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Abstract

Starting from scalar pseudolinearity revisited, we will present an
approach to pseudolinearity in vector optimization with respect to a
closed convex and pointed cone; such an approach allow to find new
results and to generalize the ones obtained requiring componentwise
pseudolinearity.
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1 Introduction

2 Quasilinear and pseudolinear scalar func-
tions revisited

The aim of this chapter is to present the main properties related to optimiza-
tion of quasilinear and pseudolinear scalar functions. These properties are
very important since its allow to suggest sequential methods of simplex-like
type for wide classes of optimization problems [22, 27]. For such a reason,
revisiting the results appear in the literature, we will suggest an antonomous
treatment of this subject.

Let f: X — R be a function defined on an open set X of ;™ and let S be a
convex subset of X. We recall the following classic definitions:



" Definition 2.1 The function f is quasiconver if
f(za) < flz1) = f((1—N)m + Azg) < f(y) (2.1)
for every i, 20 € S and 0 <A< 1.

Definition 2.2 The function f is semistrictly quasiconvez if

Fla2) < fla) = F((L = Ny +Axs) < f(2) (2.2)
for every xy,20€ S and 0 < A < 1.

Deﬁnltlon 2.3 The differentioble function f is pseudoconvez if
1,22 € S, f(SCQ) < f(:El) = (CCQ — $1)TVf($1) < 0. (23) .

We recall that, in the differentiable case, a pseudoconvex functlon isa semlstrlctly
quastconvex function, that, in turn, is quasiconvex.

The function f is quasiconcave, semistrictly quasiconcave or pseudoconcave

if and only if the function —f is quasiconvex, semistrictly quasiconvex or
pseudoconvex, respectively.

The function f is said to be quasilinear (pseudolinear) if it is both quasicon-
vex and quasiconcave (pseudoconvex and pseudoconcave).

The pseudolinear functions have some properties stated in [12, 17, 24] for
which we propose simple proofs.

Theorem 2.1 Let f be a function defined on an open convex set S C R™.
i) If f is pseudolinear and there exists xg € S such that V f(zg) = 0, then f
is constant on S.

) [ is pseudolinear if and only if

Ly €S, f(@)=f(y) = (y—a)'Vi(x) =0 (2.4)

i) Assume V f{z) # 0Ve € S. Then f is pseudolinear on S if and only

if its normalized gradient mapping z — Wg%:_gll s constant on each level set

f(z) =constant.

Proof i) It follows taking into account that a stationary point is a global
minimum point for a pseudoconvex function and a global maximum point
for a pseudoconcave function.

ii) Let f be pseudolinear. Since f is also quasilinear, then f(z) = f(y)
implies that f is constant on the line-segment [r, %], so that the directional
derivative (y — )7V f(x) is equal to zero.



Assume now (y — 2)7V f(z) = 0. Since f(y) < f(z) (f(y) > f(z)) implies
(v — )"V f(x) <0 ((y — )"V f(2) > 0}, necessarily we have f(z) = f{y).

Assume that (2.4) holds; we must prove that f is both pseudoconvex and
pscudoconcave. If f is not pseudoconvex, there exist z,y € S with f(y) <
f(x) such that (y —x)"V f(z) > 0. Since (y — )7V () = 0 implies f(z) =
f{y), we must have (y — 2)TVf(z) > 0, so that the direction d = y — z
is an increasing direction at x. The continuity of the function f implies the
existence of z* = z+¢"(y—x), t* €]0, 1[ such that f(z*} = f(z). Consequently
(z* ~ 2)TV f(z) =t*(y — 2)"V f(z) > 0 and this contradicts (2.4). 1t follows
that f is pseudoconvex. In an analogous way it can be proven that f is

pseudoconcave.
iii) Let f be pseudolinear with V.f(z) # 0 ¥z € S. We must prove that

Vi) _ Vi)
MO

Bet Ty = {de R : d"Vf(z) =0}, Ty = {de R : ' VF(y) = 0).

We have I'y = T'y. Indeed, if d € I'y, from ii) it results f(z+td) = f(z) = f(y)
for every t such that z +td € S. From ii), it follows (y —z — td)"Vf(y) =0
and (y — )TV f(y} = 0 s0 that dTV f(y) = 0 and thus d € T's. In an analo-
gous way we can prove that ['y C T).

