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Abstract

In this paper the generalized convexity of quadratic fractional func-
tions is studied. It is proved that, for this class of functions, pseudo-
convexity is equivalent to quasiconvexity and some characterizations
for both pseudoconvexity and strict pseudoconvexity are given. Fur-
thermore, the stated results are specialized to some particular classes
of quadratic fractional functions, obtaining conditions that can be eas-

ily checked. _
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1 Introduction

Many problems in Mahagem,ent Science, such as maximization of produc-
tivity, maximization of return of investment, can be seen as applications of
fractional programming; whenever we have a problem that describes some
kind of efficiency measure of a system, we can formulate it as a fractional
program. In particular, several applicative problems (Portfolio Theory, Risk
Theory, Location Models} can be seen as quadratic fractional programs (see
for example [2, 3]), that is problems where the objective function is the ratio
of a quadratic and an affine one. For this reason, many papers about frac-
tional programming have been published in the last decades and both theo-
retical and algorithmic point of views have been handled (see for all [1, 17]); -

*The paper has been discussed jointly by the authors. In particular, sections 1 and 4
have been developed by Laura Carosi while sections 2 and 3 by Riccardo Cambini.
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several of these results deal with the generalized convexity of the objective
function, since this property plays a key role in the study of mmlmlzatmn' _
problems (see for example [4, 5, 6, 7, 8, 14]). . '
In this paper we aim to analyze the various generalized convexlty proper—
ties of quadratic fractional functions, studying them in a unified framework.
'We first deep on some results by Crouzeix [12] concerning the inertia of sym-
metric matrices and then we give a characterization of the pseudoconvexity
based on the inertia of the quadratic form and the behavior of the gradient of
- the function. This result allows us also to prove that, for quadratm fractlona.l
- functions, pseudoconvexlty is equivalent to quasiconvexity.
 The obtained necessary and sufficient conditions are then improved in-
order to state characterizations directly based on the elements which define
the function; in this way the given conditions become easier to be checked.
Analogous results are also provided for the strict pseudoconvexity, which
in particular comes out to be equivalent to strict quasiconvexity. . '
Finally, we specialize the obtained results for quadratic fractional func- -
tions whose quadratic form is the product of two afline ones.

2  Preliminary Results

In the next section the generalized convexity of quadratic fractional functions
will be characterized using the inertia of symmetric matrices. . With this. ~
regards, from now on the number of the negative eigenvalues of a symmetric
‘matrix @ is denoted by v_{Q), similarly v, (@) represents the number of
the positive eigenvalues while 1(@) is the algebraic multiplicity of the 0
eigenvalue. A key tool in our study is the following result given by Crouzelx
(see [12]). :

Theorem 1 Let h € R, h £ 0, let Q € R™" be a sy'mmetm'c'mdtm and
denote with Q% the Moore-Penose pseudomverse matriz of Q (* ) Then the
followmg implication
Hp=0 = ’UTQ’UZO
s verified Vv € R" if and only é’f one of the following conditions holds:
i) v-(Q) =
i) v_(@)=1,he Q(§R“) and hTQ'h < 0

"1Let @ € R**™ be a symmetric matrix. The Moore-Penrose pseudoinverse matrix of
Q is a matrix Q¥ € R**" such that QQ'Q = Q.
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The assumption A # 0 in Theorem 1 leads to some technical difficulties in
the application of the theorem itself to particular problems where the vector
h is not necessarily different from zero. For this reason we state the following
corollary which improves the result by Crouzeix [12] not requiring in the
assumptions that the vector A is different from zero.

Corollary 1 Let h € R" and let @ € R™*"® be a symmetric matriz. Then
the following implication

ChTe=0 = vTQu>0 _ (1)
is verified Vv € R" if and only if one of the following conditions holds:

i) v_(Q) =0, o
i) v-(Q) =1, h# 0, h € Q(R") and uTQu < 0 Yu € B" s.t. Qu=h.

Proof. <) If v_(Q) = 0 then (1) is trivially verified; if 4) holds then
the results follows from Theorem 1 since condition

uTQu < 0 Vu € R* such that Qu=~h

implies ATQ'A < 0.
= ) If v_(Q) = C then ¢) holds. Let us now assume V_(Q) # 0 and suppose
by contradiction h = 0; then ATy = 0 Yu € R and hence for condition (1)
2TQu > 0 Vv € R?, that is to say that @ is positive semidefinite which is a
contradiction being v (@) # 0. Hence it yields that h # 0 and 41) follows
from i) of Theorem 1. [ ]
The following result by Crouzeix [12] will be also useful in the development
of the paper.

