢t and u > s,

Let p = rankT and let T be the nonsingular matrix which reduces 7 to its

Jordan canonical form T. Without any loss of generality, we will assume that

1" and I' are of the form:

“T“: ( O(ipx;n pr(n—p) | )7 T = ( prp Opx(}.:;p) ) . (32)
: -p

ixp Ok—p)x(n-p Dovepyxp Dikpix(e-p)

, when v > t and s > u;

where Iy, denotes the identity matrix of order p and O denotes the null
matrix.

According to the form of T, we partition the matrices A € Oof(z) and
B € Oy (T o f)(2) in the following way:

A Apsei_ B Bvio- :
A = DXp pX ({—p) ) , B = ( pxp p(f—-p) ) 3.3
( A(ﬂ-~p)><p A(n—p)xu’—p) BU»“*P)XP B(k—mxw—m- ( )

Now we are able to characterize the subdifferential de f{x).
The following theorem holds:

Theorem 3.2 i) If rankT =p =k, then A € O f{z) if and only if
A=A + ( r}:xpBJ)xp prpB;vx(E*p) ) , B e amk_ (Tlo f)(T) (3_4)
\ Cipixp Onep)xte—p) +
where every column of the n x £ matriz A is an arbitrary element of KerT,
. . L . —H
that is a linear combination of the columns of the matriz I )
) ' n—1

i) If rankT = p < k, then A € dof(z) if and only if there exists B €
Ope (T 0 f)(x) such that (3.5), (5.6), (3.7) hold.

F(r’»'—p)XPBpxp + F(k—P)X(k—ﬁ)B(k—p)xp = O(k“'p)xw (3-5)
Lk pysap Boxtempy + Digmpi 6 py Blompyx (e=p) = Otiempyio—p) (3.6)

— I'own B, | I
A=A+ pxpHpxp L pxppx{i-p) B edw(To )z 3.7
( Otn-pixp  Otn-pyx(-p) w (70 fil@) (8-



Proof The matrix equation TA = B is equivalent to I'TA = TA = I'B. By
means of simple calculations, we achieve (3.4) - (3.7). n

The following examples show the way to calculate dgf(z) when f is non-
differentiable and C is a polyhedral cone.

Example 3.1 Consider the nondifferentiable function f : R? — ®° , defined
as flx,y)=(z ||z | +3 |y, | y]|) and the polyhedral cone C = {{a, B,7) :
a+B+v20, 8-—~>0}

. Ioresults (To fi{zy) =2 |z | +4 ]yl x| +2]|y]). Since any
component of T'o f is a convex function, the function f is C-conver. For soke

of simplicity we limit ourselves to caleulate 8of(0,0). Taking into account
of (8.1}, we have

Oy (T'o f)(0,0) ={B € LR, R : B = ( an 32 ) , a,be,de[-1,1}}

1

Schepmszana,’F:(O

Oc£(0,0) if and only if

—2& =28 2a —¢ 4b—2d |
A= ( &1 £2 “|‘( c 2d , 51,5265)%, a,b,c,dé[—-—l,l}.
3 €2 0 0

Example 3.2 Consider the nondifferentiable function as in Erample 3.1 and
the polyhedral cone

—il ), according to (5.4), we have A €

C={{a,f,7):a+Pf+v20, f—v>0, a+y>0, v>0}.

It results (To f)(z,y) = 2z | +4 [yl lz |2yl lzl+lyl |y, o
that for (8.1) we have

2a 4b
2
: 89?3(Tof)(010)= {BEL(%Q’;’RLL) LB = ‘ ;i :aabuc1dae=f:ge [_171]}
0 ¢
11 1
. . . . 01 -1
The linear transformation associated to the cone C is T = 10 1
G0 1

so thatp =3 <k =4,

-1



g 1 —1
The matriz T = 1 __01 1 0 reduces T fo the following canonical
-1 1 1 1
1 00
= 010 . S
form T = 001l According to (8.5),(5.6), and taking into account
000
that £ = 2 < p =3, we have
2a 4b
Pig=(~1 1 1), Bo=| ¢ 24 |, Tra=1, Bua=(0 g)
€
so that I'1x3Baxs + Tix1Bixs = ( —2a+c+e —4b+2d+f+g ) .
It follows that the matriz equation TA = B has solution if and only if —2a +

ct+e=0, —4b+2d+ f+9g=0
According to (3.7), A € 3-£(0,0) if and only if

e [—yg
A= c 2d+g |, ¢de fige[-1,1]
0 g

Remark 3.1 Conditions (3.5) and (8.6) point out that the inclusion i (3.1)
0 0

. 10
18, in general, strict. Referring to Ezample 3.2, the matriz B = 00 e

0 0
c')sﬁi'(T o £)(0,0). but simple calculations show that (3.5) is not verified, so
that the matriz equation TA = B does not have solution.