(2.5)

Vile) _ 4 Vi ~ Vi)
Since F1 = [y, it results T = :I:iIVf Il Set u TR and assume
that o4& — _q: for a suitable ¢ €)0, [ the pomts 2= x4ty 2=y+tu

@0 =
are such that f(z) < f(x), f(z2) > f(y). The continuity of f implies the

existence of A €]0, 1] such that f(z) = f(z) = f(y) with z = dz; + (1 — )%
From ii) we must have (z — y)"u = 0; on the other hand (z — y)Tu =
Mz —y) + (1= Ntuw)Tu= (1=t | ul| ?> 0so that from ii), f(y) # f{2)
and this is absurd. ot o

Consequently we have IJV;E:;)II = ”V;Eggu.

Assume now that (2.5) holds. Let z,y € S and set ¢(t) = f(z +t{y—2)),t €
0, 1]. If ¢/(¢) is constant in sign, then ¢(¢) is quasilinear on the line segment
[0, 1]. Otherwise, from elementary analysis, there exist t;,t, €]0, 1] such that
¢t} = @(t2) with ¢/(£1)¢'(t2) < 0. We can assume, without loss of gen-
erality, that #; < &y, ¢'(t;) > 0, ¢'(t2) < 0. Set z; = ¢+ t1(y — x), 29 =
T+ ta(y — z). Since f(z1) = ¢(t) = P(t2) = f(z2), we have ¢'(t) =
(1 ~t1)y —2)TVF(z1) > 0 and 0 > ¢'{ty) = (1 — ta){y — 2)TVF{z) =
(1 —t2)(y —2)TVf(2 )h{gjﬁ(& > 0 and this is absurd. '

It follows that the restriction of the function over every line-segment con-
tained in S is quasilinear, so that f is quasilinear and also pseudolinear since
Vfi(z)#£0VzeS. 0




Remark 2.1 Fbollowing the same lines of the proof given in 4) of the pre-
viuos theorem, it can be shown that (2.4) is equivalent to the following two
statements:

2,y €8, f(2)> fly) == (y—2Vi@)>0  (26)
By €S, flz) < fy) <= (w—2)TVi(z) <0 (27)

which point out that pseudolinearity is equivalent to require that the logical
implication in the definition of pseudoconvex (pseudoconcave) function can
be reversed.

Remark 2.2 i) and 1) of Theorem 2.1 do not hold if f is quaszlmear as zt
is easy to verify considering the function f(z) = z°.

Let us note that i) and.ii) of Theorem 2.1 hold even if S is a relatively open
convex set, while in iil) the assumption intS # @ cannot be weakened as it
is shown in the following example.

Example 2.1 Consider the function f(z,y,2) = zy+ zz + Z34E2 = y_|_~ deﬁned on

the relatively open convex set D = {(x,y, 2 ) z -y +2z>0}

Consider the convex set S = {(z,y,2} : x = 0,y = 0,z > 0}; obmoush
intS = 0, while riS # 0.

By simple calculation, it results Vf(0,0,z) = (z,
B = (0,0, 2) we haee f( )=f(B)=1,Vf(A) = (
0 that [oRET # ORE

i“—"l‘ |[\J

2 0). Let A = (0,0,1),
2,0),Vf(B)=(2,1,0)

Condition iii) 'of Theorem 2.1 can be streightened when the function f is
defined on the whole space R"™, in the sense stated in the following theorem.

Theorem 2.2 The non constant function f is pseudolinear on the whole
space R™ if and only if its normalized gradient mapping v — IIgﬁBH 8 con-

stant on R™.

Proof <« 1t follows from iii) of Theorem 2.1. .
= Let f be pseudolinear on ®" and assume that its normalized gradient
mappmg is not constant on R" Then there exist z(,75 € R" such that

”gj: :’;i Tika ”w ”2; From iii) of Theorem 2.1, we have f(r1) # f(z2). Set
[y ={deR": dT_Vf(asl) =0} and [y = {d € R" : A7V f(z4) = 0}. Let us
note that = € x, + Ty implies (x — x,) € T'y so that (z — z)TV f(z;) = 0
and, from ii) of Theorem 2.1, f(z) = f(z1).Vz € 7, + T';. Analogously we
have f(x) = f(z3).Vx € z3 + ['». Since ”gi(;i Tl # “Vf ”‘Az)“, there exists

Z € (21 + 1) N (zg + Ta), so that f(z) = f(x1), f(z) = f(z2) and this is
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absurd. O

From a geometrical point of wiev, the previous theorem states that the
level sets of a non constant pseudolinear function, defined on the whole space
R™ are parallel hyperplanes; viceversa if the level sets of a differentiable func-
tion, with no critical points, are hyperplanes, then the function is pseudolin-
ear.