Theorem 2 Let h € R*, h 0, and let Q € FrXR pe g .symmetm'b matri.
Then the following implication o

WMov=0v#0 = vTQu>0

is verified Vv € R* if and only if one of the following conditions holds:

7’) V-l-(Q) =n,
i) v_(Q) =0, v4.(Q) =n—1 and h ¢ Q(RN"),
i) v (@) =1, v (@) =n—1 and ATQ A < 0.



Theorem 2 can be slightly improved too, showing that the assumption
h # 0 is redundant. :

Corollary 2 Leth e R” and let Q R“x“ be a symmetric matriz. Then
the following implication

hU—OU#O = vTQu>0 (2
| is verified Yv IG 8%" if and only if one of the following condz’tilons h_olds:

i) v (Q) = n, _ '

i) v-(Q) =0, v (Q) = n—1 and h ¢ Q(R"), |
) v_(Q) =1, 11:(Q) =n— 1 and v" Qu < 0 where u - Q 1h.

Proof. <) If v4(Q) = n then (2) is trivially verified; if #) holds then
the results follows from Theorem 2 since condition h & Q(R™) implies h 7é 0;

u'Qu < 0 where v = Q*h implies b # 0 and h"Q1h < 0.

=) If v, (@) = n then i) holds. Let us now assume v4(Q) < n—1
and suppose by contradiction A = 0; then ATv = 0 Yv € R" and hence for
condition (2) vTQu > 0 Vv € R™ \ {0}, that is to say that @ is positive
definite which is a contradiction being v (@) < n — 1. Hence it yields that
h # 0 and i1),i1i) follows from ii),iii) of Theorem 1, respectively. |

3 Generalized Convexity

The aim of this section is to study the generalized convexity of quadratic
fractional functions of the following kind:

22TQz + Tz + qo
fz) = —= (3)
. bz + by
defined on the set X = {z € R : Tz + by > 0}, where Q #0isanxn

symmetric matrix, with n > 2, ¢, z,b € R", b £ 0, and qo, by € R. Note that
being ) symmetric, it is @ # 0 if and only if (@) < n —- 1.

Remark 1 It is important to point out that function f in (3) is not constant.
Suppose by contradiction that f is constant, that is f(z) =k and Vf(z) =
Q—“})"ﬁ-‘i—;b&:’ﬂ = () Yo € X. Consider an arbitrary z; € X and let a € R be
such that o # 0 and ax; € X; it results Qxy + g — kb = Qaz, + g — kb and
hence Qz; = aQx; which implies Q@z; = 0. Being x; € X arbitrary it results
Qz = 0 Vz € X. Consequently, since X is an n-dimensional halfspace it is
@ = 0, which contradicts the definition of (3).
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The following known characterizations of generalized convex functions,
given by Diewert, Avriel and Zang [13] will play a key role in our study.

lTheorem 3 Letfbea dzﬁ’erent@able functzon deﬁned on the open convex set
C C R*. Then:

i) f is quasiconvex if and only if Vo € C, Vo € R*\ {0}, such that
V f(z)Tv = 0 the function ¢,(t) = f{z+tv) does not attain a semistrict
locdl mazimum att =0 (3); ' . '

it) f is strictly quasiconvex if and only if Vz € C, Yv € R*\ {0}, such
that V f(z)Tv = 0 the function ¢u(t) = f(z +1tv) does not attain a local
mazimum at t = 0. - '

Suppose function f to be continuously differentiable, then:

iii) f is [strictly] pseudoconvez if and only if Vz € C, Vv € R* \ {0}, such
that V f(z)Tv = 0 the function ¢,{t) = f(z + tv) attains a [strict] local
minimum att=0..

