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Missing at random in randomized
experiments with imperfect compliance

Andrea Mercatanti
Dipartimento di Statistica e Matematica Applicata all’Economia
Universita di Pisa

Abstract

The paper proposes a method for handling non-responses in a like-
lihood based analysis of a randomized experiment with imperfect com-
pliance. The study of the complications from which a randomized ex-
periment can suffer, is not only dedicated to a randomized trial analy-
sis. Infact the template of a randomized experiment with imperfect
compliance can be used for identify and estimate causal treatment
effects also in observational studies. Not only, but some complica-
tions like the presence of non-responses in the treatment and/or in
the assignment to treatment are more plausible in the context of an
observational study than in a randomized trial.

My proposal is based on two conditions, namely in supposing: the
non-responses mechanism in the category of *missing at random”, and
the "distinctness of parameter” condition satisfied. In other words
this means that the non-responses mechanism is ignorable only after
conditioning on the observable quantities. 1 present both theoretical
and computational results.

1 lImtroduction

Most of the methodologies proposed in the literature for evaluating causal
effects are based on the concept of potential quantities (or counterfactuals).

1T would like to thank Andrea Ichino, Guido Imbens, Gilberto Ghilardi, Fabrizia Mealli,
as well as seminar participants at the University of Pisa, European University Institute
(Fiesole}, 40-th Scientific Meeting of the Italian Statistical Society (Firenze), for useful
comments and suggestions.



This means that, in order to define causal effects, a comparison between the
outcome of a generic individual 4 assigned to a treatment, and the outcome
that it would be observed if the same individual would not be assigned to
that treatment is necessary® (Rubin, 1974; Holland and Rubin, 1983). Usu-
ally, this comparison is made by a difference of potential outcome averages
under the different treatments, and over the whole population of units; this is
the so called Average Causal Effect, A T.E. (Holland, 1986). A randomized
experiment with a binary treatment and imperfect compliance with respect
to the assighments needs three basic variables in order to be defined: the
outcome, Y;; the treatment, D;; and the assignment to treatment, Z;. The
potential outcomes respect to the treatments are defined as: Y;(D; = d), with
d € {1,0}, and respect to the assignments to treatment as: Y;(Z; = z), with
z € {1,0}. The two components in any couple of potential quantities, for
example {Y;(D; = 0), Yi(D; = 1)}, are not contemporarily observable since
one excludes necessarily the other, so the concept of potential quantities
necessarily implies missing informations.

This paper propose a method for handling missing data in a likelihood-
based analysis for a randomized experiment with imperfect compliance. In
this context, missing data have not only the meaning of unobserved potential
quantities (for example the outcomes of treated individuals if these individu-
als would not be subjected to the treatment) but have to be meant in a more
general sense (like, for example, non-responses in the outcomes of treated
individuals). The method proposed is based on the likelihood function intro-
duced by Imbens and Rubin (1997).

The study of the complications from which a randomized experiment
can suffer, is not only dedicated to a randomized trial analysis. The tem-
plate of a randomized experiment with imperfect compliance can be adopted
for the identification and estimation of treatment causal effects also in non-
experimental situations. Angrist, Imbens and Rubin (1996) show under
which set of assumptions, a regression analysis supported by the use instru-
mental variables identifies causal treatment effects in observational studies.
The template is that of a randomized experiment with imperfect compliance
in the sense that, in order to identify causal treatment effects, the particular
instrumental variable adopted should have the role of a random assigment

2The reference to the idea of potential outcomes is not the only way to get a definition
of causal effect. See Dawid (1997) for a discussion about this point and the proposal of a
different approach based on the Decision Theory.



for which the treatment not necessarily comply. Moreover the complications
of the presence of non-responses in the treatment and/or in the assignment
to treatment, are more plausible in the context of an observational study
that in a randomized trial. In experimental contexts, the treatments and
the assignments to treatment have the peculiarities to be "created” by a re-
sarcher who randomly assigned a treatment to the units. So the probabilities
to have non-response in these two variables are usually remote. Differently,
in observational studies the data derived from other kind of sources (for ex-
ample answers to questionnaires) for which the presence of non-responses is
not unusual.