In any case, if the level sets of a function are hyperplanes, then the function is
quasilinear, but the viceversa is not true. In fact the function é(z,y} = f(z),
where ' _

—z? z€[-1,0]

flzy=4 0 z €)0,2] (2.8)

(x —2)? z€2,3]
is quasilinear and the level set {{z,y) : ¢(z,y) = 0} = [0,2] x R is not an
hyperplane. ' ' '
When the non constant pseudolinear function is defined on a convex set
S C R™, from iii) of Theorem 2.1, the level sets are the intersection between
S and hyperplanes which are not necessarily parallel (consider for instance
the classic case of linear fractional functions).
The above considerations suggest a simple way to construct a pseudolinear
function. Consider for instance the family of lines y == f/’% It is easy to
verify that such lines are the level sets of the function

—97 2 + y\/y? — dx + 427

.f(xa y) - sz
defined on theset S = {{z,y) : x > 1,y > 0}; since Vf{z,y) # 0 ¥{z,y) € S,
f(z,y) is pseudolinear-on §. o
Another way to construct a pseudolinear function is to consider a composite

function ¢ o f where f is pseudolinear and ¢ : ® — R is a differentiable
function having a strictly positive (or negative) derivative.

Now we will point out that for a pseudoconvex function, a global maximum
or minimum point, if one exists, is attained on the boundary of the feasible
region & and, under suitable assumptions on S, it is an extreme point of S.
We will begin to prove that if the maximum value of a semistrictly quasicon-
vex function is reached at a relative interior point of S, then f is constant
on S, _

We recall that the relative interior of a convex set C C R", denoted by riC,
is defined as the interior which results when ' is regarded as a subset of its
athine hull affC. In other words,

riC={z €affC:3e>0,(z+eB)NaffC CC}
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where B is the Euclidean unit ball in ”.

Lemma 2.1 Let f be a continuous and semistrictly quasiconvez function on
o conver set S. If zg € 7iS is such that f(xo) = mamregf( ), then f is
constant on S.

Proof Assume that there exists T € S such that f(Z) < f(ag). For a known
property of convex sets [25], there exists z* € S such that zg €]z*, Z[. Since
f is a continuous function, without loss of generality, we can assume that
f(z*) > f(z}). The semistrictly quasiconvexity of f implies f(z) < f(z*),
Vz €)z*, Z[ and this is absurd since zg €)z*, Z. ' O
From Lemma 2.1, we have directly the following result.

Theorem 2.3 Let f be a continuous and semastrictly quasiconvez function
on a convex and closed set S. If f assumes mazimum value on S, then it i3
reached on some boundary point.

The previous theorem can be strenghtened when the convex set S does not
contain lines (such an assumption implies the existence of an extreme point.
[251).

Theorem 2.4 Let [ be a continuous and semistrictly quasiconvez function
on a conver and closed set S containing no lines. If [ assumes mazimum
value on S, then it is reached on an extreme point.

Proof If f is constant, then the thesig is trivial. Let z, be such that
f(zg) = maxgesf(z). From Theorem 2.3, xy belongs to the boundary of
S. Let € be the minimal face of S containing xq; if 2y is not an extreme
point, then zy € riC. It follows from Lemma 2.1 that f is constant on C.
On the other hand, C is a convex closed set containing no lines, so that C
has at least one extreme point & which is also an extreme point of S [25].
Consequently Z is a global maximum for f on-S. 0

~ Taking into account that a pseudolinear function is both semistrictly qua-
siconvex and semistrictly quasiconcave, we have the following corollary:

Corollary 2.1 Let f be a pseudoconver function defined on a convex and
closed set S containing no lines. If f assumes mazimum or mintmum value
on S, then it is reached on an extreme point.

Let us note that a quasiconvex function can have a global maximum point
which is not a boundary point. In fact the function

—z?+2r 0<z <1

o= { 77 05



is nondecreasing, so that it is quasiconvex; on the other hand any point > 1
where f assumes its maximum value is not a boundary point.