By means of the results by Diewert, Avriel and Zang [13] and Corollaries
1 and 2 it is now possible to prove the following characterizations of [strictly]
- pseudoconvex and [strictly] quasiconvex quadratlc fractional functlons

Theorem 4 Consider function f deﬁned in (. 3) Then the followmg condi-
tions are equivalent:

i) f is pseudoconvez on X,
i) f is quasiconvez on X,
i) Yo € X Wo € o \ {0} # holds:
Vf(a:)Tv =0 = ’UT.Q’U >0,

iv) one of the following conditions holds:

2Let f be defined on the open interval (a,b) C R. Then f is said to attain a semistrict
local mazximum at & point xo € (a,b) if there exists two points 1,22 € (a,b), £1 < Zo < T3,
such that :

flae) = Fl@a+ Moy —22)) YAe[0,1]
and f(zo) > min{f(z;),f(z2)}.



a) v_(Q) =0, |
b)) v (Q)=1 and for all z € X it is: Vf(z) # 0, Vf()E_Q(m“)'
and wTQu < 0 Yu € R such that Qu = Vf(z). '

Proof. First note that Vt € R such that z +tv € X it is

| Qz+q— f{z)b .
V() Wz+b
' L20TQu + t(bTz + bo)V f x)T
¢U(t) - f(x + t’U) = f( ) + : bT-’B + by + t;Tv ( ’
and hence |

12T Qu
BT (z +tv) + by

Vf(:c)_Tv: 0 = ¢t)=flz)+
i)=>4) Trivial.
i4)=>i4i) By means of Theorem 3 when Vf(z)Tv = 0 the restriction

st Qu
@) = IO+ ) +

does not attain a semistrict local maximum at ¢ = 0 and this is true only if
vTQu > 0 since z +tv € X implies T (x + tv) + bp > 0.
#i)=>1) When Vf(z)Tv =01t is .

5t20TQu
b7 (z + tv) + by

bu(t) = flz) + with »7Quv > 0,
hence ¢,(t) attains a local minimum at ¢ = 0 since z 4+ tv € X implies
b7 (x + tv) + bp > 0. The result then follows from Theorem 3.

#ii)<1w) For Corollary 1 condition 44} holds if and only if for any z € X
one of the following conditions holds:

o v_(@Q)=0,

o v (@) =1,Vf(z) #0, Vf(z) € QR") and «"Qu < 0 Yu € R" such
that Qu = Vf(z). _ _

The result then follows noticing that @ is independent from z and the
two previous cases are disjoint. |



Theorem 5 Consider function f defined in (3). Then the followmg condi-
tions are equivalent:

i) f is strictly pseudoconves on X,
i) f is strictly quasz’convéa: on X ,
iii) the following implication holds ¥z € X Vv € ®" \ {0}:
| Vi) Tv=0 = vTQu > 0,

i) one of the following conditions holds:

G.) V"l‘(Q) =n,
b) v_(Q) =0, v4(Q)=n—1and Vf(z) ¢ QR") Vz € X,

e) v (@) =1, ve(@) =n—1 and vTQu < 0, withu = Q7 IV f(z),
vz € X.

Proof. The result follows from Theorem 3 and Corollary 2, in a similar
way to the one used in the proof of Theorem 4. [ ]

It can be easily seen that the characterizations provided in Theorems 4
and 5 are not so easy to be verified, since they are based on the behavior of
Vf{z) and not on the elements which define the objective function (that is
@, 4, g0, b, bp). For this reason, we now prove the following lemmas which will
allow us to state some more characterizations easier to be checked.

Lemma 1 Consider function f defined in (3). Then:
Viz)e QR Ve e X & {bqg}CQWR")

Proof. Suppose that

V() = Q“’l‘)',;qu{() € Q™) Yo € X

and let us prove that {b,q} C Q(R"), that is to say that
37,7 € R" such that QF = g and Q7 = b.

Since f is not constant (see Remark 1}, 3zy, 22 € X such that f{z;) # f(z2)
and hence Ju,,us € R" such that

Qui = Qz1+¢— f(z1)b and Qua = Qxs+ g~ f(z2)b.
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This implies that

Q(Ul—'LLQ—SE1+$2) — 3

and hence 37 € R such that QF = b. It follows also that Qu, = Qz1+ ¢ —
f(z1)Qy which implies ¢ = Q(u;— 1+ f(1)7) and hence 3 € §R" such that
QT = q.