In Section 2 I briefly describe the structure of a likelihood based inference
for causal effects in the presence of non-compliance. In Section 3 I present
the likelihood function on which the inference can be based in presence of
non-responses. In Section 4 I present a computational way for maximizing
the likelihood function through the EM algorithm.

2 Theoretical framework

In settings of imperfect compliance with respect to an assigned binary treat-
ment, and basing on the concept of potential quantities, the whole population
can be subdivided in four sub-groups characterizing for different compliance
behaviors. Units for which Z; = 1 implies D; = 1 and Z; = 0 implies I, =0
(compliers) are induced to take the treatment by the assignment; they can be
the most interesting units for example in the evaluation of an encouragement
design. Units for which Z; = 1 implies D); = 0 and Z; = 0 implies D; = 0
are called never-fakers because they never take the treatment, while units
for which Z; = 1 implies D; =1 and Z; = 0 implies D; = 1 are called always-
takers because they always take the treatment. Finally the units for which
Z; = 1 implies D; = 0 and Z; = 0 implies 1); = 1 do exactly the opposite
of the assignment and were called defiers by Balke and Pearl (1993). This
four groups in which the population can be subdivided are shown in Table
1; each of them define a particular compliance-status.

Tab. 1
Z; =0
Zi=1| Z; =0 | never-taker defier
D, =1 complier | always-taker
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The starting point for handling the problem of missing data in a ran-
domized experiment with imperfect compliance can be the likelihood func-
tion introduced by Imbens and Rubin (1997), and used in some empirical
works, for example by Little and Yau (1997), or by Hirano, Imbens, Rubin,
Zhou (1998). Let’s indicate: with ¥; the couple of potential outcomes un-
der the two different assignments to treatment, {¥;(Z; = 1), Y:(Z; = 0)}; and
with D; the couple of potential treatments received under the two different
assignments to treatment, {D;(Z; = 1), D;(Z; = 0)}. Given the concept of
potential quantities, only one value for each of the two couples D; and Y; is
observable at individual level. These observable values will be indicate with
Deps s and Yops 4, cifferently from the non-observed values that will be indicate
with Dypis; and Y. Let’s indicate D to be the n x 2 matrix (where n is
the dimension of the sample), generated by the vertical concatenation of the
n couples I);; Y to be the n x 2 matrix created by the vertical concatena-
tion of the n couples Y;; Y to be the n x 4 matrix created by the horizontal
concatenation of the two matrices D and Y, and finally Yopeand Y mis to be
the observed and non-observed quantities in Y.

Given the assumptions of S.U.T.V.A. (Stable Unit Treatment Volue As-
sumption) by which the potential quantities for each unit are unrelated to
the treatment status of other units, and ” Random assignment to treatment”
by which the probability to be assigned to treatment is the same for each
individual [for these two conditions see: Angrist, Imbens and Rubin, (1996)]
the likelihood function for the complete data Y can be written, as outlined
in Imbens and Rubin (1997):

L 9|Y) x f(Y‘ ) = Hle(di:yi; 0), (1)

where f(d;, y;; @) is the probability or density function of (di, 1) = (dobs,i, Bmisi; Yobe,is Ymis,i)
for a given value of the parametrical vector 8.
The likelihood function based on the observed quantities is proportional
to the integral of (1) respect to the non-observed part of Y, [Rubin (1978);
Imbens and Rubin (1997)):

N
L (6]Yobs) o¢ £(Yonsi 0 ff[nf (ds s )] dX%E:gf/f(@,ﬁ;G)deM.

The resolution of the integral produces:
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L (0|Yobs) X f(Yons; ) = Iicci10) (Wagz;o*"-’dgim) X Liecio,1) (aniu‘i'wdgzn) 2

XHiec(l,l)(wagiu.l + wcgil) bt HiEQ(O,O) (wn.g::z() + wcgiﬂ): (2)

where: the parametrical vector is

6 = (wm Wiy Wey Wd; Mgy Mot Taos nnl,ncov M1 Nao» ndl) 7

and ¢(d, 2) is the set of units having treatment D, ; = d, and assigned to
Zobsi = z. Bach of the four parameters w; represents the probabilities of an
individual of being in the # group, where + = ¢ (complier), n (never-taker),
a (always-taker), d (defier); the function ¢f, = g.(y;) (dependent on the
parametrical vector 7,,) is the outcome distribution for an individual in the
t group and assigned to the treatment z, with 2 =0, L.