If we want to extend Theorem 2.1 to the class of quasiconvex functions, we
must require additional assumptions on the convex set .

Theorem 2.5 Let f be a continuous and quesiconver function on a conver
and compact set S. Then there exists some extreme point on which f assumes:
its maximum value.

Proof From Weierstrass Theorem, there exists Z € S with f(Z) = mazzesf(z).
Since S is convex and compact, it is also the convex hull of its extreme points,

so that there exists a finite number z!,..., 2" of extreme points such that
z = Z?:l AT, Zf'ﬂ A =1, A = 0. From the quasiconvexity of f we have
f(Z) < mazx{f(z"), ..., f(z™)} and the thesis follows. 0

Corollary 2.2 Let f be a pseudoconvexr function defined on o convexr and
compact set S. Then there exists some extreme point on which f assumes its
mazimum and minimum value.

Remark 2.3 IFrom a computational poini of view, Theorem 2.2 is very im-
portant since it establish that we must investigate the boundary of the feasible
set (in particular the extreme points if one exists) in order to find a global
mazimum or minimum of a pseudoconver function. In particular, for a pseu-
dolinear objective function defined on a polyhedral set S, we have the property
that when the mazimum and the minimum value exist, they are reached on
a verter of S. This nice property have suggested some simplex-like procedure
for pseudolinear problems.  These programs include linear programs and lin-
ear fractional programs which avise in many practical epplications (13, 27].
Algorithms for a linear fractional problem have been suggested by several ou-
thors [2, 11, 22]. Computational comparisons between algomthme for lmear‘
fractional programming are given in [14].

3 First order optimality conditions in vector
“optimization

In order to suggest an approach which extends to multiobjective functions
the results given in Section 2, we need of some preliminary results regarding
separation theorems and first order optimality conditions.

With this aim let U; € R, Uy < R* closed convex pointed cones with
nonempty interiors and let Wi C R?, W, C R* linear subspaces. We recall,
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first of all, the concept of base of a cone.

A base of a cone K is a set B satisfying the fol]owmg properties a), b), ¢}:
a)0¢ B;

b) for each z € K, 2 # 0, there are unique b € B, u > 0 such that z = ub;
¢) K={z=ub:be B,u >0}

In finite dimensional space, a closed, convex and pomted cone has a closed

convex bounded base [19] . A simple proof of this property is given in the

following Lemma, where K* denotes the positive polar of K.

Lemma 3.1 Let K be g closed, convexr and pointed cone of some finite di-
mensional space. Let B € intK”* and let I be a hyperplane of equation

BTz = By, B > 0.
Then B=TNK s a compact convex base of K.

Proof Obviously 0 ¢ B and since I' and K are closed and convex sets, B is
closed and convex too.

For each « € K, the halfline of equation 2z = px, u > 0 meet B in the unique
point b = —6%33 with p = % (let us note that intK* # @ since K is closed
and pointéd and 8 € intK* implies 3%z > 0). It remains to prove that B
. is bounded. If not, there exists a sequence {b,} C B with || b, ||— +oc. It
results 47b, = fy and thus ﬁT”—g:TE = ﬁ so that there exists a subsequence
of {"—g:ﬂ}, which we can redenominate in the same way, converging to an

element b* € B = K NT. Consequently, we have 575" = 0 and this is absurd
since b* € K, A € int K* implies 875 > 0. .

Now we are able to state the following separations theorems, where int()
denctes the interior of ().

Theorem 3.1 The following properties hold:
i) Wi N antly = 0 if and only if

N e UP\ {0} : MTw =0, Ywe W. (3.9)
2) Wi nUp = {0} if and only if
INe intUr - Xw =0, Yw e W. (3.10)

Proof 1) It is a well-known result.

ii) Let B be a base of Uy existing from Lemma3.1. If W, N U; = {0} then
W, B are non-empty disjoint closed convex sets having no common directions
of recessions so that there exists a hyperplane separating W, and B strongly
[25], that is there exists A & W', Xy > 0 such that ATw < Ay Yw € Wy,



ATh > XA Vb € B. This last inequality implies ATu > Ao > 0 Vu € U, so
that A € intU}. Tt remains to prove that A\7w = 0, VYw € W;. Since W, is a
linear subspace, the relation ATw < Ay Yw € Wy, implies A\Tkw = k)\Tw <
Ao Vk € R, so that necessarily we have ATw = 0 Yw € W.