4 A matrix equation in smooth case

In this section we will assume that f is differentiable or, more generally,
that the composite function T o f is differentiable and its Jacobian matrix is
written as J(7T' o f)(x).

Lemma 4.1 Assume that f is C-conver. Then the subdifferential Oc Jx)
consists of all solutions to the matriz equation :

TA=J(To f)(x}). {4

Proof 1f A € 0¢ f(«) then, by iii) of Corollary 2.1, we have TA € J(To fi{x).
and taking into account that J(T o f)(z) is a singleton set, we achived (3.1).

&



Conversely, let A be a solution of (4.1), such a solution exists since 8 f (z) is
nonempty and J(T'o f)(z) is a singleton set. From the convexity of the func-
tionT'e f, we have (T'o f)(z+v)— (To f)(z) > Zg: TAv, Vo € R From ii) of

Corollary 2.1 we have f{z-+v)—f(x) 2¢ Av, ¥o € R, 50 that 4 € Ao f(z). o

Now we will establish a simple rule for calculating the set of all matrices
A satisfying (3.1), when the function f is differentiable.

With this aim let 7' be the Jordan canonical form of T. Without any loss of
generality, we will assume that 7 is of the form:

T:(&_g) (4.2)

where p = rankT, I, denotes the identity matrix of order p, H isa px (n—p),
01, Os are the nu]l matrices of order (k — p) x p and (k - p} x (n — p),
respectively , with the convention that T = ( I, H ) when p = k.
Consider the Jacobian matrix Jf(x) of the function f evaluated at z € R
according to the form of T, we partition the matrices Jf(x) and A in the
following way:

case p < {

I = (1@ () 4, A .
o= (GHe e ) 4= (% &) e

where (Jf(z))* , A* are p x (€ — p) matrices, {(Jf(2)); , A; are (n —p) x p
matrices and (Jf(z}}s, Az are (n — p) x (£ — p) matrices.

case p > { .
e It . (Jf(m))'pr A = AJDXf 4.4
””‘(LM@h)’ “(Al) (44)

where (Jf(z))1 , A; are now (n — p) x £ matrices .

The following theorem holds:

Theorem 4.1 Let C and T defined as (2.5) and (2.6) respectively, If f is
- C-conver and differentiable ot x € R then 8o f(z) consists of all matrices of
the kind :

i) case p < (

o [ Uf), + HUF@): (JF) + B (@),
A=A+( * 01 ey (Uflr 04( * ) (4.5)

where O3, Oy are the null matrices of order (n —p) x p and (n—p)x(t~p)
respectively, and where every column of the n x ¢ matriz A is an arbitrary
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element of KerT', that is a linear combination of the columns of the matriz

()

ii) case.p > {

Os

where Oy s the null matriz of order (n — p) x £.

A= A + ( (J.f(x))px?. + (Jf(x))l ) (4.6)

Proof Denote by P the non singular matrix which reduces T to its Jordan
canonical form, that is such that PT =T,

From (4.1), taking into account that f is a differentiable function, we have
TA=T(Jf(x)), sothat PTA = PT(Jf(z))}, that is TA = T(Jf(x)}.

i) case p < [ '
According to (4.3), TA = T(J f(x)) becomes

(Goo) () =(5 5) (G ey

Consequently _
| Ap = —HA + (Jf(z)), + H(J f(x)),

A= —HAy + (Jf (@)Y + H(Jf(z))s
so that, setting 4; = I,_, A4y, Ay = I, _,A,, we have

~H Jfx))py - H(Jf{z)), (Jf(z f"-FlHt].f(i??))'
A__:(Ln_p)(Al A2>+(( @+ HUF (5 + H )

where the elements of A; and A, are free parameters. It remains to prove

that every column of A = ( ;H

T
KerT.
Let o’ be a column of the matrix A4; or A,. The set

) ( A Ay ) 1s an arbitrary element of

W= {z= ( I

n-p

) a’, ol e R"P)

s a linear subspace of " with dimW’7 = n — p. Furthermore

— . - 4 _{ —Had
- ( ; i )aa = PlpT ( 7 " )a.ﬂ = P"-T( h:a ) = PH0) =0
n—mp n—-p t

so that W7 C KerT. On the other hand dimKerT — n - p=dimWJ and
thus W = KerT.

