Universit degli Studi di Pisa
Dipartimento di Statistica e Matematica
| Applicata all Economia

B Report n. 214

A note on a particular
quadratic programming problem

Riccardo Cambini — Claudio Sodini

Pisa, Ottobre 2001

- Stampato in Proprio -

Via Cosimo Ridolfi, 10 — 56124 PISA ~ Tel. Segr. Amm. 050 945231 Segr. Stud. 050 945317 Fax 050 945375
Cod. Fisc. 80003670504 - P. IVA 00286820501 - Web http://statmat.ec.unipi.it/ - E-mail: dipstat@ec.unipi.it



A note on a particular
quadratlc programming problem
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Abstract _
In this paper a particular quadratic problem, with a matrix having at least
n-1 positive eigenvalues, is studied. Some theoretical properties of the
problem are given, and a characterization of the existence of minimum
points is provided, It is finally shown that the problem can be seen as a
particular D.C, quadratlc program, thus suggesting how to solve it with a
~ finite algorithm, even in the indefinite case.
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1. Introduction

In this paper we consider the following problem:

(P) ‘min f(x) = 12 xTQx +cTx
xeX={xeR™ Ax2b}

where Q is a symmetric nxn matrix with at least n—1 positive eigenvalue, ceR", A is a
mxn matrix, beR™, Obviously, if the minimum eigenvalue of Q is positive then (P) is a
strictly convex problem, if it is equal to zero then (P) is a convex problem, if the minimum
eigenvalue of Q is negative then (P) is an indefinite problem. '

In section 2 we will provide some theotetical propetties of quadratic problems regarding
to the existence of minimum points and the global optimality of local optima; with this aim
a key role will be played by the so called copositivity of matrix Q. In section 3 we will
point out that f(x) can be rewritten as the difference between two convex quadratic
functions; in other words we will show that f(x) is a particular d.c. function (difference
of convex functions, see [11, 12, 13, 16, 17]) and that problem (P) can be considered in
the following equivalent form:

P40 min f(x) = 172 xTBx + ¢Tx — (dTx)?
xe X={xeR™ Ax2b}

(1) Department of Statistics and Applied Mathematics, Faculty of Econornics, University of Pisa, Via
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with appropriate vector de R and symmetric positive definite matrix Be R™", In section 4 -

we provide some examples of the proposed transformation and, finally, in section 5 we
deepen on the study of the vectors d which allow us to rewrite problem (P) in the form
(Pgc). The studied transformation allows to solve the problem, even in the indefinite case,
- by means of the finite solving algorithm suggested in [6]. Let us now give an idea of such
an algorithm, based on the optimal level solutions approach. If the constraint dTx=E,

EeR, is added to problem (Pg.) then the following stnctIy convex quadratic problem is
obtained: : :

Pdc(&) 2(£) =- £2+ min (122 X"Bx + ¢'X)
xe X(E)=X{xe R": dTx=£}

The parameter £ is said to be a feasible level if the set X(&) is nonempty. An optimal-
solution of problem P4.(€) is called an optimal level solution [4, 7,10, 14,15].

Clearly problem (Py4c) is equivalent (%) to problem P4 (E), when & is. the level
corresponding to an optimal solution of problem (Pg4.). -

Let &, = inf {dTx, xeX}2 -e0 and &, = sup {dTx, an}< 400, The algorithm,
of the binding constraints type, through the resolution of a finite number of convex -
quadratic problems of the type Py.(E), describes implicitly the function z(§) for
€ inSE<E .« and detects its global minimum &* together with the corresponding optimal
level solution x*, which is also the global minimum of (P4.). The optimal solution of each
quadratic subproblem (except for the first) is obtained parametrically from the optimal
solution of the preceding quadratic subprob]em The algorithm, together with the global
minimum, finds all the possible local minimum and, clearly, if (Pg.) is convex the

procedure can be stopped as soon a local minimum is reached.
Recall that the complete study of this solving algorithm can be found in [6]

2. Properties of quadratic problems

In order to approach problem (P), let us first point out some properties of generic
quadratic problems, that is problems of the kind ' ‘

(Pg) min f(x) = 1/2 xTQx + cTx
XeX={xeR™ Ax>b)

where Q is 2 symmetric nxn matrix, ceR", A is a mxn matrix, beR™. Note that (P) isa
particular quadratic problem of the kind (Pq) where Q has at least n-1 positive

eigenvalues.