Assume now that 3.10 holds. The existence of u € W, M Uy, u # Q, implies
ATy > 0 and this is absurd. _ 0

Theorem 3.2 Set W = W, x W,. The followz’ng properties hold:
i) (W x Wa) N (intly x intly) = 0 if and only if

I € U, 30 € Ug, (A, Ag) # 0 0Twy + M wg = 0, Viaws,0) € W, (3.11)
i) (Wi x W) N (intU; x Uy) = 0 if and only if |
I € UPN{0}, 30 € U5 M wy + Mws =0 Y(w,w) e W:  (3.12)
i6i) (Wi x Wa) 0 ((Ur \ {0}) x Us) = @ 4f and only if |
I € intly, 30, € Uy 1 Mwy + ,\2 wy =0 V(wi,ws) € W. (3.13)

Proof i) It is a well-known result.

ii), ii). Obviously 3.12, 3.13 imply the thesis. :
If (VV[ X VVQ) (zntU]‘ X Ug) = @ ((M’] X Wg) i ((Ul \ {0}) X UQJ —_ m),
necessarily we have W) NintUy = 0 (W; N (Uy \ {0}) = 0 otherwise u €
Winintlh (v € WiN (U1 \{0})) implies (u,0) € (W x Wa) N (intly x Us)
((u,0) € (W1 x Wa) N ((Uy \ {0}) x Uy) and this is absurd.
From 3.9 3\, € Uy \ {0} : AM{w = 0, Vw € W, (from 3.10 3\ € iU} : .
Mw =0, vwe W)). : _ o
If U; C Wy, then any hyperplane of equation ATw = 0 containing Ws is such’
that Aju = 0 Yu € Uy, so that Ay € Uj. If Uy ¢ W, then intls N Wy = 0,
so that from 3.9 X, € U3 \ {0} : Mw = 0, Yw € Ws. In any case it follows
that (A1, A9) satisfies 3.12 (3.13). O

Consider now a closed, convex and pointed cone with a nonempty interior
C C R* and set CY = C'\ {0}.
The cone C induces & partial order relation in 1% which allow to extends the
definitions of a maximum or minimum point for a vector function.
More exactly, let. F': X - R be a function defined on the open set X of {7
and consider the following vector optimization problems:

Prin :minF(z),ze SCX



Prae :maxF(z),z € SC X

A point zy € S is said to be :

- weakly efficient for P, if Fi(z) ¢ F(a;o) intC, Vz € §

- efficient for P, if F(z) & F(zo) — VeeS. ‘

- weakly efficiens for P, if F(z) ¢ F(a"g) +intC, Yz e S

- efficient for P, if F(x) ¢ F(zo) + C°, Yz € S.

If the previous conditions are verified in 7 N S, where I is a suitable neigh-
bourhood of zy, then zy is said to be a local weak efficient point or a local
efficient point, respectively.

In the scalar case (s=1) a (local) weak efficient point and an (local) efficient
point reduce to the ordinary definition of a (local) minimum or maximum
point.

When € is the Paretian cone

C=R ={z=(21,.,2) ER°: 2> 0,i=1, ..., 5}

)(fﬁn efficient point is usually referred to a Pareto point. Obv1ously (local)
ciency implies (local) weak efficiency.

From now on, we will assume that F is differentiable and that S is described
by constraint functions, that is

S={zreX:G(x)e -V} in problem P,

S={z e X:G(x)eV}inproblem P,,,.

where G 1 X — R™ is a differentiable function and V is a closed convex
pointed cone of ™ with nonempty interior.

We will denote with F'(u) and G'(u) the Jacobian matrices of F and G,
respectively, evaluated at v € X,

The following theorems hold:

Theorem 3.3 If z; is an interior local weak eﬁcwwf point for Ppin o7 Pras,
“hen

do & C*\ {0} such that O‘TF’(.”L‘O) = () - {3.14)
- Proof Consider the line-segment z = z¢-+td,t € [0,¢[,d € R". The local weak
efficiency of zy with respect to P, implies M ¢ —intC, so that
F{zo)d = limy_o+ ﬂgﬂd—mz ¢ —intC. Setting W = {F'{xg)d,d € R"},
it results W N (—intC) = @ the thesis follows from i) of Theorem 3.1. The
proof is similar when zg is a weak efficient point for £, : 0