10



ii)ycasep >/ _
According to (4.4), TA = T(J f(x)) becomes

(6 o)) -6 &) (W)

Consequently

A;JXR = _HA], + (']f(rf))p‘xf + H(Jf('ﬁ))l

Following the same line of the proof given in i) we get (4.6). O

Corollary 4.1 Let C and T defined as (2.5) and (2.6) fesp‘ectz'fvely. If fis
C-conver and differentiable ot © € R, and if rankT = n < k then Ao f(x) is
a singleton set and we have Oc f(z) = {Jf(x)}.

Now we present some examples to illustrate the method for caleulating
any matrix 4 € O¢ f(x).

Example 4.1 Consider the differentiable function f : R — R® | defined as
fle,y) = (=2 + %, 2% —y? + 4o — y. o + 2y) and the polyhedral cone
C={{e,B,y):a+8+v>20, —a-p5—~v>0}.

The linear transformation associated to the cone C is :

111
T_(-—] ~1 —1)

it results (T'of)(x,y) = (5x-+y, —dz—y). Since any component of (T's f)(x, y)
is @ conver function, the function T o f is N -convex, so that, for Corollary
2.1, the function f is C-convex and its Jacobian matriz is

—2r 2y :
Jf(zy) = | 20+4 2y —1 (. In order to calculate defla,y}, we con-
1 2

sider the following Jordan canonical form of T -

= 1 11

T= ( 000 )
Sincep=1<{=2 Aed:flry)if and only if A is of the form (4.5).
According to (4.2) and (4.3), it results H = ( 11 ), (Jf(eu))y = (—2x),

(o)) = (2) , () = ( Z‘Ef ’ ) (Jfz,y))s = ( "2’2‘ : )
So that '

11



I B = (20 (1 1) (774 s,

@)+ B y)a = 2+ (1 1) ( R

S

Y
2
-1 —1
Taking mto account that KerT = {| 1 |Aj--| 0 1Xs, A )y € R},
0 1

&1 =&~y — o 5 1
A= f] 1 ‘ + 0 0
&2 12 00

and Do flx,y) ={A: &,&. 1, € R}

Example 4.2 Consider the differentiable function f: R2 — R* | defined as
Say) = (2% + 4%, 22° + y, 2y) and the polyhedral cone O = {{0v, B, ) :
a+F+v2>0, §—~2=0}

The linear transformation associated to the cone C is -

I 1 1
(o1 L)

it results (T o fi(z,y) = (2 +y? + 3y, 222 — y}. Since any component of
(I'o f)(z,y) s a convex function, the function T o [ is R2 -convez, so that,
Jor Corollary 2.1, the function f is C'-conver and its Jacobian matriz is

(4.5) gives

—2r 2y
Jf(z.y) = | dx 1 |. In order to calculote the subdifferential e flx),
0 2

we consider the following Jordan canonical form of T :

= 1 0 2
r=(o 1 %)
Sincep=2=1{, A€ 0cf(z,y) if and only if A is of the form (4.6).
_ _a. ;
According to (4.2) and ({.4), it results H = ( _21 ),(Jf(m}y))w = ( “fE 2y ),

(Jf(z,9)): = ( 0 2 ),'SO that Jf(’lj))pr + H(Jf(x), = ( —4341 .21:9' ) +
2 —2r 2uy+4
(5) 00 2)=(3r s

-2
Tuking into account that KerT = { ( L ojA AeR}, (4.6) gives
1

12



—26 —26, —9r 2y +4
A= & & |+| 4@ -1
&1 £a 0 0

and Jeflo,y) ={A: &, & e R}

Example 4.3 Consider the differentiable function f: R* — R | defined as
flz.y) = (—2” +y* 22° + y* — 2, 2y) and the polyhedral cone C = {{a, 5,7) :
a+320, B+v20, a+28>0, —a+p+7v>0}

The linear transformation associated to the cone C is :

N
0
=11

= D et OO

1
1
2
=11
i results (T'o f(z,y) = (@® + 20" — 2, 22° + 9% — 2 + 2y, 322 + 3¢y® — 22, 3% —
T+ 2y). Since any component of (T'o f)(x,y) is a conver function, the func-

tion f 1s C-convex. In order to calculate Oc f(z,y), we consider the following
Jordan canonical form of T :

1T 00

= 010

= 0 01

000

Stnce p = n =3, from Corollary 4.1, we have

-2z 2y

Ocf(ry)={Jflz,y)=| 42 -1 2y [}.
0 2
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