) In the sense that the optimal solutions coincide.



If Q is indefinite, then any minimum point of problem (Pq) belongs (if it exists) to
the boundary of the feasible region X (no critical points in the interior of X may be
minimay. _ ‘
Being the feasible region X a polyhedron, it can be decomposed as X:Kp+Cp,
where Kp is a polyhedral compact set and Cp is a polyhedral cone which coincides with
the so called recession cone of the feasible region X, defined in general as follows:

rec(X) = {Y:_H{xn}c;x, F{tn} <R, ty—+es, (Xp/tn) -y}
={0}Ufy: 3{xp) X, |[xpll>+ee, xn/llxnl)—v, y=Av, 220}

It is worth reminding that if a set X is closed and convex then its recession cone is
closed and convex too and can be rewritten as follows: '

rec(X) = {y: 3xe X such that x+Aye X VA>0}
= {y: x+tAye X VxeX VA>0}.

Also the concept of copositivity of a matrix will be useful in the rest of the paper [9];.
remind that a symmetric matrix Q is said to be [strictly] copositive with respect to a cone

V if and only if vIQv20[>0] VveV, v=0.

Theorem 2.1 : :
The minimum exists for problem (Pq) if at least one of the following conditions holds:

i) vIQv>0 Vverec(X), v#0 (that is to say that Q is strictly copositive with respéct to
~ the cone rec(X)) : '

ii) min  yTQy>0 .

llyll=1,ye rec(X) _

Proof. i) Let {xp}<X be the sequence such that f(xp)—inf{f(x)} and let
wn=Xp/lIXn])—y. Let us now prove that lim [I%al| < 4e0; suppose by contradiction
- that limn_)+m |[%p|| = +oo, then yerec(X) so that, being Q strictly copositive with respect
to the cone rec(X), we have:

; ' = i T Ty
lunn_“pr”o f(xp) = hmn__prm (172 X" Qxp+C ' Xp) =

=lim __llPlim (2 WnlQwnt (1/|[xnlD) cTwp) =400

which is impossible. Being limn->+«= |%n|| < +e= then, by means of the closure of X,



xp—x*eX so that for the continnity of f(x) the infimum is reached as a minimum and x*
~is a minimum point.

i) Follows directly from i). | | R

The following further lemma will be helpful in stating a necessary and sufficient
condition for the existence of a minimum for problem '(Pq) [5].

Lemma 2.1 _
- Let QeR™" be any matrix, ce R” be any vector and X any closed subset of R"; consider

. . also the function f(x)=1/2 xTQx+ch. Suppose Q to be copositive with respect to the cone

. rec(X)'and define the following auxiliary function: . g (x)=f(x)+ (1/n) xIx  n=1,2,3,..
Then the following properties hold: '
- i) Vn the function g (x) attains a minimum over X, say Xn€ argmin{g, (x)}

- ii) the sequence {f(xy)} is decreasing and f(x,)—inf{f(x) over X}

The next result follows from the definition of the feasible set X [1, 2, 3].

" Lemma 2.2
Let us consider the feasible region X of prob]em (Pq) since X—KP+CP, where Kp is a

polyhedral compact set and Cp is a polyhedral cone, then for every sequence {Xp}cX
such that [[xg[|— +e< and (xp/]|xnl|)~>derec(X) the following property holds:
Vp>0 xu-pdeX forn sufficiently large.

The following theorem provides a necessary and sufficient condition for the existence
- of the minimum for problem (Pg).