Theorerﬂ. 3.4 If “17‘(] e 8 'w’l.th G(.Z’(}) = O 15 a fu}eak (f‘ﬁiCient poznt fo,r fOT
‘ .Pmm or Pras, then

AaeC3FeV (a,08)#0: T Flay) + BTG (zo) = 0 (3.15)

i0



Proof Let us note that G'(zp)d € —intV implies that d is a feasible direction
of Sat zq € S. If 2 is a weak efficient point with respect to Py, #'(20)d €
—intC Vd: G'(xg)d € —intV or, equivalently, (F'(zo)d, G'(20)d) & (—intC)x
(—intV) Vd & R™. Setting Wi = {F'(zp)d, d € R"}, Wy = {G'(z)d, d &
R}, we have Wi x Won{—intC) x (—intV') = (. The thesis follows from 1) of
Theorem 3.2.The proof is similar when g is a weak efficient point for Prgs. 0

4 Pseudolinearity in vector optimization

In order to suggest an approach which generalizes scalar pseudolinearity, we
will introduce the concepts of quasiconvexity (quasiconcavity) and pseudo—
convexity (pseudoconcavity) for a multiobjective function.

As is known, there are different ways in extending the definitions of gener-
alized convex functions to the vector case; we will address to the following
two classes of vector pseudoconvex functions which reduce, when s = 1, to
the classical definition given by Mangasarian [21].

Deﬁnitioh 4.1 The function F is said to be (CP, C%)-psendoconvex {on §)
if |
| T1,%9 € 8, F(1y) € F(z1) = C* = F'(z) (73 —m) € =C°

Definition 4.2 The function F is said to be (intC,intC)-pseudoconver (én
8)4f :
z1, 29 € 8, Flxg) € Fx)) —intC = a1} (z2 — 31} € —intC -

Definition 4.3 The function F is said to be (C°, C°)-pseudoconcave (on S)
if '
T, 70 € 5, Flzs) € Flz1) + C° = F'(21) (22 — 31) € C°

Definition 4.4 The function I is said to be (intC, intC)-pseudoconcave {on
8) if

r1, 29 €8, Fas) € F(zy) +intC = Fliz)(zs — 21) € intC

Obviously, F' is pseudoconcave ff —F is psendoconvex; so that any results
related to pseudoconvexity can easily translated in a result related to pseu-
doconcavity. In what follows we will refer mainly to pseudoconvexity.

When ' is the Paretian cone, we have: .

- if any component of F is pseudoconvex, then F is (intC, intC)- pseudocon-
vex and also (C° CP)-pseudoconvex;

11



- if any component, of F is quasiconvex and at least one is strictly pseudo-
convex, then F is (€9, CY)-psendoconvex.

The converse of these statements are not true-in general, as it is shown in
the following example.

Example 4.1 The function F'(x,y) = (z, —z, =27, y) is (intC,intC)-pseudoconvex
and (C°, C%)-pseudoconvexr on S = R2, with C = R4, but it s not compo-
nentwise quasiconvexr or pseudoconver. .
The function F(x) = (z,—z, —2z?) is {C%intC)-pseudoconver on S = R,

with C' = N3, but its components are not strictly pseudoconver.

The following example point out that there are not inclusion relationships
between (C?, C°)-pseudoconvexity and (intC, intC)-pseudoconvexity.

Example 4.2 Consider the function F(z) = (—z% 2z - 1)%), S = {z ¢
R,z>0} C=RE. o

It 1s easy to prove that there do not exist x1,2, € S such that F(z:) €
F(x) —intC, so that F is (intClintC)-pseudoconvex. On the other hand,
setting xo = 1,21 = 0, we have F(1) € F(0) — C°, while F'(0) 1 ¢ —C° and
thus F is not (C°, C°)-pseudoconver. .

Consider now the function F(x) = (—x,—2%), § = {x € R,z > 0}, C = R2.
Setting xp.= 1,21 = 0, we have F'(1) € F(0)—intC and F'(0)-1 & —intC, so
that F is not (intC,intC)-pseudoconver, while simple calculations show that
F s (C°, C)-pseudoconvex.

