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1 Introduction

The exclusion restriction is commonly invoked in estimating the causal effect
of a treatment in randomized trials with non-compliance, or when estimat-
ing the local average treatment effect by the use of instrumental variables
(Imbens and Angrist, 1994; Angrist et al., 1996; Card, 1993; Ichino and
Winter-Ebmer, 1998a, 1998b; Imbens and Rubin, 1997a, 1997b). This as-
sumption basically states that the assignment to treatment has no direct
effect on the outcome, but has only a treatment mediated effect. Recently
some authors studied the problem connected to this assumption from theo-
retical or applicative point of views, and made proposals oriented to weak
it. Imbens and Rubin (1997a) introduced a weak version of the exclusion
restriction by which the absence of direct effects of the assignment on the
outcome hold only for the compliers. This simplication was implemented in
the likelihood context they proposed for the estimation of causal effects in
trials with non compliance. Hirano et al. (2000) applied this weak version of
the exclusion restriction in testing the effect of an influenza vaccine. They
worked in a Bayesian context and used a relatively diffuse but proper prior
distribution. More recently Jo (2002) studied alternative model specifica-
tions allowing the identification of causal effects in the presence of observed
pre-treatment informations.

The current study explores the possibility to estimate causal effect im-
posing the exclusion restriction only for the compliers and with a normally
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distributed outcome. This is a simulation based study employing & maximum
likelihood approach without introducing covariates.

2 The likelihood function under the weak ex-
clusion restriction

Let’s introduce the three variables necessary for defining a randomized ex-
periments with non-compliance: the outcome Y, the binary assignment to
treatment Z, and the binary treatment received D. Under imperfect com-
pliance respect to the assignment, the population can be partitioned in four
groups characterizing for different compliance behavior:

a (always taker), if D;(2) =1, for 2 =0,1;
n (never taker), if D;(z) =0, for 2 =0, 1;
¢ (complier), if D;(z) = z, for z =0, 1

d (defier), if D;(z) =1— z, for z=0,1.

The likelihood function of a randomized experiment with imperfect com-
pliance can be written following Imbens and Rubin (1997a). Given the as-
sumption of:

Cz‘=

o SUTV.A. (Stable Unit Treatment Value Assumption) by which the
potential quantities for each unit are unrelated to the treatment status
of other units (Angrist et al., 1996);

e " Random assignment to treatment” by which the probability to be as-
signed to treatment is the same for each individual, (Angrist et al.,

1996);

o "Monotonicity” which imposed the absence of defiers, {Angrist et al.,
1996);

e normal distribution for the outcome;

e common variance of the outcome for any group Cj;

the likelihood function is:

L (BIYDbs) X H Wy * f (yiLua,an‘?) X H Wy, f (yillu'nh 0-2) X
i€(Dy=1,Z;=0) i€(Dy=0,7:=1)



X IT [wa -f (yillu’alvag) twe-f (yimd’az)] x

iE(D,‘_=1.,Z;‘=1)

X H [wn - f (’!/z'mno: 02) + W f (y¢|ﬂc0, 0.2)} ) (1)

i€ (D=0, 2;=0)

where 0 = (wa, Wy We, Hans Fra1s Hngs Hml Heos Ml » 0"2); w; is the probability
of an individual of being in the ¢ group, where t = ¢ (complier), n (never-
taker), a (always-taker); j,, is the mean of the normal outcome distribution
for individuals in the ¢-group and assigned to the z-treatment; o is the
cominon variance.

3 A simulation based study

T'he previous section presented the likelihood function of a randomized exper-
iment with imperfect compliance and a normally distributed outcome, under
the weak exclusion restriction. This model is weakly identified (Hirano et al.,
2000; Jo, 2002), in the sense of not having unique maximum likelihood esti-
mates. This section presents a simulations based analysis of this likelihood
function.

The justification of a simulation study is in the complications that a
analytical study of the likelihood function necessarily would imply. Some
simplifying assurnptions were introduced for specifying the likelihood func-
tion (1); in particular the choice of the normal distribution for the densities,
and the assumption of constant variance in any group. Despite of these
assumptions, the likelihood function we are considering is complicated by
the presence of mixtures of densities. This problem complicates an analyt-
ical study and justifies a Montecarlo study. The simulation based analysis
will be run in two step, first by creating artificial samples from populations
satisfying the assumptions of the model and for which the values of the para-
meters are known; second by analyzing maximum likelihood points detected
by a maximization algorithm working on the artificial samples.

3.1 Casel

The section presents a first simulation based analysis performed on 100 arti-
ficial samples each of size N = 10000. For all the samples the values of the
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parameters arranged in the vector @ are:

_ 2y
0 = (wa,wn,wc, Frans Halr Bpps Mol oo M1y O ) =

= (0.4, 0.25, 0.35,3, 4, 4, 5, 7, 10, 1). (2)

The probability to be assigned to the treatment is w, = 0.25.