Suppose now that {b,q} C Q(EFL’“) that is to say that 37,7 € ER" such
that QF = g and Q7 = b; then _

Vi) = Q (T i),

and hence Vf(z) € Q(R?) vz € X. | ' ]

Lemma 2 Consider function f defined in (3), suppose Vf(z) € QR*)Vz € .
X and letT, g € N" suchthat QT = q and QY = b. Then for any givenx € X:

i) Qu = Vi(z) if and only if u= ﬁrf;—_{_%m +k with k € kel.“(Q)_, o
zz )} bTx = BT and g7z = ¢*T for all z € R™ such that Qz = g,
ii1) bTy = b7y and qTy = q7y for all y € R™ such that Qy =-b, |
iv) u?Qu = (Tq%_%)—)sz with: |
p(z) = (F@)) 15 +2f (2) [bo — b7F] + ("F— 200) (&)
v) ifv_(Q) =1 and v, (Q) = 0 then b¥F < 0.

Proof. i) From Lemma 1 we have

Vi) - (L),

so that Qu = V f(z) if and only if
. Q(u_3;+f—f($)g):0

bTx + by

and this happens if and only if

(2T f@)
bz + bg

) — k € ker(Q).



i4) Since Qr = QF = ¢ it is Q(x—7) = 0 hence z = T+k with k € ker(Q);
the result then follows being bTk = yTQk 0=7"Qk=q¢"k Vk € ker(Q)

%) Analogous to 7).

iy) Just note that:

VQu = s e+ 7 - fOR Qe+ T~ )]

= m [(z+Z - f(2)7)" (Qz +q — f(2)b)]

(f(2))20"5 + 2f (z)(bo — bE) + (¢ T — 2q0)
(BT + by)2 - '

v) Hv_(Q) =1 and v, (Q) = 0 then @ can be written as ¢ = [2aaaT]
with o < 0, eigenvalue of @}, and & € R", eigenvector corresponding to
o. Since b € Q(R") and b # 0, there exists § # 0 such that b = fa.

Moreover § = aafa?% + k& where k € ker(Q). Consequently a’k = 0 and
hence 477 = (Ba)” (mf—";a + k) m

Lemma 3 Consider function f defined in (3) and suppose Q:t: = ¢ and
QY = b. Then the following statements are equivalent: - :

i) Viz)#0Vz € X ;

y pbTg —bTT+by >0
it) Au € R such that { W27 + 2(by — ) + (¢ — 200) = 0 ;
iii) one of the following conditions holds:

a) bTg =0 and 7% > by,
b) by #0 and & = (bo ~ 7% ) — b'5{(q"T — 299) < 0.

Proof. First note that, being g = b’ %, if Qz = ub—g then:.
1 1.,
ExTQa: +uby = (Qz)Tx + Z,ubo] = — [(,ub — )Tz + 2Mbo] =

(v — %) Qz + 2ubo] =

N =l =2 =] =

I
[
(17 ~Z)T(ub ~ q) + 2ubo] =
(1

2577 + 2u(by — bTa:) +q7%) (5)



i) = zz) Suppose by contradiction that Ju, € R such that b7 (u,7—)+by > 0
and 1 [p2677 + 244 (b — bTZ) + 7| = go. Defived z, = p,7 — T it results
bz, + by > 0, hence z, € X, and Qz. = Q(u.7 — F) = p.b — g; then for
equation {5) it is gy = —:cZ"QJ:* + by and hence

Jﬁszx* + qu* + qo .

f@.) = bTz, + by ' '
_ 3% @+ (b — Qo) 3 + (577 Q34 + piabo) _
_ Tzt by)
bz, + By *

then V f(x,) = W = %ﬁ%&’ﬂ’ = (0 which is a contradiction.
i) = 1) Suppose by contradiction that 3z, € X such that

bz, + bo ’

V@) =

then it is Qz, + ¢ — f(x)b = 0 since bz, + by > 0. Defined p, = f(z,) it
results Q(z. + T — ,u*y) = 0 and hence z, = ., 7 — T + k where k € ker(Q).
It then results 0 < ¥Tz, + bo = b (g — ) + b7k + by so that, being b7k =
_TQk =0, it is

b~ bTE+b >0, Qu.=pb—gq and p, = f(z.)

Note that:
b = fla)=ERmt ot
bTa, + by
572 QT + (pad — Q) w0 4 qo + pabo — piby
bz, + by -
(32zTQz. + pabo) — o
bTx, + bg

= *

hence 227 Qz, +p:*bo — go = 0 since b7z, + by > 0. From equation (5) it then
results that

pb"G— T+ >0 and L (12675 + 2. (bo — b7F) + (¢7T — 20)] =0

2

and this is a contradiction.
#) = iii) In the case 477 = 0 condition #) can be specified as follows
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bo > Tz

and this happens only if by < b7%.
Consider now the case b7 # 0 and suppose by contradiction that % > (.