3 The likelihood function with non-responses

In this section the specification of the likelihood function for a randomized
experiments with imperfect compliance and with the possibilty to have non-
responses in the variables Y;, D;, Z;, is introduced. The problem of non-
responses is, in general, particularly important and its study is justified be-
cause of the difficulties in having complete datasets. As it was shown in the
previous section non-responses are not the only sources of missing informa-
tions in randomized experiments with imperfect compliance; we saw, in fact,
that missing data in the form of unobserved potential outcomes (that is the
outcome and the treatment under the treatment not assigned: Y,,.; and
Diris ;) are always present in this context. T

An analysis based on (2) can be performed only using datasets without
non-responses, consequently the units having at least a non-response in the
variables Y;, D;, or Z;, should be necessarily dropped out of the analysis. But
this procedure is not easily justified, because in this way it would be necessary
to satisfy the assumption called "missing completely at random”, by which
the probability of non-response for every variable is the same for all the units.
Indeed, only in this case deleting the units presenting at least a non-response
in the variables Y;, D;, or Z;, does not influence a likelihood-based analysis
(Rubin, 1976; Little and Rubin, 1987; Schafer, 1997).
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Less restrictive conditions can be imposed assuming: the "missing at ran-
dom” (MAR), and the "distinctness of parameter” (DOP) conditions (Rubin,
1976; Little and Rubin, 1987; Schafer, 1997). In order to explain these two
conditions, let R indicates a n X p matrix of indicators, namely a matrix of
binary variables assuming value 1 if the corresponding element of a generic
n % p dataset Y is observed (a response), and 0 otherwise (a non-response).
Consequently the dataset Y can be decomposed in two parts: the observed
part Y g, and the unobserved part Y. Let’s introduce a model for R
that depends on both Y and a parameters vector &: f(R]|Y;e), and let’s
call it the "non-response mechanism”. The MAR assumption states that the
probability or density function of R is independent on the unobserved part
of the dataset, Y ;5!

f (R|Y;€) =f (R|YobsaYmv‘s; ) (R|Y053= ) (3)

Consequently, by introducing the assumption of independence between
individuals behaviors, we can state that the probability of a certain value
for r; (i row of R, ¢ = 1,..,n) is the same for all the individuals having
the same value of the row vector y; s (observed part of the i row of Y,
i = 1,..,n). To understand the importance of (3) we should consider the
further condition of DOP that with MAR allows us to simplify the inference.
The DOP condition (Little ¢ Rubin, 1987; Rubin, 1987; Schafer 1997), states
that the parameters 8 of the model generating the data, f (Y:8), and the
parameters & of the non-response mechanism have to be distinct. This means
that from, a frequentist point of view, the joint parameter space of (8, €) must
be the Cartesian cross-product of the marginal parameter spaces for @ and
g, and from a Bayesian viewpoint that the prior distribution of & must be
independent on that of . This is a reasonable condition in a lot of practical
situations.

Given the two conditions of MAR and DOP, it is possible to show that in a
likelihood-based analysis, the consideration of the non-response mechanism
can be avoided. In fact, the joint distribution of the observed quantities
(namely the observed part of the dataset, Y, and the R matrix) is:

.f (R, Yobs; 9? 6) = /f (Ra Y) 95 E) devls = ff (RIY1 E) f (Ya 9) de'isa
that under MAR, becomes:

f (B Y i 6,€) = f (RIY i€ [ £ (Y10) ¥ rmis = f (RIY i €)-f (Youui6)
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Then under the further condition of DOP, a likelihood-based inference for
6 is not dependent on £ or on f (R|Y ;&) It is then possible to avoid the
consideration of the non-response mechanism, and base the inference only on
the likelihood function based on the observed part of the dataset, Y .:

L(6]3ets) o f (Yorsi0) = [ f (X30) 0¥ s

In other words this means that the non-response mechanism is ignorable
only after conditioning on the observable quantities. This assumption is dif-
ferent from the assumptions on which other recent methods proposed in the
literature for dealing with the problem of missing data in experiments with
non-compliance are based, see Frangakis and Rubin (1999); Baker (2000),
Little and Yau (2001). In particular Frangakis and Rubin (1999) propose a
method for handling the problem of non-responses on the outcome, working
under the usual set of agsumptions for the LATE identification, in absence of
always-takers. Their procedure is based on two conditions: the ”compound
exclusion restriction” stating that assignment have no effect on both the po-
tential outcomes and the response behaviors, and the "latent ignorabilty”
of the non-response mechanism. The satisfaction of these two last assump-
tions is different from supposing the MAR and DOP conditions satisfied.
The ”compound exclusion restriction” and the “latent ignorabilty” make the
missing data mechanism ignorable only after conditioning on the compliance
status (never-takers, treated compliers, untreated compliers) that can be not
always observed. The satisfaction of MAR and DOP conditions is not in
general less restrictive than the satisfaction of the "latent ignorabilty” and
the “compound exclusion restriction”the choice depends essentially on the
context of the study and has to be evaluated case by case. In any case the
Frangakis and Rubin method does not consider the presence of missing data
in the treatments and/or in the assigments to treatment.

In a randomized experiment with imperfect compliance and missing data
the likelihood function based on Y., under MAR, DOP, and the usual
S.UT.V.A. and "Random assignment to treatment” conditions (for these
two last assumptions, see Angrist, Imbens and Rubin; 1996) can be obtained
by integrating (2) with respect to the non-responses:

L8] Y ) j f f F(Xasi 0) Gmiss dilmin i =



N
=11/ [ ] | #(d950) dimios dimss d2mis Ao dymis (4
i=1" I

where: Y and dpis; are the unobserved parts of y; and d; (due to the
concept of potential quantities), like in the (2); Zmis i, dmiss and Ymiss are the
non-responses on the potentially observed part of y; and d;. The parametrical
vector @ is:

0 = (WayWn; Ve, Was Ta: Mats Mg Tt et Mets Mo a1 7z ) -

The only difference with respect to the vector @ in (2), is the presence of
the parameter representing the probability to be assigned to the treatment:
7y, = P(Z; = 1). This parameter could be omitted in (2) because not influ-
ential on a likelihood-based analysis, given that the ”Random assignment to
treatment” condition wag supposed to be satisfied, and so:

X 2) = fXY) f(2Z),

where Z is the n component column vector of assignments to treatment.
But in the (4), given the possibility to have non-responses in the assignment
to treatment and in order to avoid wasting of informations, the probability
to be assigned, 7., has not to be drop out of the likelihood function.

The likelihood function (2}, factors in four terms, and every term includes
the likelihood for the units in the set ¢(Dys; = d, Zppss = #). The resotution
of the integrals in the (4) produces a similar factorization, but in eighteen
terms. Any of these terms refers to the sets obtainable by intersecting the
four sets g(% =d, Zopsi = 2):

{q (0,0) 5‘;(05 1) ag(la 1) ,g(l,U)}

with the eight sets T(rYobs,is Tdobs,i) T Zobs,i )y WHETE TYops i, TCops,i AN T Zohs i
are indicators assuming value 0 in case of non-response and value 1 in case
of response on Yons i, dovs,i aNd Zops; respectevely:

{r(1,1,1), r(0,1,1),7 (1,0,1) ,7(1,1,0),7(0,0,1), 7(0, 1,0), 7 (1,0,0), 7 (0,0,0)}.

All the possible intersections between ¢(Dops; = d, Zobs; = 2) ad 7(TYobs i, "dobs,is "Fobai)
produce (4 X 8) = 32 sets 'U(-Dobs,i = d, Zobs,z’ = &, Tyobs,f.iardobs,is Tzobs,'i)-
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But given that the units out of the set »(1,1,1) or 7(0,1,1) have at least
one non-response in the treatment or in the assignment to treatment, the
number of possible sets reduce to eighteen. For example the units in the
set 7(1,0,1) have a non-response in the treatment, then it is not possi-
ble to specify the four possible sets created by intersecting 7(1,0,1) with

{¢(0,0),5(0,1),5(1,1),5(1,0)}:

{©(0,0,1,0,1),v(0,1,1,0,1),0(1,1,1,0,1),2(1,0,1,0,1)} . (5)