For any sample 100 different procedures of maximization were run by
using the EM algorithm (Dempster et al., 1977: Imbens and Rubin, 1997a;
Tanner, 1996). Any procedure of maximization had different starting val-

ues of the parameters, arranged in the vector 9(0). In particular every
time: the starting value of any meen of the normal distributions in (1),
(,uf,%) ;153), ;li%), ;a,{? ,uﬁ?,)) was randomly drawn from the uniform distribution
in the range [-50, 50}; starting value of the variance was randomly drawn
from the uniform distribution in the range [0 20] starting values of the
probabilities to be in one of the groups, ( o & (0)) were calculated by:

e the proportion of treated in the group of units not assigned to the
treatment, for (%,

e the proportion of non-treated in the group of units assigned to the
treatment, for &%),

0 .

e the difference 1 — & 0,

w , for @;

Every maximization procedure was stopped when all the differences in
absolute value between the estimates of each component of & at the current
and the previous iteration were less than 10~%0. Table 3.1 reports the maxi-
mum likelihood points 8, identified by the EM algorithm for one of these 100
samples. The maximization procedures identify four maximum likelihood
points for this sample. The global maximum likelihood point is the vector ;
and is equal to 8 apart from slight differences due to the sampling variability.
Note that the estimates of the parameters y1,, and y,,, are identical in every
solutions @;, given that these estimates are calculated simply by averaging
the outcomes of the units in the two groups a0 and nl.



Tab. 3.1

él 92 93 94

D 0.4000 | 0.4000 | 0.3875 | 0.3875
o, 0.2535 | 0.3117 | 0.2515 | 0.3092
De 0.3465 | 0.2883 [ 0.3610 | 0.3033
Lo 2.9933 | 2.9933 | 2.9933 | 2.9933
f 4.0071 | 4.0086 | 9.9504 | 9.0488
fino 4.0427 | 7.0580 | 4.0279 | 7.0722
fi 1 4.9703 | 4.9703 | 4.9703 | 4.9703
oo 7.0017 | 4.1157 | 6.9896 | 4.1352
flon 09523 | 0.9540 | 4.0053 | 4.0040
&° 1.0019 | 1.0019 | 1.0024 | 1.0025
| loglik. | -24251.8 | -24300.5 | -24265.2 | -24336.3 |

The other three solutions show some differences having however an inter-
pretation in term of the imputation probabilities got by the EM algorithm
at convergence. These imputation probabilities are the probabilities of being
in one of the three groups (always-takers, never-takers, compliers) and are
calculated for every statistical unit during the ”E” step of the EM algorithm.

The main difference between the second solution @, and the previous &
is in fipg and frg that in 8, are shifted respect fo 6,. Indeed, the value of
fing 15 4.0427 in 8, and 7.0580 in 8,, and the value of fi is 7.0017 in 8, and
4.1157in ;. An analysis of the imputation probabilities took at convergence
for the units in the two groups n0 and c0 shows that: for 8; the algorithm
rightly assigned every umits to the groups; but for 8, the algorithm put in
the ¢0 group most of the units belonging to the n0 group, and vice-versa.
This is the reason of the shifting of values between fi,,4 and fi4 in 05 respect,
to 8;. The reason of the slight differences in the shifted values of o and
fieo is the imputation probabilities at convergence for 8, are never exactly
binary [0,1], so the subsequent maximum likelihood estimate at the "M” step
produces different values respect to ;.

Another consequence of the wrong assignment of units to the groups, is
the difference in the estimates of the three parameters w,, Wy, @, in 8, respect
to 8;. The maximum likelihood estimates of We, W, W, are calculated during
the ”M” step of the EM algorithm by averaging the imputation probabilities .
The different estimates of the probabilities wg, wy, w, respect to the solution
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8, is then a consequence of the shifting of units between the n0 and the c0
groups, Table 3.2 helps in clarifying this concept. It reports the population
proportions ¢, ,, of the six types of units indexed by the couple (¢;, z;), where
t;=a,n,c, and z; = 0,1, for a large sample and given the vector (2):

Table 3.2

d)ao ¢a.1 ¢n0 ¢n1 ¢’c0 ¢c1
0.30 | 0.10 | 0.1875 | 0.0625 | 0.2625 | 0.0875

Supposing a complete and correct split of the two mixtures, (n0U¢c0) and
(al Ucl), the population proportions of the three types of units in a large
sample would be:

Gy = (bog + 1) = (0.30 4 0.10) = 0.40

¢p, = (Do + @,1) = (01875 + 0.0625) = (.25

P = (Do + &s1) = (0.2625 + 0.0875) = 0.35.