Then p?b7g + 2u(by — bTT) + (¢7% — 2gp) = 0 for py g = 'ﬂt%%iﬁ_and
hence either y; or uy satisfies ub?y — b7Z + by > 0 which is a contradiction.
#i) = 4i) If case a) occurs the result trivially follows. Suppose now that
condition b) holds; if 2 < 0 u27F + 2u(by — b7Z) + (7T — 2g0) = 0 is never
verified while when % = () the unique solution p = _—”%}Fg—% does not verify
ub™g — 5% ++ by > 0. n

Lemma 4 Consider function f defined in (3) and suppose QF = g, Q7 = b,
v_ (@) =1 and v,.(Q) > 0.

i) Condition
wTQu < 0 [< 0] Vu € R* such that Qu =V f(z) (6)
is verified Yz € X if and only if one of the followings holds:

a) b7 <0 and & = (bg — b7E)? — bTG(q"T — 24p) <0 [<0];
b) b7g =0, "% = by and ¢"Z < 2go [< 20];

ii) if condition (6) holds ¥ z € X then Vf(z) # 0 Vze X..

Proof. First recall that, from Lemma, 2, uTQu = Zb—ﬂ,ﬂ(;%g with:

p(z) = (F(@)* V75 +2£ () [bo — 77] + (¢7T — 200)

Let Ay > 0,A2 < 0 be elgenvalues'of ¢} with :1:1,3:2 e X correspondlng
eigenvectors. Then z7Qzy = A ||z1|” > 0 and 23 Qza = g [|z2]” < 0. This
implies that sup,.y f(z) = +co and inf,ex f(m) —0a.

i) Consider the case #7% < 0. From the above facts, it is " Qu < 0 [< 0]
Vu € R™ such that Qu = V f(z) if and only if

PTG + 241 [bo — 7] + (¢7F — 240) <0 [< 0] Vu € B,

and this happens if and only if A < 0 [< 0]. Consider now the case 7% = 0.
Then u'Qu < 0 [< 0] Vu € ®* such that Qu = V f(z) is equivalent to

24 [bo— ¥"Z] + (¢"T ~ 200) <O [< O] VuER
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and this holds if and only if 7% = b and ¢7%F < 2¢0 [< 2g0). Flna]_ly,'
whenever vTQu < 0 [< 0] Yu € R? such that Qu =V f(:c) it cannot be
577 > 0 since otherwise

p257 + 2 [bo - 67Z] + (¢"% ~ 2q0) > O

for some p € R large enough. The proof is now complete.
i) Follows trivially from 4} and Lemma 3. m
The previous lemmas allow us to state the following further characteriza-
tions of pseudoconvex and strictly pseudoconvex quadratic fractional func-
tions.

‘Corollary 3 Consider function f dcﬁned in (8). Then the followmg prop-
erties hold:

i) [ is pseudoconvex (quaszcon'vex) on X if and only if one of the followmg
conditions holds:

a) v(Q) =10,

b) v (@) =1, 3xy€§R" such that QT = q ande-—b 'y = 0,
bTT = by and ¢'T < 2¢o;

) v_(Q)=1IT,HJ€ R such that QT = q and Qg = b, b7 < 0

and % = (bo — bT%)? — bTH(¢"T ~ 2g0) < 0.

i) [ is strictly pseudoconvez (strictly quasiconvez) on X if and only zf one
of the following conditions holds:

' a’) V+(Q) =N,
b) v(Q) = 0, v(Q) =n —1 and {b,¢} Z Q(R"),

c) v-(Q) =1, V+(Q)mn—1 and b7y = 0, b:r-—bo,q:c<2q0
where T = Q q and § = Q~1b;

d) v-(@) =1, 1.(@)=n—1 and ¥T5 < 0, —<0where:c—Q q
and § = Q1b.