The question can be resolved by defining (., #,1,0,1) = 7(0,2,1,0,1) U
7(1,2,1,0,1) be the units in set 7(1,0,1) and for which Z,,; = 2. Anal-
ogous arguments hold for the units in7(1,1,0),7 (0,0,1), 7(0,1,0), 7 (1,0,0),
7(0,0,0), and produce respectevely the sets: v(d, ., 1,1,0),v (., 2,0,0,1), v{d,
v{,.,1,0,0), and v (,,.,0,0,0). Now, let’s consider the units in the set
7(.,2,1,0,1); the probability or density function for a unit in this set is
obtainable by integrating f(d;,y:;; @) with respect to the unobserved quanti-
ties:

ST T £(ds, 453 9) Yrmis,i0mis i if 2 =0
Jrff f(éa Yi; B) dymis,iddmis,iddmis,i if z=1

From (4), the integrations with respect to Ymisi and dpmis; produce:

(I—m,) f {f (@=1)(WaGho + waghe) + Tia—oy(weglo + wngi,o)} ddpisi ifz=0
7y [ { I(d:l)(wa921 + wegly) + I(a—0) (wnghy + wdg:;l)} dd s ifz=1

the further integration respect to dp,; eliminates the indicators Ig—y
and [ (d=0)"

(1) (Wagao + Waglo + WeFeo + wrgnp) if 2=10
Ta{wagar + WeG + Wndn + Wadi ) ifz=1

In other words, the units in the set 7(., z,1,0,1) are a mixture of compli-
ers, defiers, always-takers and never-takers assigned to the treatment z.

»0,1,0),

Analogous arguments hold for units in v(d, ., 1, 1,0),v (., 2,0,0, 1), »(d, .,0,1,0),

v(..,1,0,0), and v (.,.,0,0,0). Then, the resolution of the multiple integra-
tions in (4) produces the likelihood function based on the observed quantities
that factors in eigth terms:

LAY ops) = Mg 0o 0 liena,2,0,1.1) fa21,0,0 X Tam1,01 =100 ic0(d,2.0,1,1) fa,2,0,1,1 ¥
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x Hz:l,{)nz'e;v(.,z,l,(],l) f.,z,l,o,l X Hz:l,OHz’EU(.,z,O,O,l) fd,z,o,o,l X Hd:l,DHe’Efu(d,.,l,l,O) fd,.,l,l,u

XHa‘:l,OHiEU(d,.,O,l,O) fd.,.,o,l,o X HiEq(.,.,l,O,O) f.,.,1,0,0 X HiEv(.,.,O,O,O) .f.,.,o,o,o- (6)

Table 2 presents the specification of the probability, or density, functions
in the (6):

Tab.2

Faz1,11 = La=1,:-0 (1 — 72) (wagho + wdg_ﬁ},o] + l(g=0,z=1)7; (Wnfpy + Waga )+ _ _
+I(d21,z:1)ﬂ—z (wa.gz,,j[ + wcgzl) + I{d:O,z:O) (1 - "Tz) (wngi,g -+ wcgzo)

Ja,z011 = lg=1,.—0) (1 — 7)) (wo + wq) + I(d:(),z=1)7fz(wn + wg)+
+I(d=1,z=1)?rz(wa + wc) + I(d=0,2=0) (]- - 772) (wn + wc)

[ 01 = Lo=g) (1~ 7,) (WaGho + WGl -+ Wadng + Wedio)+ . ) ] _
+1 (z:l)ﬂ'z(wagfn + Wagly + Wndpt + wegtr)