Conditions (2.6) and (2.7) suggest to define pseudolinearity with respect
to a cone requiring that the logical implication in the definitions of (C?, C)-
pseudoconvexity ( (intC, intC)-pseudoconvexity) and (C°, C®)-pseudoconcavity
( (intC, intC)-pseudoconcavity) can be reversed.

Definition 4.5 The function F is (CY, C’D];pseudoli”rr,ear (on 8) if the fol-
lowing two statements hold:

T, & & S, F(SI‘Q) - F(’I‘]) — CO = Ff[ﬂil)(ﬂ?g - Il) - —“CD (416)
T3z €5, Flzy) € F(z) + C° & F'(x)){zg — 1) € C° (4.17)

Definition 4.6 The function F is (intC,intC)-pseudolinear (on 5) if the
Jollowing two statements hold:

1,73 €5, F(zg) € F(z)) —intC & F'(x))(zs — z1) € ~intC (4.18)

r1, 22 €8, Fag) € Fzy) +intC & F'{x))(z0 — 71) € tntC | (4.19)
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Remark 4.1 If C is the Paretian cone and F 1s componentwise pseudo-
linear, then F is (C° C°)-pseudolinear; the converse is not true, as it can
be easz’ly verified considering the class of functions F : R — R?, F(z) =
(Fi(x), Fa(x)), where Fy, Fy are such that F{(z) > 0 Vr € R, Fy(z) 2 0 Vz €
R and there exist T, x* € R such that F3(Z) > 0, F5(z*) = 0.

For a (intC,intC)-pseudoconvex function, a local weak efficient point for
Prin is also weakly efficient so that this property is maintained for a (intC, intC)-
pseudolinear function. Now, we will point out that {C?, C'9)-pseudolinearity
implies that a local efficient point is efficient too, even if such a property does
not hold for (€% C")-pseudoconvex functions.

Theorem 4.1 Let F be (C° C%-pseudolinear {on S). If zy € S is a local
efficient point for P, then xg is efficient for P.

Proof Assume that there exists Z € S such that F(Z) € F(zo) — C°. Then
F'(xo){(Z — z0) € ~C°. Consider the line-segment |xo, l = {2 = xo + (2 —
zo),t €]0,1]}. It results F'(zo)(z — 2o) = tF'(20){T — zo) € —C7, so that for
the pseudolinearity of F, F(z) € F(zy) — C° Vz €]z, Z] and this contradicts
the local efficiency of xq.

The efficiency of an interior point can be completed characterized for the
classes of (intC,intC)-pseudolinear and {C?, C°)-pseudolinearfunctions by
means of the following theorem: .

Theorem 4.2 The following properties hold:
i) Let F be (C° C°)-pseudolinear (on §) and let xy € S be an interior point
of S. Then xy is an efficient point either for Puy, or for P, if and only if

o € intC* such that of F'(z0) =0 (4.20)

4i) Let F be (intC, intC)-pseudolinear (on S) and let xg € 5 be an interior
point of S. Then xq is a weak efficient point either for Po or for Pro if

and only if
do € C*\ {0} such that aTF'( 0) =10 (4.21)

Proof i) The pseudolinearity of I' and the efficiency of x, with respect to
Prin, imply F'(x0)(x — 20) € —C°, Va % z0. (4.20) follows from ii) of The-
orem 3.1.

Assume now that (4.20 holds; if zg is not an efficient point for P, then
there exists Z € S : F(Z) € C so that we have F'{xy)(Z — x¢) € C” and this
implies o F'{xo)(Z — zp) > 0 and this is absurd.

The proof is similar when z, is a weak efficient point for P,

ii) The proof is similar to the one given in i). 0]
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Corollary 4.1 Let C the paretian cone and let F be a componentwise pseu-
dolinear or an affine function (on §). Then xo € S is an interior efficient
point if and only if

Jor € intC™ such that o F'(xg) = 0.

When all the components F; of F are pseudolinear on the whole space R",
the existence of a stationary point implies that any point of R" is efficient as
it is shown in the following theorem.

Theorem 4.3 Let (' the Paretian cone and let F be componentwise pseudo—
linear on R™. [f there emsts an efficitent point for F, then any point of R™ i
efficient.

