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Abstract 'We propose four different duality problems for & vector optimization
program with a set constraint, equality and inequality constraints. For
all dual problems we state weak and strong duality theorems based on
different generalized concavity assumptions. The proposed dual prob-
lems provide a unified framework genera]zzmg Wolfe a,nd Mond-Weir
results.
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1. Ir_ntroduction

Vector optimization programs are extremely useful in order to model
real life problems where several objectives conflict with one another,
and so the interest of this topics crosses many different fields such as
operation research, economic theory, location theory and management
science. During the last decades the analysis of duality in multiobjective
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theory has been e focal issue. We can find papers dealing with duality'

under smooth and non smooth assumptions for both the objective and -

constraint functions, some other papers consider particular objective
functions such as vector fractional ones (see for example the recent con-
tributions by Bathia and Pankaj (1998); Patel (2000); Zalmai. (1997)).

Moreover many different kinds of generalized convexity properties have
been investigated in order to get the usual duality results. Despite of
a very large number of papers on duality the most part of the recent

literature deals with vector optimization problems where the feasible re- . |

‘gion is defined by equality and inequality constraint or by a compact set
(for this latter case the reader can see for example the leading a.rtlcle by
Tanino and Sawaragy (1979)).

In this paper we aim to deal with a vector optlmlza,txon problem where
the feasible region is defined by equality constraint, inequality and set
constraint and we do not require any topological properties on the set
constraint. Since our duality results are related to the concepts of C-
- maximal and weakly C-maximal point we first recall these definitions
and then we propose some necessary optimality conditions which can be .
classified as a maximum principle conditions. These suggest the intro-
. duction of the first dual Dy which is a generalization of the Wolfe-dual
problem (). Then we propose three further dual programs which are
called D3, D3 and Dy. While problem D, can be classified as a general- -
ization of the Mond-Weir dual problem (see Mond and Weir (1981); Weir
et al (1986)), D2, D3 are a sort of mixed duals. In the recent literature -
(see for example Aghezzaf and Hachimi (2001); Mishra (1996)) similar -
mixed dual have been proposed, but they refer to a primal problem with
feasible region defined only by equality and inequality constraints. For
all our dual programs, duality theorems are stated and for each one,
different generalized convexity properties are assumed. For a feasible re-
gion without set constraint, there are many duality results dealing with
several kind of generalized convexity properties such as invexity, gener-
alized invexity (see for all Bector et al (1993); Bector et al (1994); Bector
(1996); Giorgi and Guerraggio (1998); Hanson and Mond (1987); Kaul -
et al (1994); Rueda et al (1995)), or (F, p)-convexity (see for exam-
ple Aghezzaf and Hachimi (2001); Bhatia and Jain (1994); Bathia and .
Pankaj (1998); Gulati and Islam (1994); Mishra (1996); Preda (1992)).
In our case the objective function f is C-concave or (Int(C’),Int(C))-
pseudoconcave while the inequality constraint function g is assumed
to be V-concave or polarly V-quasiconcave and the equality constraint
function A is affine or polarly guasiaffine.

Finally, we compare the four dual programs in order to a.nalyze them
in a unified framework and to appreciate the differences among them.
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2. Definitions and preliminary results
We consider the following multiobjective nonlinear programming P.

Definition 2.1 (Primal Problem) - _
C_-max f(z) |

p.J] C-max f(z) - g(z) €V inequality constrainis
) z € Sp T h(z) =0 equality constraints
: ' zeX _ set constraint

where _
Sp={ze€A: glzYeV, h(z) =0, z e X},

A C IR™ is an open conver set, f : A — IR* and g : A — R™ are
Géteauz differentiable functions, h: A — P is a Fréchet differentiable
Junction with o continuous Jacobian matriz Jp(z). Moreover C C R*®
and V. C IR™ are closed convex pointed cones with nonempty interior
(that is to say convez pointed solid cones), and X C A is a set verifying
no particular topological properties. In other words, X is not required
to be open or convez or with nonempty interior. Throughout the paper
we will denote with Ct and V* the positive polar cones of C and V,
respectively. '

For a better understanding of the paper, we recall some useful defini-
tions and notations.

Definition 2.2 Let f : A — IR, A C IR, let C C R® be a closed
conver pointed cones with nonempty interior and let S C IR™ be o set.
Consider the following multiobjective problem:

p. { C_max /C_min f(z)
' z€S

Using the notatz’én C° = C\ {0}, & feasible point zg € 8 is said to be:
s g C-maximal [C-minimal] point for P if: |
Ay € S such that f(y) € fzo) +C° [f(y) € flwo) ~ C”]
in this case we will say that
zo € C¥_argmax(P) |zo € C°.argmin(P)],
m 5 weak C-maximal [weak C—minima.l]- point for P if:

Zy € S such that £(y) € f(zo) +Int(C) [f(y) € f(zo) ~ Int(C)]



in this case we will say that

%o € Int(C).argmax(P) [z € Int(C)-argmin(P)].

The following necessary optimality condition of the maximum princi-
ple type holds for problem P (see Cambini (2001)) (2).

Theorem 2.1 Consider problem P and let zg € X be a local C-mazimal
point. Suppose also that X is convex with Int(X) # 0.
Then 3oy € CF, Jog € VT, Joy, € RP, (ap, g, ap) # 0, such that:

ag'g(:co) =0 and [a}PJf(:co) + dg.fg(mo) + af Jn{zo)l(z — m0) <0 Yz € CI{X).
If in addiction a constraint qualification holds then ay # 0.