Jaz001 = Lp—qy (1 — ) + Toqym

fa.110 = Taeoy (wWagly + wngho + wnghy + weglo) + Tam1y(waghy + waglo + Waghy + wegly)

fa 010 = Ta—0 (wq + W + we) + f(d:l)(wd + Wa + we)

fo100= 9'211 + 9‘30 + Gno + 9’:;,1 + Jao + 931 + geo 92:1

fo000=1

4 Computation of the maximum likelihood
estimands by the EM algorithm

If the interest of the analysis is in maximizing the likelihood function based
on the observed quantities, L (8|y.s), the calculations can be performed by
usual iterative methods. In particular, in order to exploit the particular struc-
ture of the likelihood function induced by the MAR and DOP assumptions,
the maximization of the likelihood function L (8]y ) can be easly obtained
using the EM algorithm (Dempster, Laird, Rubin 1977; Tanner 1996). This
is a computational method that can be used as a part of a Bayesian or likeli-
hood analysis and whose goal is locating the mode or modes of the posterior
or likelihood function. It is a deterministic algorithm (it does not require the
input of a stream of random numbers), and it works by running two steps
iteratively. The first step, the E-step, works by imputing values to latent or
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unobserved data, and the second-step, the M-step, works by maximizing the
likelihood function based on the augmented dataset. The phylosopy is then
in augmenting the dataset with latent data in order to produce a likelihood
function easier to maximize respect to the original likelihood function. This
particular way for locating the maximum of a likelihood function, is partic-
ulary adapte for making inference in the presence of missing data, without
dropping out observations. In fact, in presence of missing data, the only
way to write down a likelihood function whitout dropping observations with
missing values, is by imputing values to the missing data. In these situations,
the EM algorithia works (at the ¢ iteration):

e in the E-step by calculating the expected value of the unobserved part
of the dataset, Y5, given the observed quantities, Y 5, and given the
value of the parameter vector at the previous time 8¢ 1:

Y(t) =E( mzleobsag(t 1})

™mis

e and in the M-step, by maximizing the likelihood of 8 given the com-
plete data, that is the observed part of the dataset augmented by the
unobserved quantities Y,(n)zs

6 = max L (BIY s Yo ) -

The evaluation of the conditional expected value of Y,,;, in the E-step is
eagy if MAR is true. This assumption in fact allows to define f (Ymis Y o5 B(t‘l))
without the consideration of the non-response mechanisin, and then simply
by:

f (Ymis;Yobsia(tﬂl))
F (Yous; 8471)

F (Yois | Yops 0477 =

Indeed under the (3), and for every value of €;

(RIYobsr ) f(YmiS:YobﬁB(t_l))
( ‘Yobsv )f (YmimYobs;g(tHl)) dez‘s

f( mvs'Yobsue(t 1))
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= (RIYObS’ e) f (Ym":s? Yobs; G(ﬁﬂl)] . f (meés: Y gps; g(t_l))
f (R[Y si€) | f (Y’"'“'S’Y"'”; 3(1&—1)) N is [ f (sz's,Yobs; 9(%1)) dY s

F (Yonis, Yors; 0977
- f (Yobs; 9 (+=1) )

Again in the M-step, by the DOP assumption, the maximization of
L (GIY,%S, Obs) doesn’t require to take into account the non-response mech-
anism. Indeed:

F (R Y5 Yo 0,6) = F(RIYY, Yousie) - £ (Vi Yonsi ).

I now outline the general structure of the EM algorithm for a randomized
experiment with impefect compliance by first congidering the E-step. This
step is dedicated to evaluate the expected value of the unobserved quanti-
ties given the observed quantities and a current value of the vector 8. The
unobserved quantities can be: the missing outcomes and/or the compliance
status. In particular the compliance status can be unohserved because of two
reasons. One reasons is due to the concept of potential outcomes, infact the
compliance status of a unit having treatment D; = d and assignment 7; = z,
is exactly determined only by knowing the value of the treatment D, under
the alternative assignment Z; = |1—z|, and this can represents an unobserved
counterfactual situation. For example the compliance status of an unit for
which D; =1 and Z; = 1 is unobserved, this unit could be a complier or an
always-taker. The other reason is due to the presence of non-responses on
the treatment and/or on the assignment. For example, in absence of defiers
the compliance status of a unit for which D; = 0 and Z; = 1 is observed, the
unit is surely a never-taker; but if the treatment is missing the compliance
status is unobserved, infact that unit could be a complier, a never-taker, or
an always-taker.