Theorem 2.2
- The minimum exists for problem (Pq) if and only if both the two fo]lowmg conditions

hold:

1) vIQv20 Vverec(X), that is to say that Q is copositive with respect to the cone
rec(X);

ii) Yverec(X) such that vIQv=0, it results vIQx+vTc20 VXEX that is to say that the
function f(x) along the direction v is hnear and nondecreasing.
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Proof._:':) i) Let ﬁs suppose by contradiction that Iverec(X) such that VTQV<0; being
.~ v#0 we have also yIQy<0 where y=v/||v|. Being yerec(X) there exists a sequence
{Xp) X, [IBnl|>+oe, such that (xp/JIxul[)—y; denoting with wy=(xn/|[xn|]) it then results:

lim | foxw)=lim (12 2 TQx e TRy ) =

=lim L alP lim (12 W TQuint (Ullxall €T ) = o=

" which is a contradiction.

a0 ii) Suppose on the contrary that Jve rec(X), vTQv=0, 3xe X such that vIQx+vTe<0

~and consider the function f(x) restricted to the halfline x+Ave X VA>0. It results
- f(x+?w)— 172 xTQx+7LvTQx+ 172 A2 TQv+c x +AvIc sothat
V) = A (VIQx + vIe) + 172 xTQx + cTx, We then have being vTQx+v ¢<0, that for
L Ae>os, f(x+7w)-—>—oo which is a contrad1ct1on ' - . :
=) Let g (x)=f(x)+ ( 1/n) xTx, n-1,2,3,..., being Q copositivc with respect to the cone
_ | "rec(X-) then for Lemma 2.1 the function g;l(x) attains a minimum over X Vn, say
_  Xn€ argmln{gn(x)}, and the sequence {f(xn)} is decreasmg with f(xp)—inf{f(x) over
: '._X }. Let us now prove that 11mn_)_|_M Ixp|| < +e; suppose by contradiction that

' hmn_)_l_m ||Xnll = +o= and let verec(X) such that wn=(xnl||xn||)—_>v. It results:
-_|-oo>limn_>+m f(xn) =]im L an anan+c Xn) =
= limn_Hm ||xn||2 lim (1/2 wnTan+ (1/]|xn]D) cTwy)

so that’ vTQv=0; being Q copositive with respect to the cone rec(X) it then follows
vTQv=0. For condition ii), being f(xy+Av)=A(vIQxp+vTc), we have that f(x) is
nondecreasing along the direction v; this along with Lemma 2.2 implies that
_ ~ V¥p>0and forn sufficiently large ﬁch-pve X and f(x;-pv)&f(xn);

note also that for n sufficiently large  |[xy-pv][2<||xuli2. Being x,€ argmin{ g.(x)} we

- have g (xn)<g,(xn-pv) so that:
f(xn)+(1/_n)"xn||.2=gn(xn).<£gn(xn-pv)=f(xn-pv)+(1/n)||x“-pv||2<f(xn)+(1/n)||xn||2

which is a contradiction. Being lim_ ||xn|| <+ then, by means of the closure of X,

: x,,—-)x*e X so that for the continuity of f(x) the 1nﬁmum is reached as a minimum and x*
18 a minimum point. , _ ¢



Corollary 2.1 | .
The following properties hold:

1) if problem (Pq) has no minimum then inf{f(x) over X}=-oo;

ii) if inf{f(x) over X}>-co then problem (Pg) admits minimum points.
Proof i) By means of the previous theorem if problem (Pg) has no minimum then
dde rec(X) such that VTQV<0 or Ede rec(X), dxe X such that vIQv=0 and

dTQx+ch<0 ‘
In both cases, being v a feasible direction for problem (Pq) we have that f(x+7w)—) ~ca,

ii} Follows tr1V1ally from i). 0

Remark 2.1
Note that the previous theorem gives us some useful stop criterions for solving
algorithms, since if one of the following conditions holds:

(2.1) if a feasible direction v is found such that VTQV<0 .

(2.2) if a feasible direction v and a feasible point x are found such that vIQv=0 and
vIQx+vIc<0,

then there is no minimum for problem (Pq) and inf{f(x) over X}=-co,

The concept of copositivity allow us to state the following global optimality
- conditions for problem (Py), which is helpful in solving algorithms.

