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Abstract
In this paper, a nonlinear fractional programming problem is consid-
ered, where the functions involved are 7-semidifferentiable Necessary and
sufficient optimality conditions are obtained. A dual is formulated and du-
ality results are proved using concepts of semilocally preinvex, semilocally
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1. Introduction

The importance of convex functions is well known in optimization theory. But
for many mathematicsl models used in decision sciences, economics, management -



science, stochastics, applied mathematics and engineering, the notion of convex-
ity does no longer suffice. Various generalizations of convex functions have been
introduced in literature, Many of such functions preserve one or more proper-
ties of convex functions and give rise to models which are more adaptable to
real-world situations than convex models. Between these we recall the class of
semilocally convex, semilocally preinvex and related functions. Ewing [2] defined
semilocally convex functions which he applied it to derive sufficient optimality
conditions for variational and control problems. Such functions have certain im-
portant convex type properties, e.g., local minima of semilocally convex functions
defined on locally starshaped sets are also global minima, and nonnegative linear
combinations of semilocally convex functions are also semilocally convex. Some
generalizations of semilocally convex functions and their properties were investi-
gated by Kaur [7], Kaul and Kaur [3],[4],[5], Suneja and Gupta [17], Weir [18],
Preda {12}, Preda, Stancu-Minasian and Batitorescu [14], Mukherjee and Mishra
(11}, Weir and Jeyakumar [19] and Mohan and Neogy [9]. Kaur {7] and Kaul and
Kaur [3] defined semilocally quasiconvex and semilocally pseudoconvex functions.
Kaul and Kaur [4] derived sufficient optimality criteria for a class of nonlinear
programming problems by using generalized semilocally functions. Optimality
conditions and duality results were given by Kaul and Kaur {5] for a nonlinear
programming prcblem where the functions involved are semidifferentiable and
generalized semilocally. Preda, Stancu-Minasian and Batatorescu [14] (see also
Preda and Batitorescu [13]) obtained results related to optimality and duality
in nonlinear programming involving semilocally preinvex and related functions.
These resuits are extended to the multiple objective programming by Preda and
Stancu-Minasian {15]. Optimality conditions and duality results were given by
Lyall et al. [8] for a fractional programming problem involving semilocally convex
and related functions.

In this paper, a nonlinear fractional programming problem is considered, where
the functions invclved are n-semidifferentiable.Necessary and sufficient optimality
conditions are obtained. A dual is formulated and duality resuits are proved
using concepts of semilocally preinvex, semilocally quasi-preinvex and semilocally
pseudao-preinvex.

Due to the fact the class of semilocally preinvex functions is larger than the
class of semilocally convex functions it results that this paper generalizes the work
of Lyall, Suneja and Aggarwal [8] '

The organization of the remainder of this paper is as follows. In Section 2,



we shall introduce some notations and definitions which are used throughout the
paper. In Section 3, we shall give necessary optimality criteria for a nonlinear
fractional programming problem. In Section 4, we shall give sufficient optimality
criteria. In Section 5, a dual is formulated and duality results of weak and strong
duality for the pair of primal and dual programs are proved.

2. Definitions and Preliminaries

In this section, we shall introduce some notations and definitions which are used
throughout the paper.

Let R™ be the n-dimensiona.l Euclidean space and R’} be its positive orthant,
ie, Rl ={zxeR",z; 20, j=1,...,n} . Throughout thzs paper, the followmg
conventmns for vectors in R™ will be followed :

z>yifandonlyifz; >y (i=1,...,n),

z2yifandonlyifz; 2y, (i=1,...,n),

z2yifandonlyifz; 2y (i=1,...,n), but z £ y.

Throughout this paper, all definitions, theorems, lemmas, corollaries, remarks
are numbered consecutively in a single numerctation system in each section.

Let X° C R™ be a set and 5 : X° x X® —s R™ be a vectorial application.

Definition 2.1. We say that the set X° is n-vex at Z € X® if 74 \p(x, Z) € X°
for any x € X° and any ) € [0,1).
We say that the set X° is n-vex if X° is n-vex at any z € X°.

We remark that if n(z, 2) = 2 — & for any z € X then X° is n-vex at 7 iff X°
1s a convex set at Z.