Proof. i) By means of Theorem 4, function f is pseudoconvex if and
only if one of the followings is verified: : :

v (@)=0

2) v_(Q) =1 andfor all z € X it is: Vf(z) # 0, V/(z) € Q®") and
uTQu < 0 Vu € R" such that Qu = Vf(z). o

12



From Lemma 1 it is:

Viz) e QR Vze X <« Iz,7€R" such that QF = ¢ and QF.= b

while from Lemma 4 condition (6) ié verified for any z € X if and only if one
- of the following conditions holds: ' :

o VT =0,b"% = by and ¢" T < 2q0;
. bT§<0and{% <0

“The result then follows from #) of Lemma 4.
11) By means of Theorem 5, function f is strictly pseudoconvex if and
only if one of the followings is verified:

_ 1) V+(Q) = Tt, .
2) v-(Q) =0, v4(Q) =n — 1 and Vf(z) ¢ Q(®") Vz € X,

3) v(Q) = 1, v (Q) = n— 1 and uTQu < 0, with u = Q~'Vf(z),
Ve X, ‘

The result follows since for Lemma 1 it is:
3z € X such that Vf(z) € QR") <« {b,q} £ Q(R")

while from Lemma 4 for any z € X it results " Qu < 0 Vu € R" such that
Qu = V f(z) if and only if one of the following conditions holds:

o bT5 =0, 7% = by and ¢T% < 2¢o;

. bT§<0and%€0;

where T = Qg and 7 = Q~1b. | ]
Note that i) of Corollary 3 has been already proved in [6] in a different

way. Note algo that a complete study of the pseudoaffinity of quadratic
fractional functions has been given in [9].
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-4 Particular cases

In this section we deal with a quadratic fractional function f whose quadratic
form is the product of two affine ones. We aim to specialize the characteri-
zations given in Corollary 3, in order to determine conditions which allow us
to easily recognize the pseudoconvex1ty (strict pseudoconvemty) of f. More
precisely we consider the following class of functions

f(z) = (a™ 93 + ag)(c? bi:-l_cob)o+ (dTz +dp) - (7) .

on the set X = {z € R": b7z + by > 0}, where a,b,c,d,z € R*, a,b,c # 0,
n > 2, and ayg, by, ¢, dp € R. Observe that whena =0 orc= 0, f becomes a.
linear fractional function which is known to be pseudolinear (see for example
[4], [8]), while when b = 0 [ is a quadratic function whose properties are very
well known.

41 ‘a and c linearly dependent

- Before dealing with the general éase we first deep on the pseudoconvexity
of function f, given in (7), when the vectors a and c are linearly dependent
(ie. ¢ = ka with k # 0 since a, ¢ # 0), that is

(aTa: + ao) (kaT.’E + CO) + (dT.’L' + do) ' (8)

fz) = 577 -+ bo

where d, b 0 and k # 0. It is worth noticing that we can rewrite function
f in (8) in the form (3) with

Q = 2kaa”, g =aldok+co)+d, = QoCo + do.

Matrix @ is a n X n symmetric matrix (n > 2) which results to have
(@) = n— 1 (since dim(ker(Q@)) = n — 1) and one only nonzero elgenvalue
2k ||a||® with corresponding eigenvector a (since [2kaaT]a = (2k lall*)a). As
a consequence, () is positive semidefinite when & > 0 while it is negative
semidefinite for £ < 0; in particular when & < 0 the numerator belongs to
the class of the D.C. functions, (i.e. it is the difference of convex functions),
which is widely studied in Global Optimization.

The following theorem characterizes the pseudoconvexity of f in (8).

14



Theorem 6 Function f in (8) is pseudoconver on X if and only zf one of
the following conditions holds:

i) k>0; _ _ _
i) k<0, 36,ﬁ € R such that d = da, b= fa, and |
(aoﬁ - bo) 2 16(505 - doﬁ) + ﬁ(dok - CD)(GO/B - b0)~ (9)

Proof. Since Q(R") = {pa,u € R} it results g € Q(R™) if and only if |
35 € R such that d = da; moreover it is b € Q(R™) if and only if 38 € R,
B # 0, such that b = fBa {8 # 0 since b # 0). As a consequence, condition

37,7 € R* such that QT =¢q and Q=15
is equivalent to the following one:
36,8 €R,B#0, such that d= o and b= fa. (10)
In partiqular it is also |

(apk + CD) + 6
2k |la|*

b oo 2kﬁ et ky with by € ker(Q). an

a+kz with kg€ ker(Q)

8l
I

Q

8]
i

g

Qv

<
i

<
fi

“ Let us now apply i) of Corollary 3.
If ¥ > 0 then @ is positive semidefinite and the results follows from
condition i-a). Suppose now k < 0; whenever (10) and (11) hold it results