Tables 3 and 4 presents the inputs for calculating the expected values of
the unobserved quantities given the observed quantities and a current value
of the vector 8. Table 3 considers the compliance status, that can be rep-
resented by a four-component indicator ¢ = ¢ (complier), n (never-taker), a
(ahways-taker), d (defier). The conditional probability of subject ¢, in the set
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T(PYobs,is Tobs,is TZebs i), Deing type ¢ given the observed data and a current

value of the vector 8, is obtainable by a ratio of two quantities. The numer-
ator of this ratio is the corresponding Table 3 entry and the denominator is
the corresponding row total. The expected value of the compliance status for
a subject 1, is then represented by a four-component indicator of conditional

probabilities.
Tab.3
dobs,z' Zoba i t=c t=n t=a t=d
7(1,1,1) | 0 0 Wedy Wndho 0 0
0 1 0 by 0 adl
1 0 0 0 Wa oo Wl
1 1 Weldty 0 Waler 0
7(0,1,1) ] 0 0 We W 0 0
0 1 0 We 0 Wq
1 0 0 0 Wy Wy
1 1 We 0 Wa 0
7(1,0,1) 0 Wollly WrGo Walao Wadio
1 Weber WnYn1 WoGal Wagg
7(0,0,1) 0 We W, Wy ny
. 1 We W, Wy Wy
7(1,1,0)| 0 (1=m)gw | (1= 7a) gnot 0 290
+729m
1 T20e1 0 (1=} gaort | (1 —72) g
+7 2001
7(0,1,0) 0 (1 —7,)we (1 —m)wy 0 T LWy
1 T W 0 Ty (1 —7;)wa
7(1,0,0) (1 —m2) gig+ | (1= m2) ghot | (1= 72) gaot | (1 — 72) glot
7200 +729m 7290 + T2
7(0,0,0) W, W Wy Wy

For what concern the computation of the conditional expected values for
the unobserved outcomes, Table 4 presents the conditional distributions of
the outcome given the observed data, for an individual 7 in the set

T(Tyoba,i = 07 Tdobs,ia rzobs,'i) . fi(ylyobs)-

Computation of the conditional expected value of the unobserved outcome

is obtainable by:
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B (YY) = [y Fyl¥ors) dy.

Tab.4

dobs,r’. Zoba,i fl(leObS)

T(07 1: 1) O O (Q’igwc + gzLDwﬂ)/(wC + wﬂ)
(gnawn + ggnwa)/(wn + wa)

(gagwa + Gioa)/ (Wa + wa)

==

(ge1we + go1wa) / (we -+ wa)

7(0,0, 1) (giowe + Goown + ghota + GhoWa)

= Ol—=]| O —

(aae + G Wn + Ga1Wa + Gnwa)

7(0,1,0) 0 . (1- ) gfzowc + [(1 —T2) g-:LO + ﬁzg:al]wn + T gnwa/
JI(QL = 7) (we + wn) + 7 (wn + wa)]

1 . (1—m,) Gawd (1 — 72) Gog + Ro0o1]wa + Togowe/
/(1 =7} (wo + wa) + Tz (we + wa)]

7(0,0,0) | . : [(1 = 72) ggo + Tagarlwe + [(1 — 72) ga + magy|wat
(1 — 72) Gno + Tagmalon + [(T — 72) Gao + T2Ga1]wa

'The M-step is dedicated to the maximization of the likelihood function
based on the augmented dataset, that is based on the dataset created by
the union of observed and imputed data. Units with missing outcome, will
have an imputed value for the outcome equal 50 EY(Y{Y ,5s). The maximiza-
tion can be performed by a weighted maximum likelihood procedure, where
subjects are differently classified in the different compliance groups, t, with
weights equal to the conditional probabilities of being in ¢, calculated in the
E-step.

5 Conclusions

In this article I have proposed a likelihood based method for handling the
problem of non-responses in a randomized experiment with imperfect com-
pliance. This method relyes on the assumption that the non-response mech-
anism is ignorable only after conditioning on the observable quantities. This
is different, but not in general less restrictive, from the assumptions on which
other methods proposed recently in the literature are based, see Frangakis
and Rubin (1999), Baker (2000), Little and Yau (2001). Respect to these my

14



proposal is adapte for dealing with the problem of missing data not only in
the outcome but also in the treatment and in the assigment to treatment.

Other than theoretical results, a computational way for maximizing the

likelihood function by exploiting the particular strutcure of the function in-
duced by the satisfaction of the MAR and DOP was proposed.
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