Theorem 2.3 _

Let us consider problem (Pq), a ‘feasible point xpe X and a convex cone VR, let ﬁs also
define the following subset of the feasible region Y=XN(xg+V)CX. Suppose finally that
vIQv20 VveV, that is to say that matrix Q of problem (Pq) is copositive with respect to

~ the cone V. Then the following properties hold:

) if vIVi(x) = vIQxo + vIic 20 YveV then xg is a global minimum point over Y;

i) if xg is a local minimum point over Y then it is also a global minimum point over Y. -

Proof. i) We will prove the result by contradiction. Suppose on the contrary that JyeY |

such that f(y)<f(xo) and define v=y-xg. Firstly note that Y is a convex set {(being the .
intersection of two convex sets) and that, being ye Y, v=y-xge V is a feasible direction. It
then results: | :



f(y) = fxo+v) = [ 122 x07Qxo + ¢Txo 1 + [ vIQao + vTec J + 1/2vIQv <
<[ 1/2 x9TQxg + cTxg 1 = f(x0)

so that it follows, being Vixo)Tv = vIQxg + vIc20 VYveV:
0>[vIQxp+vic]+1/2 YTQV > 12 vIQv

N ‘which is a contradiction since Q is copositive with respect to the cone V.
: ii) The thesis follows directly from property i) since if xg is a local minimum point over
Y then Vi(xp)Tv2 0 VveV. N | *

i 3. Particular properties of problein (P)

In order to study some particular properties of problem (P), let us first define the
following notation for the smaller real eigenvalue of matrix Q in problem (P):

let ke {1,...,n} be such that Ay is the smaller eigenvalue of Q

Another key tool for our study is the canonical form Q=UDUT of the symmetric matrix
.Q,l where D'is a diagonal matrix having as main diagonal entries the eigenvalues A; of Q,
while U is a unitary real matrix (Ue R™" s.t. UUT=UTU=I) having as columns the
eigenvectors u; of Q corresponding to the eigenvalues A4, respectively.

First of all, let us specify Theorem 2.2 in the case Q is positive semidefinite but not
positive definite, that is the case where the minimum eigenvalue of Q is zero.

- Corollary 3.1
. Let us consider problem (P); if matrix Q has one zero eigenvalue then the minimum exists
if and only if

Vve rec(X) such that Qv=0 it results vTczo,

that is if and only if it results vTe20 for ever_y. vector ve rec(X) which is also eigenvector
of Q corresponding to the zero eigenvalue.
Proof. Follows directly from Theorem 2.2 taking care that, being Q positive

semidefinite, it is vIQv=0 if and only if Qv=0. . ¢



The following result points out that the objective function f(x) of pro_blém P)isa
particular D.C. function of the type f(x) = 1/2 xTBx + c¢Tx — (dTx)?, that is to say that
there exists an appropriate vector d and a positive definite matrix B such that Q=B-2ddT.

Theorem 3.1

Let Qe R™"; the following conditions are equivalent:
1) Q 1s symmetric with at least n-1 positive eigenvalues,

ii) Yo>0 3de R™ and 3Be R™", B symmetric and positive definite, s.t. Q—B-()deT

Proof. i)=ii) If Q has all positive eigenvalues then the result follows assummg B=Q and
d=0. Suppose now that Q has one nonpositive eigenvalue Ay < 0 and consider its
canonical form Q=UDUT, where the diagonal elements of D are the eigenvalués of Q
while the columns of U are eigenvectors of Q. Let now meR be any positive number, let
D, be the ndnnegative diagonal matrix obtained from D just by substituting Ay withn,
and let D_ be the nonnegative diagonal matrix obtained from D substitutihg the positive

eleménts with 0 and Xy with */ n;—%& > 0 ; then:

D=D,-oa(D_)’=D,-aDD.T
and hence: L
Q=UDUT=UD, -aD_D_TUT=UD, UT- o (UD_)UD)T. -
Let B=UD,UT and let d be the unique nonzero column of (UD_); B is symmetric and
positive definite since all its eigenvalues are positive, the results then follows being
o (UD_YUD_)T = 0ddT.

ii )::: } Suppose by contradiction that Q=B-aiddT has two nonpositive eigenvalues,
say Ap < 0and Ay <0; then for all eigenvectors xq,x0€ R™\{0}, corresponding to 7&.1 and
Ay respectlvely, it results:

Bx;-oddTx, = llxl and Bxy-oddTxy =A, x5 . _
Note that dTx; #0 and dTx, # 0, otherwise Bx;=A;x; and/or Bx,=A,X, which
implies that A; <0 and/or A, <0 is an eigenvalue of B and this is a contradiction being |
B positive definite. :
First consider the case A=A, and let yl ,y2€ R"™\{0} be eigenvectors of Q
‘corresponding to Ay such that y; #y,, y;Ty, #0 and dTy; = dTy, = 1; then

By)=Ajy;+ad and Byy=Ajy,+ad so that B(y;-y;)=A((y1-y) and hence X €0 isan
eigenvalue of B, which is a contradiction being B positive definite. - :

Consider now the case A;# Ay and let y;,y,€R™{0} be eigenvectors of Q



~ corresponding to Ay and Ay, respectively, such that yl #Y2, ¥11y2 =0 and dTy, =
dT y2 = 1; then |
By =A1y+od and Bys=Asys+od
‘and hence, Lo '
- ~ IBy1-y2) =hy1 - Aoy -
Being B positive definite, A; <0 and A, < 0 it follows that:
0< (YI““Y2)TB(Y1“Y2) = p lyall? + 2z llyall* - Ay Tya =

=y IyslP+ 2o lly2lP <0

“which is a contradiction. o ' SR *

_ The previous theorem poihts out that, when the matrix Q is not positive definite,
. choosing oi=2 the objective function of problem (P) can be rewritten as

fx) = 12 xTQx + cTx = 12 XTBx + cTx — (dTx)?

where, in particular, de R™{0} is an eigenVector corresponding to the nonpositive
eigenvalue A, <0 of Q while B is symmetric and positive definite; the objective
- function is then a d.c. function given by the difference between the two convex functions

- 1/2x"Bx + cTx and (dTx)2 . This suggests to solve problem (P) by means of the
algorithm proposed in [6], and recalled in Section 1, for the particular d.c. quadratic
problems of the type (P4.). A possible resolution method is the following:

i) if Q is positive definite then the problem can be solved by means of any of the well
known algorithms for positive definite quadratic problems;

ii) if Q has a zero eigenvalue Ay = O then, being Q = UDUT, let D4 be the
nonhegative diagonal matrix obtained from D just by substituting A, with 2 (in other
words, asstme 1=2 in i)=ii) of the proof of Theorem 3.1), let B=UD,UT and let d
be the column of U corresponding to Ay (d 15 an eigenvector of Q corresponding to Ay);

then Q=B-2ddT and the problem can be rewritten in the form (Pyo) and solved with the
algorithm suggested in [6]; note that since this is a convex problem, the algorzthm can be
stopped as soon as a local minimum is reached

- i) if Q has a negative eigenvalue Ax < O then, being Q = uDUT, let Dy be the
nonnegative diagonal matrix obtained from D just by substituting Ay with —Ay (that is
assume N=-Ay in i)=»ii) of the proof of Theorem 3.1), let B=UD+UT, let u, be the
column of U corresponding to Ay (uy is an eigenvector of Q corresponding to Ay ) and

let d =y u, where p ﬂ ; then Q=B-2ddT and again the_problem‘can be rewritten in
the form (P4.) and solved with the algorithm suggested in [6].

9



4. Numerical examples

Let us show, for the sake of completeness, two examples of the transformation
proposed in the previous secuon both the semidefinite and the indefinite cases are gomg -
to be considered.

Semidefinite case
. Let us consider the following symmetric matrix

Q= 0 23 213

{ 43 0 -2/3}
213 23 1

The matrix Q is semidefinite positive and its eigenvalues are A;=1, A;=2 ahd A3=0. The
“eigenvectors corresponding to A; are [ 200 200 o |, @eR, the eigenvectors
corresponding to &, are [ -B .L|3 B ], peR, and the eigenvectors correspondmg to "

A3 are [ —5—7 -y y} YeR. Settmgoc—l— B= andy*-% we obtain the unitary

eigenvectors[ 2/3 273 1/3],[-213 1/3 2/3 ] and [ 13 -2/3 2/3] and the
following unitary matrix _ | .