These population proportions correspond to the values @,, @,, and @&, in
8y, apart from slight differences due to the sampling variability. The shifting
of units from the n0 group to the c0 group, is equivalent to produce a new
large sample having the population proportions ¢,, ,. showed in the next
table:

Table 5.3

%0 d)al ¢n0 ¢n1 @ch ¢31
0.30 | 0.10 | 0.2625 | 0.0625 | 0.1875 | 0.0875

For this new large sample the population proportions of the three types
of units are:

bo = (Bap + Ga1) = (0.30 +0.10) = 0.40

G = (dpo + Gn1) = (0.2625 4 0.0625) = 0.325

e = ($ep + ¢1) = (0.1875 + 0.0875) = 0.275

These proportions correspond to the estimates of &, &, e @, in @2, apart
from slight differences due to the sampling variability and to the reason that
imputation probabilities at convergence for 8 are never exactly binary [0,1].
_ These considerations hold also for the maximum likelihood points 65 and
8. The analysis of the imputation probabilities at convergence confirms
again the wrong assignment of most of the units to the groups. These wrong
assignments are responsible of producing different estimates of 8 respect to
91 In particular, n 5 the values of / fi,q and i are shifted respect to 91, in
8, the values of / fino 80d iy, and of fi,, and fi,, are shifted respect to 8.
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We have analyzed the maximum likelihood points identified by the EM
algorithm; the next Table reports the maximum likelihood point 8 detected
by the EM algorithm on the same sample but under the exclusion restriction:

Tab, 8.5
0
W 0.3994
D 0.2692
D 0.3313
fi, 3.2413
[, 4.3837
ftop 7.0536
iy 9.9291
& 1.0790
loglik. | -24947.1

The violation of the exclusion restriction can be tested by the usual like-
lihood ratio test. For this sample the result is:

-2 {logsup L(8) - logsup L(B)} = —2{—24947.1 4+ 24251.8} = 1390.6
e S0

with two degrees of freedom; the exclusion restrictions is then rejected.
In this way the assumption of exclusion restriction has been tested without
introducing priors or relying on additional informations from pre-treatment
covariates. The presence of multiple maximum likelihood points has not been
misleading for this purposes.

Table 3.1 reported the results produced by the maximization procedures
on one of 100 artificial samples. The analysis on the rest of the samples
confirms these results. For any of these samples the maximization procedures
identify the four points listed in table 3.1, apart from the sampling variability.
The Table 3.4 shows the relative frequency of the times each point is detected
in the overall 10000 maximizations procedures.

él 62 93 94
0.2529 | 0.2437 | 0.2478 | 0.2554




3.2 Case 2

In Case 1 the two differences () — fee1) and (jing ~ fi,e0) Were relatively
large taking into account the common variance. Case 2 shows the analysis is
more complicated when decreasing the values of one of these two differences.
The table reports maximum likelihood estimates obtainable applying the EM
algorithm on a new artificial sample. The sample size is again N = 10000;
the values of the parameters are the same respect to the previous artificial

sample apart from p, whose value is now closer to p,. So, the new vector
0 is:

0 = (wm Was Wey Haos Bals Fnos Hnt, Mooy Hel s ‘72) =

= (0.4, 0.25, 0.35,3, 4, 4, 5, 4.2, 10, 1).

Again the probability to be assigned to the treatment is w, = 0.25, and
100 procedures of maximization was run by using the EM algorithm. The
rules for drawing the starting values of the parameters and for stopping the
algorithm at convergence are the same as the previous cage. Table 3.6 reports
the maximum likelihood points 8; identified by the EM algorithm.

Table 3.6
6, 0,

Wa (0.3999 0.3876
W, (0.2498 0.2357
We 0.3501 0.3766
£a0 3.0002 3.0002
Lo 4.0095 10.018
o 4.0998 4.0998
T 4.9964 4.9964
oo 4.0998 4.0998
fret 10.0191 | 4.0087
& 1.0028 | -1.0029

loglik. | -21960.9 | -21970.7

The first solution 8; has these peculiarities: the estimates of w,, w,, and
w, are equal to the true values, apart from sampling variability; and the
value of fi, is exactly the same of fi,,. A partial answer to this observation
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1s again in the analysis of the imputation probabilities. Indeed, the values of
the imputation probabilities for any units in the mixture (n0 U c0) are the
conditional probabilities:

Plan0Ue0) =0

P(n|nb U c0) = @no/ (hng + ¢og) = 0.2625/(0.1875 + 0.2625) = 0.416

P(e[n0 U c0) = ¢e/ (dup + oo} = 0.1875/(0.1875 + 0.2625) = 0.583.