Definition 2.2. [1].Let X° C R™ be a non-empty set. The function f: X® - R
is preinvex on X°(with respect to 1) (briefly, f is n-vex) if there exists an n-
dimensional vector function n: X° x X® — R" such that, for all z,u € X°® and
A € [0,1], we have

flutdn(zu)) A () + (1A f(u).

An m-dimensional vector-valued function ¥ : X° — R™ is preinvex on X°
(with respect to 1) if each of its components is preinvex on X° (with respect to
n).



Definition 2.3. We say that the set X® C R™ is an n-locally starshaped set
at & (£ € X°) if for any * € X° there exists 0 < an(z,Z) £ 1 such that
z + Mz, z) € X° for any A € [0, ay(z,Z)].

We say that the set X° is n-locally starshaped if X° is n-locally starshaped at
any T € X°.

Definition 2.4.[14]. Let f : X° — R be a function, where X° C R" is an
n-locally starshaped set at T € X°. We say that f is:

(iy) semilocally preinver (slpi) at T if corresponding to T and each x € X°,
there exists a positive number d,(x,Z) < a,(z,T) such that

f@+ Mz, 2)) £ Af(x) + (1 - Nf(z), 0<A<dz,3) (2.1)

The function f is strictly semilocally preinvex (sslpi) at T € X° if for each
x € X x  x° the inequality (2.1) is strict.

If f is slpi (sslpi) at each Z € XO then f is said to be sipi (sslpi) on XO,

(i2) semilocally quasi-preinvex (slqpi) at ¥ if corresponding to Z and each
x € X', there exists a positive number d,(z,%) £ a,(z,#) such that f(z) £ f(%),
0 < A < d,(z, %) implies fIZ + An(z,z)] £ f(Z).

If f is slgpi at each T € X° then f is said to be slgpi on X°.

Definition 2.5.[14, 15). Let f: X°® — R be a function, where X° C R™ is an
n-locally starshaped set at Z € X°. We say that f is n-semidifferentiable at & if
(df)*(z,n(x, &) exists for each z € X°, where

(@f)* (Zn(e,2)) = lim %[f(a‘? +An(z,2)) - f(Z)]

(the right derivative at ¥ along the direction n(z,Z) ).
If f is n-semidifferentiable at any T € X°, then [ is said to be 5-semidifferentiable
on X°,

It may be noted that the semidifferentiable functions correspond to 1 (z,%) =

x — Z. Some properties possesed by the semidifferentiable functions are given by
Kaul and Lyall [6]

Definition 2.6. Let f : X° — R be an n-semidifferentiable function on X° C
R". We say that f is semilocally pseudo-preinvex (slppi) at & € X° if

(df)*(Z,n(z,2)) 2 0= f(z) 2 f(F)
If f is slppi at each & € X" then f is said to be slppi on X°.
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We define a function f to be semilocally preincave, semilocally quasi-preincave,
semilocally pseudo-preincave, according as — f is semilocally preinvex, semilocally
quasi-preinvex, semilocally pseudo-preinvex, respectively.

Theorem 2.7. Let f : X° — R be an n-semidifferentiable function on X°
an n-locally starshaped set. The function f is slpi at £ € X° if and only if
(df)*(z,1(s,)) exists and

fla) - f@®) 2 (df)* (2, n(2,2)) (22)

and if f is strictly semilocally preinvex at & € X°, then

f(@} = f(@) > (df)* (z,9(2,2)), Yz # 2
P;roof.' Suppose [ is slpi at T € X°. Therefore, for each z € X9, there exists a
positive number dy(z, £) £ ay(z, Z) such that f(Z+An(z, 7)) £ Af(z)+(1-2)f(Z)
for 0 < X < d,(z,%), ie.:

f@+ An(m;\:ﬁ)) @ < 1) - £@).

Taking the limit as A — 0%, we have the relation (2.2). The converse part is
evidently.
The proof in the strict case is similarly.

Theorem 2.8. Let f: X° — R be an n-semidifferentiable function on X° an
n-locally starshaped set. If f is slqpi then:

f(@) & f(=) = (df) " (zn(z,3)) S 0

Proof: The function f is n-semidifferentiable, therefore (df)*(Z
Also, f is slqpi, therefore there exists a positive number dn(z, T)
that

TOEID, o b=t @) < @)

Mz, %)) exists.
< a,(x, £) such

l.e.

fl&+ dn(z,8)] - £3) < 0.