U= 23 113 -213

173213 213

2/3 -2/3 1/3}

such that UUT=UTU=I. Matrix Q can then be rewritten in the form

213 213 1/3 1 0 O 213 23 113
Q={ 2/3 13 -213 0 2 0l -23 13 253
173 213 273 0O 0 0 173 2713 213

and from ii) of section 3 it results

[2/3-2/3 1/3H 1 0 OM 23 213 1/3J'[ 149  -4/9 -2/9]
B

2/3 13 -213 0 2 0 =213 173 273 |=[ -4/9 14/9 -2/9
/3 2/3 213 0 0 ‘2 173 -2/73 2/3 -2/9 - -2/9 17/9
1/3 19 219 2/9

=| -2/3| sothat dd"=| 219 4/9 .4/9
2/3 219 -4/9 49

and hence Q=B-2dd*.
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Indefinite case o
Let us consider now the following symmetric matrix

Q= 8/9 . -10/9  22/9

{ - 8/9 8/9  -14/9
-14/9  22/9 2719 1

- The matrix Q is indefinite and its eigenvalues are A1=1, A,=2 and Az=-4. The eigenvectors
corresponding to &) are[ 200 200 o ) 0€R, the eigenvectors corresponding to Ay -

are [ -B %.[3 B ], BeR, and the eigenvectors corresponding to Az -are
[ “jl*'}' Y ], yeR. Setting a=%_. s Bz% and 'y=~§— we obtain the unitary
eigenvectors[ 2/3 2/3 1/3],[-2/3 113 23]and [ 1/3 -2/3 2/3] and the
unitary matrix : ‘ ; :

U=| 23 113 213

173 2/3 273

2/3 213 1/3}

such that UUT=UTU=I. Matrix Q can then be rewritten in the form

2/3 =213 113 1 0 0 213 213 1737
Q= 213 113 -2/3 0 2 0|l -2/3 13 2/3
L1323 273 0O 0 -4 113 213 2131

and from iii) of section 3 it results
23 23 13 1 0 07 23 23 153 16/9 -89 29
B=| 23 13 23| 0 2 -0||-23 13 253(=| -89 229 -109
73 23 2310 o o 41l s 23 23 2/9 -10/9  25M9
[ 13 213 49 89  8M
d=2| .2/3| =] -4/3 [sothat dd"=| 8@  16/9 -16/9
2/3 4/3 89 -16/9 16/

and hence Q=B-2dd™.

5. Concluding Remarks

Let us conclude our study stating conditions, concerning the vector d and the positive .'
value ¢, which guarantee that matrix Q can be rewritten in the form _Q=B-00ddT, with
B=Q+oaddT positive definite. With this aim the following preliminary result is necessary.

Il



~ Lemma 5.1
‘The determinant of the following nxn matrix:

(A o]
‘. . 0 :
A Yi
0
a'n'—l Yo
" Y '}’n—y @ |

i=1

- n—1 n—1
is equal to Hﬂ. [m 2—')
'The following sufficient condition can now be proved..

N Theorem 5.1
- Consider problem (P), suppose that matrix Q has one nonpositive eigenvalue A, <0 and

let Q=UDUT be the canonical form of Q. If a vector deR" and a number o:>0 verify
the following conditions:

o o 1
o o 4420 md Zf( )L,.) <Ez{a+(ukrii)2]

then Q=B-0ddT, where B=Q+aiddT is a positive definite matrix. In particular it results:

A

20.
(”rch)2

a>-—

Proof. Define v=UTd, so that vi=u"d Vi=1,..,n and d=Uv; we just have to prove
'~ that, under the hypothesis, the matrix B=Q+addT is positive definite. First note that it
results B=U[D+avvT]UT, so that we can equivalently prove the positive definiteness of

D+avvT, Let e, be the k-th vector of R™ canonical basis and partition v in the
following way:

vy 0) (v,
vy, (S(V |+ 0 |sve +w,
vy 0 Vg

12



hence W =vee,” +v, (e + we,”)+ww” and:
D+ow" =[ D+ ee,” +av(ew” +we,” )|+ oww” = M+ oww’

~ Since 0>0 then aww’ is a positive semidefinite matrix, hence a sufficient condition for

- D+ow’ to be positive definite is that M is positive definite. By means of simple

 calculations M results to have the following structure: -

[x o0 0
0 .0 awy, 0
o 0o AL
M=| o, Ao avy,”
Ay O 0
0 . avy 0 .0
i | 0 0 A

" and results to be positive definite if and only if the following matrix (obtained by means of
a permutation of the rows and the corresponding columns} is positive definite:

A
0 avv,
lk—l .
M= A‘k+1'
0 o, v,
| A o
AN av,v," Ay +ow,? |

Since A, >0 for all i#k matrix M is positive definite if and only if det(3)> 0. For
Lemma5.1itis: : :

izk ik i

\2
det(M) =[] A, [ﬂ.k +av,f—2—(-g-‘-)i}-"~)—J

2
hence det(M)> 0 if and only if A, +av,” > azvle;-:— . This condition is equivalent to:
' ink Y .
o1 oA}
£0 and ) *~<—|a+—L
: Vk : g'/li o’ ( v
and the result follows being v, =u,’d Vi=1,....,n,and v? 20, 1, >0 Vizk. ¢

13



- It is worth considering the particular case where d = e, , with £ #0.

U Coro]lary 5.1
- Consider problem (P), suppose that matrlx Q has one nonposmvc clgenvalue M S O and

R | let Q=UDUT be the canomeal form of Q. If the numbers € # 0 and ¢>0 are such that:

(52) S o oe? >—ﬂ.k

E then Q=B-0ddT, where d=eu, and B=Q+oiddT is a positive definite matrix.

T . '-Praof Follows from the previous Theorem 5.1 noticing that assuming d = gu, it is |

Td OVHtk and u'd=g. - )

. -'Remark 51 .
~Note that in section 3, when the resolution method has been proposed we choosed o=2
-and a vector d = gu, ;in particular: :

| -‘ - in the case Ay =0 we assumed €= 1, whlch verify condition (3.2), -
| _' - in the case Ay < 0 we assumed €=4/-Ay , which again verify (5.2).

" Letus now consider the semidefinite case.

Corollary 5.2 : _ ‘
Consider problem (P), supposc that matrix Q has one zero e1genvalue Ay =0 and let

Q--UDUT be the canonical form of Q. If a vector deR" and a number o>0 venfy the
following conditions:

;3 . ,d#0 and 2( ;i) <
’ L : ' =k

Q=

~then Q=B-0:dd”, where B=Q+add" is a positive definite matrix..

Example 5.1 |
Let us consider again the positive semidefinite matrix

a3 0 213
Q=| o0 23 253
23 23 1

~Ifwechoose d=f ¢ 1/2 0 ] then, assuming 0=2, we have that
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uld=-1 ul ) =1
ufd=-2#0 and Z =1
i=k ?Ll 8

b.)

and hence condition (5.3) is verified. In particular Q=B-2ddT where

43 0 -3
B=Q+2ddT=| o0 76 23

-2/3 213 1

is a positive definite matrix.

Note that if Ay = O then for any vector deR" such that u,’d# 0 there always exists a

~ number o>0 verifying condition (5.3). The same does not hold when A <0, as it is
proved in the next Theorem '

Theorem 5.2 . _ _
~ Consider problem (P), suppose that matrix Q has one negative eigenvalue A <0 and let

| _ Q=_UDUT be the canonical form of Q. Forall vectors deR™ such that:

: _ T \2 T 7\2
. u; d) i (u d)
54 u d#0 and 0< (s <——it
(_ ) ¢ ; ’lf -4 ;“k
- then there .exist numbers o > — ( JT"; )2' >0 such that condition (5.1) is verified.
o U, : _
Proof. Consider the behaviour, depicted in the following Figure 1, of the function
h(c) = a;—zy defined for 0:>0. The result follows just assaming u = ( Ay:kd )2 . *
_ ' i,

Example 5.2
- Let us consider again the indefinite matrix

8/9 8/9  -14/9
Q= 89 -10/9 229
-14/9  22/9 -7/9

If we choose d={ | .1 1] then, assuming o=2, we have that
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‘ 2
fa=geo, WP a5 g 3 6Py
M 36 ik Aj :

(9%

and hence both condition (5.1) and (5.4) are verified. In particular' Q=B-2ddT where

26/9 -10/9 4/9
B=Q+2ddT= | _10/9 80 4/
49 49 119 )

 is a positive definite matrix.

Figure 1
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