Consequently the ” M” step produces, apart from the sampling variability:

L:JG: = (%o + ¢5@1) =04

L:;n == [qbnl + (¢n0 + ¢cﬂ) ‘ P(n|n0 U CO)] = (.25

(DC = [¢'c1 + (C.bnO + ¢"CO) ' P(C|ﬂ’0 J CO)] = 035

Bnp = figg = Hnp * P(nn0U Q) + pg - Plcin0 U c0) = 4.116.

Indeed the "M” step estimates: the parameters (w,, wn, w.) by averaging
the imputation probsbilities; and the parameters (i,1, finos feo) te) BY @
weighted average of the outcomes that can be performed by a Weighted Least
Square regression of the outcome on the groups. In summary, for the solution
85 the EM algorithm is not able to disentangle the mixture (n0 U ¢0), but
considers it as a group and produces two equal values for the estimates [,
and ft.5. Table 3.6 shows also that for Case2 any of the 100 attempts does not
produces a maximum likelihood point equal to the true vector 8. The EM
algorithm has never been able to disentangle the mixture composed by the
union of the units in the n0 and ¢0 groups. Not only, bus an extra attempt
having starting values of the parameters equal to @ does not produces an
estimate equal to 6.

Check now the likelihood ratio test for the weak version of the exclusion
restriction. Table 3.8 reports the maximum likelihood point 8 detected by
the EM algorithm on the same sample but under the exclusion restriction.
The test produces:

—2 {logsup L{8) — log sup L(B)} = —2{-21960.9 4 22747.9} = 1574.0
® S0

with two degrees of freedomn; the exclusion restrictions is then rejected. As
in the Case 1 the assumption of exclusion restriction has been tested without
introducing priors or relying on additional informations from pre-treatment
covariates.

The analysis on the rest of the 100 samples confirms the results showed
in Table 3.6. For any of these samples the maximization procedures identify
the same two points, apart from the sampling variability. Table 3.7 shows



the relative frequency of the times each point is detected in the overall 10000
maximizations procedures.

Table 3.8
0
@, | 0.3992
Cn | 0.2296
@, | 03710 Table 8.7
b, | 3.2480 6, B,
i, | 4.6424 0.4954 | 0.5046
b | 38541
i, | 9.9978
5% | 1.0217
| loglik. [ -22747.9 ]

4 Conclusions

The paper shows the results of a Montecarlo study directed to investigate
the weak exclusion restriction in causal inference. The exclusion restriction
is usually invoked for identifying causal effects, in particular when using in-
strumental variables. The study has been based on a likelihood function with
normally distributed outcome. The simulations, for the proposed cases, have
shown that a likelihood based analysis produces an appropriate estimate of 8
even in presence of relative maximals and of a certain fiatness of the function
around these maximals. So the introduction of pre-treatment variables or
prior distribution does not seem a necessity for making a good inference in
the two proposed cases.

References

(1] Angrist J.D., G.W. Imbens, D.B.Rubin (1996); Identification of causal
effect using instrumental variables; J.A.8.A., Vol.91, No.434, 444-455.

[2] Bohning D. (2000); Computer-assisted analysis of mizture and applica-
tions; Chapman and Hall.

[3] Card D. (1993); Using geographic variations in college proximity to es-
temate the returns to schooling; Working paper 4483, N.B.E.R.

10



[4]

[5]

6]

[7]

[10]

[11]

[12]

Dempster A.P., N. Laird, D.B. Rubin (1977); Mazimum likelihood es-
timation from incomplete data using the EM algorithm; Journal of the
Royal Statistical Society, Ser.B, Vol.39, 1-38.

Hirano K., G.W. Imbens, D.B. Rubin, X. Zhou (1998); Estimating the
effect of an influenza vaccine in an encouragement design; Working pa-
per, Dep. of Economics, U.C.L.A.

Ichino A., R. Winter-Ebmer (1998a); The long-run cost of World War
II: an example of local average treatment effect; Centre for Economic
Policy Research, Discussion Paper No.1895.

Ichino A., R. Winter-Ebmer (1998b); Lower and upper bounds of returns
to schooling: an exercise in IV estimation with different instruments;
prepared for the invited session on the "Economics of education” at the
E.S.E.M., Berlin 2-5 September 1998.

Imbens G.W., J.D. Angrist (1994); Identification and estimation of local
average treatment effects; Econometrica, Vol.62, No.2.

Imbens G.W., D.B. Rubin (1997a); Bayesian inference for causal effects
in randomized experiments with non-compliance; The Annals of Statis-
tics, Vol.25, No.1.

Imbens G.W., D.B. Rubin (1997b); Estimating outcome distributions for
compliers in instrumental variables models; Review of economic studies,
Vol.64, 555-574.

Jo B. (2002); Estimation of intervention effects with noncompliance:
alternative model specification; Working Paper, Graduate School of Ed-
ucation and Information Studies, University of California, Los Angeles.

Tanner M.A. (1996); Tools for statistical inference; Springer.

11