Dividing by A > 0 and taking the limit as A — 0%, we get

(df)*(@,n(=,2)) £ 0.

'This completes the proof.

A number of properties of semilocally preinvex, quasi-preinvex, pseudo-preinvex,
n-semidifferentiable functions are given by Preda, Stancu-Minasian and Bit&torescu
[14]. The main properties are summarized in the following

Theorem 2.9, [14] Let functions f,g: X° — R,.

a) If f and —g are slpi on X° and g is strictly positive and finite on X°, then
g = f/g is a slqpi function on X°;

b) If — f is slpi and non-negative function on X° and g is slpi, strictly positive
and finite function on X°, then —q is slgpi on X©;

c) If g is strictly positive and finite function on X°, then 1/g is slgpi on X" if
and only if —g is slgpi on X°;

d) If f is a slpi and non-negative finction on X°, —g is a slpi, strictly negative
and finite function on X°, then f*/g is slpi on X

e) If f and —g are slpi and non-negative functions on X°, then —fg is slgpi
on X°.

3. Necessary Optimality Criteria

Consider the following nonlinear fractional programming problem (P) :

Max q{z) = /(z)

(P) subject to
hiz) £0
re X0
where
i) X? € R™ is a non-empty 5-locally starshaped set,
i) f: X° — R, is n-semidifferentiable function and f (z) > 0,¥z € X°,
iii) g : X® — R is 7-semidifferentiable function and g (z) > 0,Vz € X?,
iv) h: X® —» R™ is n-semidifferentiable function.
Let X = {z € X% | h(z) < 0} be the set of all feasible solutions for (P).

6



Let N.(Z) denote the neighbourhood of Z € R?, i.e.,
N.(3) = (z € R | |z~ 7] <<}.

Definition 3.1. 7 is a local maximum solution of the problem (P) if z € X and
there exists ¢ > Q such that

z € N(F)N X = f(Z) 2 f(z).

For £ € X we denote

7= {ilhs () < 0},
and
hr = (i) -

Obviously JU J = {1,2,...,m}.

Definition 3.2. We say that the function h satisfies the generalized Slater’s con-
straint qualification (GSQ) at Z € X, if h; is semilocally pseudo-preinvex at & and
there exists an &£ € X such that h(£) < 0 fori e [.

In what follows we need the following theorem of the alternatives stated by
Weir and Mond [20].

Theorem 3.3. ([20], Theorem 2.1). Let X° be a non-empty set in R™ and let
f:X®— R*, be a preinvex function on X°(with respect to ). Then either

[ (z) < 0 has a solution z € X°
or

Af(z) 20 forall z € X®, for some A € R¥ A\ >0,

but both alternatives are never true.

Lemma 3.4. Let Z € X be a (local) maximum solution for (P). We assume that
h; is continuous at T for any i € J, and that f,g and h; are n-semidifferentiable
at . Then the system

(df)*(z,n(x,2)) >0
(dg)* (@, n(z,z)) <0
(dh))t (3, n(z, %) <0

has no solution z € X9,



Proof. Let ¥ € X be a (local) maximum solution for (P). We assume ad
absurdum that the system (3.1)-(3.3) has a solution z° € X° i.e.

(df)t(z,n(z°,2)) >0 (3.4)
(dg)*(z,n(a", %)) <0 (3.5)
(dh1)+(ian(moaj)) <0 (36)

| Consider the function
&, (3,7 (2%,2) ,\) = f (2 + 2 (% 2)) - f (2)

which vanishes at A = 0.
The right differential of ®; (Z,7 (2% Z), M)with respect to A at A = 0 is given
by
&, (izn (mO! f") 5)‘) — 2 (»’3’,7? ("EO:"E) ) 0)

Al-if(%r A h
= tim LEXME@ I @) _ vt 0020, 2)) > 0 (using (3.4)).

A0t A
Therefore there exists §; such that

P4 (.’E,n (330,.’1_2) ,)\) >0, A& (0,61)

i.e.