32 2
Vg = il =T a+ b kg = b ——aTa = b
2k ||all 2 [|all

-2—]6- <0 |

and hence case i-b) of Corollary 3 never occurs. As a consequencé when
k < 0 function f in (8) is pseudoconvex if and only if case i-¢} of Corollary
3 holds, that is to say if and only if -ﬁ‘- < 0. By means of simple calculations
we have

aogk +.cp + é T (aok + co + 5)?
% 17 5k

WE=0
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8o that

A
7 = (o—b"D) —b"5(q"T — 200) =
m (b p Bty B (ko) o )
_ kb3 ~ kBaobo — Bboco — B8bo + (B2do + Baoc _
k
_ k(aoB — bo)? — B(bod — dof) ~ Black — co)(avf — bo)
k
and the result is proved. | [

The following example shows how Theorem 6 can be applied in order to
study the pseudoconvexity of a function of the kind (8).

Example 1 Consider f(z) = '(2m1+3“;1t2:; ht 3/222%45 and X = {(z1,z2) €

N2 .4z + 62y +1 > 0}. Since the gradient of f never vanishes, f is pseu-
doconvex. We obtain the same result by means of Theorem 6 . Observe
that £k = -1 < 0, a = (2,3), b = (4,6) d = (1,3/2) hence b = fa with
8 =2 and d = da with § = 1/2. By simple calculation 4’7 = —2 < 0 and

k(bp=aof)? = ~1(1-2)2 = —1, B(beé—dpB) = 2(1/2— 10) and consequently
conditions #) of Theorem 6 are verified.

As regards to the strict pseudoconvexity we get the following result.

Theorem 7 Function f in (8) is strictly pseudoconver on X if and only if
n=2, k>0 and either b ord is not multiple of a.

Proof. Being n > 2 and being () semidefinite but not definite, by means
of 44) of Corollary 3 function f results to be strlctly pseudoconvex if and only
if 4-b) holds, that is

 w(@=0, n(@=n-1 ad {bq) ¢ QW)
Since @ has only one nonzero eigenvalue this condition holds if and only if
n=2 k>0 and {b ¢} ¢Z QR").

As it has been shown in (10) of Theorem 6, {b,q} ¢ Q(R") is equivalent to-
“either b or d is not multiple of ¢” and hence we are done. _ L

16



4.2 qa and c linearly independent

Let us now study the pseudoconvexity of function (7) when @ and ¢ are
linearly independent that is:

_ (aTz + ag)(cTx + co) + (dTz + dp)
- bz + by

f(z) with 2, ¢ Li. (12)

where a, b, ¢ # 0. Firstly note that function f in (12} can be rewritten in the
form (3) with
Q =ac” +ca”, g = aoc + coa + d, go = apCo + dy,

Matrix € is a n X n symmetric matrix (n > 2) which results to be indefinite
(®) with »_(Q) = 1 = v, (Q) and 1(Q) = n — 2 (since dim(ker(Q)) = n — 2).
The pseudoconvexity of f in (12) is characterized in the next theorem.

Theorem 8 Function f in (12) is pseudoconver on X if and only if the
following conditions hold:

t) 381,02 € | such that d = a + dac;
i) 361,60, € R such that b= Bia + Bac;

#it) defining m = ap + 02 and 2 = ¢y + 61 one of the following conditions
holds:
ii-a) B1G2 =0, by = Fin + P22, Goco + do = V177e,
#i-b) 0162 < 0, (bo — Bivi — B2v2)? — 46182(172 — aoco — dp) <0

Proof. First note that, being a and ¢ linearly independenﬁ, it is Q(R") = |
{110 + ps2c, 1, s € R} so that

qge Q(;SR”) & 384,69 € R such that d = §;a + da¢
be Q(g%n) < "_‘131,62 € I such that b = ﬂla + Bac

In particular, assuming v; = ap + 9 and g = cg + &, it is

QT =q & T=mu+7v+k with ks € ker(Q),
QT=b & Y=[u+ v+ky with ky € ker(Q).

3Being a and ¢ linearly independent it is possible to determine a vector u € R™ such
that c™u = 0 and aTu # 0. Then we have Qu = (aTu)c # 0 and «TQu = 0 and this
implies, for a known property of semidefinite matrices, that ¢ is indefinite.