Proof Without loss of generality, we can suppose that VF(z) # 0, Vi =
l,...,8, Vz € R"; indeed if there exists z such that VE;(z) = 0, then. F} is
a constant function and the efficiency of a point z, with respect to F ig equiva-
lent to the efficiency of 25 with respect to the function (F, ..., Fy_y, Fj1, ..., Fy).
Let zg be an efficient point for F; then from Corollary 4.1 3 o = (ay,...,a.) €
it such that 7, @;VF;(xg) = 0. From Theorem 2.2, we have V Fj(z) =
GV Fi(z) with §; = I8 > 0 Vi, so that 37 043V E(z) = 0 vz € R

IVFi (=
and thus, taking into account Corollary 4.1, z € R is an efficient point.

Let us note that if F is componentwise pseudolinear on a convex subset
of 3", the property stated in Theorem 4.3 does not hold even if there exist
stationary points, as is shown in the following example.

Example 4.3 Consider the function

1+ T3 —1 —214+ 29— 3

Flzy, ) = ( PRI B ——

),

(331,1'2)65 {(T1,fL’2) 0<I1<20<E2<2}
Fis (C° C°)-pseudolinear on S since its components are pseudolinear on S.

2 17

Consider the interior point zo = (5,3). It results F'(x0) = { RIS J, 30
‘ 5 5 '

that, setting o™ = (3,5), we have ol F'(xo) = 0, that is xg is o stationary

point for F' and, consequently, xy is an efficient point either with respect to
C or with respect to -C, as it can be verified applying the definitions. On the
other hand zq = (0,0) € 5 4s not an efficient point, so that Theorem 4.3 does
not hold if we substitute R" with a subset S. Let us note that the line-segment
[A, B] with A= (3,0), B = (1,1) is the set of all efficient points of F.

14



The following example points out that the classes of (C°, C?) and (intC,intC)-
pseudolinear functions are not comparable as it happens for vector pseude-
convexity.

Exémple 4.4 Consider the function
F(zy,32) = (21, 21,31 + @3, ~Ta), (71, 2p) € R,

C = ?Ri. It can be verified that F is (intC,intC)-pseudolinear. Obviously o =
(0,0) is an efficient point for F, but ¥ F'(zo) = 0, with o = (o, aa, a3, ),
holds if and only if &y = 0,01 ~ g + 3 = 0, so that it is not possible to
have the positwity of all multipliers and this imply that F is not (C°, C’O)

pseudolinear.
Consider now the function F(z) = (2 + z,2%),z € R,C = R2. Such a
Junction is (C°, C°)-pseudolinear but it is not (intC intC) pseudohwear

The following theorem states a necessary and sufficient optimality condi-
tion of the Kuhn—Tucker type.

Theorem 4.4 Consider problem P*, where F is (C° C°)-pseudolinear, G is
(VO, V9 -pseudolinear and such that :

G'ly)(z —y) =0 & G(z) = G(y) (4.22)
Then a feasible point_' xo is efficient either for Py, or for P if and only if
JacintR],3 BeRT: QTF’(:,UO) + ﬁTG"(mg) = () (4.23)
Proof Necessity. Consider the linear subspace
W = {(F'{zo)(z — zo), G (o) (z — x0)), z € R"}.

Now we will prove that W N (%§Rj_ \ {0}) x (—§R$))= .
Assume that there exists £ € R" such that

F'(zo)(Z — 20) € =C” (4.24)

G'(zo)(Z — 1) € =V (4.25)

Let us note that (4.24) and (4.25) hold for any point of the intersection be-
tween the convex set X and the line-segment [z, Z], so that we can assume
without loss of generality that 7 € X.

The pseudolinearity of G and property (4.22) imply the feasibility of 7. On
the other hand, (4.24) contradicts the efficiency of zg, so that W N (—C% x
(=V)) = 0. From iii) of Theorem 3.2, we have (4.23).

Sufficiency. The proof is trivial.. 0
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Remark 4.2 In the previous theorem, we have assumed that the constraint
vector function G belongs to the subclass of (V°, V) -pseudolinear functions
verifying the property (4.22); this subclass contains the componentwise pseu-
dolinear functions and the inclusion is proper since the function introduced
in Remark 4.1 belongs to such a subclass.

As a direct consequence of the previous theorem, we obtain the following
result given by Chew-Choo [12].

Corollary 4.2 Consider problem P*, where the objective function and the
constraints are componentwise pseudolinear. A point xy is an efficient solu-
tion of problem P* if and only if

J acimtRL,3 BERT: o F(zo) + 857G (z0) = 0
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