FE+X(2%,2) > F(Z), Ae(0,68) (3.7)
Similarly, if we consider |
(1’2 (55:7? (‘/‘EO:"E) :A) = g(i‘) — g (-’E + A?” (-T:n,i') ,A)

and
by (i,n (mo,:ﬁ) ,)\) = hy (Z) - hy (i + An (:r:o,:f) ,)\)

and using (3.5) and (3.6) we have

g{Z+x(2%,2)) <g(z), A€ (0,68) (3.8)



and
hi (B + My (2°,2)) < hy (2), A €(0,65) (3.9)

From (3.9} and the definition of I | it results
hi (8 + M (2°,2)) <0, X € (0,63).

Also, h; (£) < 0 for ¢ € J and from the continuity of h; at &, there exists §F > 0
such that

hs (2 + M (z°,)) <0, A€ (0,8}). (3.10)
Let 6* = min (6, 6,83,65(i € J)). For A € (0,6*) we have
T+ M (2% %) € S (Z,6%) C Ne (F) (3.11)

where S (Z, 6*) is open sphere of center Z and radius §*.
By the choosing of §*, from (3.7}, (3.8), (3.9) and (3.10)}, it results

f @+ (2°2)) > (&), X € (0,6%) (3.12)
g(Z+ M (2°,2)) <g(@), )€ (0,6 (3.13)
he (&+ Mg (2°,2)) <0, A € (0,6") (3.14)
hy (84 (2°,2)) <0, X € (0,6%). (3.15)

From (3.11), (3.14) and (3.15), it follows that
Z+ M (2°,2) € N5 (Z)N X, X € (0,5%)
and from (3.12) and (3.13), we have
q(%+ X (2°,2)) > ¢(Z)

which contradicts the assumption that Z is a local maximum solution for (P).
Therefore, there exist no 2 € X° such that

(df)* (&7
(dg)™ (2,7 (2,2)) < 0
(dh)* (&7 (=, Z)) < 0.

(z,Z)) >0

The proof is complete.
Now we have the following Fritz John type necessary optimality criteria.
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Theorem 3.5. Let ussuppose that h; is continuous at % fori € J,— (df )" (,7(z, 1)),
(dg)* (Z,m(z,3)) ,(dh))* (%,7(x, %)) are n-vex functions of z on X°- a n-vex set

at Z. I Z is a (local) maximum solution for Problem (P), then there exist, iy € R,

@ € R™ X € R such that (:T:, T, A, ?1) satisfies the following ccenditions:

~to(df)" (&, n(z, 7)) + X(dg)* (%.7(w, 7))+

+a(dh)t(z,n(z, ) 2 0, VreX° (3.16)
G- h(z) =0 (3.17)

C A(z) L0 - (3.18)

(@0, A, @) = 0, (T, A, @) # 0 (3.19)

Proof. Let £ € X be a (local) maximum solution for (P). Since the conditions
-of Lemma 3.4 are satisfied, we get that the system (3.1)-(3.3) has no solution & €
X0 But the assumptions of Theorem 3.3 also hold and since the system (3.1)-(3.3)
has no solution z € X? we obtain that there exist g € R, % € R{(i € I ), AER,

such that B
—tp(df)* (2, 1(z, 8)) + M(dg)* (Z,n(x, 7))+
+T7{dh) T (Z,m(z, %)) 20, Ve X° (3.20)
(a0, X, 81) 20, (g, L, @) #0 (3.21)

If we define %y = 0, hy (3.20), we get (3.16). Since h; (%) = 0 then for
4 = (@y, Ts) we have
@-h(z) =0 (3.22)
i.e. the relation (3.17).

The relation (3.18) results from # € X. The proof is complete.
Now we consider the parametric problem

Max f (z) — Ag(x), A € R () parameter)

(P,) subject to
h{z) £0
re X%
It is well known that (P,) is closely related to problem (P).
The following lemma is well known in fractional programming [186].
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Lemma 3.6. T is an optimal sclution for the Problem (P) if and only if it is
optimal solution for the Problem (P;) with A = f(Z) /g (%)

The next Theorem is a Kuhn-Tucker type necessary optimality criteria and
results from Lemma 3.6 and Theorem 3.5.