17



where u,v € R" are such that ¢”u = 0, aTu = 1, aTv = 0 and ¢Tv = 1 (hence
GQu = ¢ and Qv = a). As a consequence, condition

37,7 € ®" such that Qz=g and Qi="b

is equivalent to condztlons i) and it).
Let us now apply i) of Corollary 3. Being Q indefinite f results to be
pseudoconvex if and only if i-b) or é-¢) of Corollary 3 holds; the result then

follows noticing that |
G =2610, VIT=pFm+B8y ¢I=2m% |

‘and hence § = (b — 171 — Bay2)? 41@152(7172 — agcp — dp)- ‘ =
The following Theorem specify necessary and sufficient conditions for the
strlct pseudoconvexity of f when a and ¢ are 11neraly independent.

‘Theorem 9 Function f in ( 12) is stmctly pseudoconvem on X if and only if
the following condztzons hold: .

i) n=2; _
i) 361,6, € R such that d = b1a + Sxc;
ii1) 61, B2 € R such that b= fra+ Bac;

 iv) defining m = ap + 82 and Yo = o+ 51 one of the following conditions
holds:
iii-a) P12 = 0, bo = B1v1 + Py, aoco + do > Y1y,
iii-b) B1f2 <0, (bo — Bim1 — Bay2)® — 4t@1ﬁ2("¥1’}’2 — QgCy — do)

. Proof. Being ¢ indefinite with »_(@) = 1 = v,.(Q), by means of i) of
Corollary 3 function f is strictly pseudoconvex if and only if 4i-c) or ii-d)
holds; in particular it yields n = 2 and @ is non singular. The result then
follows analogously to the one of Theorem 8. I . [

4.3 The sum of an affine function and a linear frac-
tional one _

Using the previous results we are able t0 recover as a corollary the result

- given by [6] related to the following function

dTa:+d0

bT T+ b() (13)

f(z) =aT2 +

18



on the set X = {z € R* : bTz + by > 0}, where a,d,b € ", a,b # 0,
dp,bo € R. Function f can be easily seen as a particular case of function

(7) when ¢ = b, ¢y = bp and ag = 0. Recall that if ¢ = 0 then f is a lmea.r .
fractional function and hence it is pseudolinear. :

Corollary 4 PFunction § in (18) is pseudoconvez on X if and only if one of
the following conditions holds:

i) 38 > 0 such that b= fa;
i1) 36 € R such that d = &b and dy > dbp.
Proof. First note that f can be rewritten ag

Tx(bTx + by) + (d¥z + dyp)
bTx + bo

fla) =2

so that it is a function of the kind (8) or (12) where aq = 0, ¢ = band co = bo.

Consider now the case a and b linearly dependent, that is b = Ba with
B # 0 (since a,b 5 ). By means of Theorem 6 function f is pseudoconvex
if and only if one of the following cond1t10ns holds :

a) B> 0
b) B <0, 3 € R such that d = da and Bb3 > B(bed — doB) + Gb3,
Since b = fBa it isd= gb = §b, with § = %, hence b) can be rewritten as

b’) B < 0, 38 € R such that d = &b and dy > dby

so that, in the case a and b linearly independent, the result is proved.

To complete the proof we are left to deal with the case ¢ and b linearly
independent. Since ¢ = b in 1) of Theorem 8 we have d = §;a + §2b, while
in i7) we get 1 = 0, B2 = 1. This implies that condition 15 < 0 in #i5-b)
never occurs and that in 4-a) we have v = ds, 12 = by + 8, and by = 7o
consequently 4; = 0 and condition agcg + do > V172 is specified as dy > dobyg.
Therefore, by means of Theorem 8, f is pseudoconvex if and only if 35, € R
such that d = dob, dy > dabg. The proof is now complete. n

Furthermore we use the previous results in order to characterize the
strictly pseudoconvexmy of function f in (13).
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Corollary 5 Function f in ( 13) is strictly pseudoconvex on X if and only
if one of the following conditions holds:

i) n=2,38 >0 such that b= (a, d is not multiple of a;
i) n=2, 38 eR suéh that d = &b, dy > dby, b is not multiple of a.

Proof. In the case a and b are linearly dependent, condition ) follows
directly from Theorem 7; if @ and b are linearly independent condition 4i)
follows from Theorem 9 analogously to the proof of Corollary 4. [ ]
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