Theorem 3.7. Let us suppose that h; is continuous at % fori € J,— (df)" (2,7 (x, %)),
(dg)" (Z,m(2,%)), (dhs)* (2,7 (z,%)) are n-vex functions of x on XU- a n-vex set

at T and h satisfies GSQ at . If Z is a (local) maximum solution for Problem

(P), then there exist A € R, % € R™ such that

—(df)* (&, n(z,2)) + Ndg)* (Z,n(z, )+

+u(dh)* (2, 79(z,2)) 2 0, Yre X° (3.23)
f{@) - Ag(z) =0 (3.24)

@+ h(E) =0 (3.25)

h(z) <0 (3.26)

(A @) 20,{Aa) #0 (3.27)

4. Sufficient optimality criteria

Theorem 4.1. Let £ € X° C R", 4 € R™ and f be semilocally preincave at &
and g and h be semilocally preinvex at . We assume that at %, f,g and h are
n-semidifferentiable and (Z,1) satisfles the following conditions :

~(df)*(Z,0(z,2)) + a(dh)* (Z,n(2,£) 20, Ve e X (4.1)
(dg)*(z,n(z,2)) 20, Vo e X (4.2)
@-h(z)=0 (4.3)

h(z) <0 (4.4)

420,a#0 (4.5)

Then % is a maximum solution for the Problem (P).
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Proof. Let (%,1i) satisfy conditions (4.1)-(4.5). Relation (4.4) yields that & €
X, hence 7 is a feasible solution of the Problem (P).The function f is semilocally
preincave, Therefore, for any z € X, Theorem 2.7 , yields.

flz) = f(2) £ (df)* (2, 1(2, £))

f(@) = f () 2 -(df)*(Z,n(z, 7)) 2 —5(dh)" (Z,9(z,2)) (by (4.1))
2 —i [h(z) — h(E)] (since h is slpi at Z)
= ~a-h(a) (by (43))
2 0 (by (4.9))
Thus

fE)Z f(z) foranyze X (4.8)
Since g is semilocally preinvex, by Theorem 2.7, it results that
g9(z) —g(&) 2 (dg)*(Z,n(z,2)) Z 0 (by (4.2))
Therefore
g(@)29(@F) VzeX (4.7)
Thus, from (4.6) and (4.7}, it follows that
1) S g(8), VaeX.

Hence, Z is an optimal solution of Problem (P).

Corollary 4.2. Let € X° C R" 4y € R, 2 € R™ and f be semilocally prein-
cave at T and g and h be semilocally preinvex at Z. We assume that at Z, f, g and
h are n-semidifferentiable and (Z, 1y, 1) satisfies the following conditions :

~to{df) " (%, n(z,8)) + a(dh) " (Z,9(2,2)) 20,V e X (4.8)
(dg)*(z, ( #)20,VreX (4.9)

h(z) = (4.10)

h(:f:) <0 (4.11)

7 20,4#0 (4.12)

Ty > D (4.13)

Then Z is a maximum solutjon for the Problem (P).
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Proof. Since @y > 0 (by (4.13)), therefore (Z, %,/%o) satisfies conditions (4.1)-
{4.5) of Theorem 4.1 and hence Z is an optimal solution of Problem (P).

Remark 4.3. In the statement of the Theorem 4.1 and Corollary 4.2 it suffices
to assume only the semilocal preinvexity of hy at ¥ instead of h.

Theorem 4.4. Let T € X° Gy € R, @ € R™, f semilocally preincave , g semilo-

cally preinvex and h strictly semilocally preinvex at &. We assume that at Z, f, g

and h are n-semidifferentiable and (%, 1y, i) satisfies conditions (4.8)-(4.13).
Then % is a maximum solution for the Problem (P).

Proof. From the relations (4.10) and (4.11) we obtain %; = 0 for 4+ € J and
thus (4.8) may be written as

—tp ()" (&, 7 (x,2)) + 3; (b)Y (&, (2,2)) 20, Yz e X (4.14)
Fram (4.12) and (4.13), we obtain
(%o, @) 2 0, (T, Uy # 0 (4.15)
and from (4.14) and (4.15), we obtain that the system

Az, n(z, %)) > 0
(Eihf)"*'(:ﬁ,nn((:sjz))i 0 } (4.18)

has no solution € X. We can infer that f (z) £ f(Z) V z € X. Indeed, if there
exists 2° € X such that f (2% > f(Z), then

From the semilocally preincavity of f and strict semilocally preinvexity of Ay at
Z we have

02 by (a) — s (8) > (dhe)* (3, 7(2°, )

i.e. the system



has a solution z°, which is a contradiction to (4.16). Therefore,
f@)S @) Yoex. (47)

Similar as in the proof of Theorem 4.1 from the semilocally preinvexity of g, it
results

g{z)2g(z), Vre X (4.18)
Combining (4.17) and (4.18), we conclude that

g(@)2q(@) Ve X
Hence, Z is an optimal solution of (P). This completes the proof of the theorem.
Theorem 4.5. Let 7 € X° & € R™, f semilocally preincave , g semilocally prein-
vex and hy be semilocally quasi-preinvex at . We assume that at T, f, g and h
are n-semidifferentiable and (%, 49, 4) satisfies conditions (4.1)-(4.5). Then & is a

maximum solution for the Problem (P).

The proof follows as in Lyall et al. ([8], Theorem 4.3).

5. Duality

For Problem (P) we consider the following dual problem (D) :
min v (A) = A

(D) subject to

~ (@A) n (29) + A (dg)* (v, (z, ) +

+u(dh)" (y,1(5,y) 20, Vo e X (5.1)
fFl) -2y 0 (5.2)

u-h(y) 20 (5.3)

uzlye X ueR™AeR, A0 (5.4)

Let T’ denote the set of all feasible solutions of Problem (D).
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Theorem 5.1. (Weak Duality). If x € X and (y, \,u) € T and f is semilocally
preincave and g and h are semilocally preinvex then

q(z) S v(A).
Proof. Semilocally preincavity of f and Theorem 2.7, yield

f®) = ) @) (0 (zy)

< A (dg)" (g:m (=, y)) +u (dh)* (3,7 (z,9)) (using (5.1))
<M g (@) —g @)} +u{h{z)— h(y)}(by semilocally preinvexity of ¢ and h).
Or
f@)=2g@) s {f -2 +ufr(z)-h@m}s0
using (5.2), (5.3) and (5.4) and € X. Thus

()
g (z)

Sy

A

1788

a(z) S v(N).

The weak duality theorem take place in weaker conditions on f, g and .

Theorem 5.2. If z € X and (y,\u) € T and —f + Mg + uh is semilocally
pseudo-preinvex, then g(z) £ v ()\).

Proof. Let z € X and (y,A,u) € T .The relation (5.1) can be written under
the form

(d{=f+Ag+uh)* (y,n(z,y) Z 0.
Since — f + Ag + uh is semilocally pseudo-preinvex we have
(=f+Ag +uh) (z) Z (—f + Xg +uh) (y)

; F (@) =2 (2) £ {f (W) - 2 @)} +u{Ale) - h(y)}.

The proof follows as in Theorem 5.1.
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Corollary 5.3. Let £ € X and (%,),4) € T such that q(Z) = v(}). Also the
hypotheses of either theorem 5.1 or 5.2 are satisfied, then ¥ is optimal solution of
(P) and (Z, A, ) is optimal solution of (D).

Proof. According to Theorems 5.1 and 5.2 , for each £ € X we have

g(x) Sv(A) =¢ (&)

and hence Z is an optimal solution of problem (P). Also if (Z,A,%) € T, then
according to Theorems 5.1 and 5.2, we have

v 2 (@)= (%)
and hence (:E, A, 17,) is an optimal solution of problem (D).

Theorem 5.4. Let T be a (local) optimal solution for (P), h;,i € J be continu-
ous at & and let — (df)* (z,n (x, %)), (dg) (£, 7 (z,2)), (dR)* (Z,7 (z, Z)) be n-vex
functions of x on X°- a n-vex set at T. If h satisfies GSQ at T , then there exists
(:E, X, '&) &€ T such that g (Z) = v ()_\) . Moreover, if either —f, g, h are semilocally
preinvex or —f + Ag + uh is semilocally pseudo-preinvex for any (y, A\ u) € T,
then (E:, X, ﬁ.) is an optimal solution for (D).

Proof. Since I satisfies the conditions of Theorem 3.7 there exist AeER,GE
R™ such that (Z, A, @) is feasible for (D) and ¢ (Z) = v (). Hence, by Corollary
5.3 , it follows that (Z, A, @) is optimal for (D).,
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