Asit is well known, a constraint qualification is any condition guaran-
teeing that oy # 0 (3). The following proposition presents a constraint
qualification condition for problem P.

Proposition 2.1 Consz'der problem P and let 79 € X be a feasible local
C-mazimal point. Suppose also that X is convez with Int(X) # §.
The condition Co[Ly,] = R™?, where (*):

Loy = {(tg, tn) € BR™ = (tg,t4) = [Jy(z0), Ja(z0)](z = z0), = € CL(X)}
is a constraint qualification.

Proof.  For the first part of Theorem 2.1 3oy € C*, Ja, € V*,
. dap, € RP, (af, ay, an) # 0, such that:

_ dg‘g(scg) 0 and [a J¢(wo) + aTJ 2(@0) + af Jn(20)](z — To) <0 Vz € CI(X).
Suppose now by contra.diction that oy = 0, then (oy, o) # 0 and:’
(ot + aftn) <0 Y(tgtn) € Lag
This implies also that: '
(of'tg + af'th) < 0 V(ty, th) € ColLyg] = R™

and hence (g, o) = 0, which is a contradiction. ' 0

The maximum principle condition of Theorem 2.1 will suggest the
definition of some dual problems for P.



Duality for multiobjective problems with set constraints 5]

3. Duality

In this section we aim to prov1de different kinds of dual problems
for P and to study them in a unified framework. Starting from the
necessary optimality condition of Theorem 2.1 we are able to define four
dual problems Dy, D2, D3 and Dy. As the reader will see, D, is 3 Wolfe-
type dual problem, Dy is a Mond-Weir-type dual while D2 and Dj3 can
be classxﬁed as a sort of mixed dual problems. '

3.1 Dual problems

Definition 3.1 (1% Dual Problem) Consider problem P and let cE
Int(C). The following Dual problem can be introduced:

D C'.min Ly(z, 05, g, 0p) = f(m) + Tf [cu g(x) +a h(a:)}
1
.(:n, of, 0g, ap) € Sp,

where : : '

S, 7_ { . (m,af,ag,.ah) € (A x Ct x V' x IRP), a; #0, }
oT Js(x) + aT Jy(2) + ag‘Jh(x)] (y— ) <0 ¥y € CI(X)

Some other different duals can be proposed, with different objective

functions, different feasible regions and different generahzed concavity
properties of the functions.

Definition 3.2 (2"¢ Dual Problem) Consider problem P and let S
Int(C). The followzng Dual problem can be introduced:

Dy : { C‘._rmn Lo(z, o, a9, ) = f(z) + -&?E[o_r{h(a:)}
(%, 5,04, a1) € Sp,
- where Sp, = {(z, a5, a4, ap) € Sp, : afg(m) <0}
Definition 3.3 (8" Dual Pfoblem) Consider problem P and let c €
Int(C). The following Dual problem can be introduced:
Dy { C-min Ls(z, oz, 0, 0n) = f(z) + —r[agg(m)]
: (z, af,0g, 0n) € Spa
where Sp, = {(z, a5, 04,04) € S’D1 of h(x) = 0}

Definition 3.4 (4** Dual Problem) Consider problem P. The fol-
lowmg Dual problem can be introduced:

D, . €-min Ly(z,ap, 04, 0) = f(z)
4 (:B, O, Og, ah) € SD4
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where Sp, = {(x, o5, 04,0) € Sp, : « g(:a:) <0, afh(z) =0}

In order to prove weak and strong duality results for the introduced -
pairs of primal-dual problems some generalized convemty properties are
" needed.

Definition 3.5 Consider the primal problem P and the dual problems
D;, 7€ {1,2,3,4}. We say that functions f, g and h verify the gener- '
- alized.convexzily properties (GC;) if:

m inthecase j=1, f is C'-conca'ue in A, g is V-concave in A and
h is affine in A,

m in the case § = 2, f is C-concave in A, g is polarly V -quasiconcave
in A and h is aﬁne in A, .

n in the case j =23, f is C-concave in A, g is V-concave in A and
h is polarly quasm_ﬁ'ine in A,

m in the case j = 4, f is (Int(C), Int(C))-pseudaconcave in A g is
polarly V -quasiconcave in A and h is polarly quasiaffine in A

3.2  Weak Duality

Let us now prove weak duality‘ results for the pairs of duals'problems' '
introduced so far. With this aim, it is worth noticing that we do not
need to assume the convexity of the set X.

Theorem 3.1 Let us consider the primal problem P and the dual prob-
lems Dy, § € {1,2,8,4}. If (GC;) property holds for j € {1,2,38,4}
then: _—

f(=1) & Lj(2z, op, 09, o) + Int(C) -
Va1 € Sp and V(z2, a5, a9, ) € Sp, .

Proof. Case j = 1) Suppose by contradiction that

) € f(ma) + pclofo(az) + o hz)] + t(C)
- ‘

so that, being‘af‘ ECT, ay#0, it is
of f(z1) > of f(w2) + oy g(wa) + of, h(w2). (L)
Since f C-conecave it is:

flz1) € flz2) + Jf(icz)(wl —x2) - C,
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80 that, since oy € C,.
o f(z1) < oF f(22) + of Jy(z2) (21 = 2a); (1.2)
from the V-concavity of g it is:
g(w1) € gl(wa) + Jy(wa)(r — 3) —
80 that, since oy € V' and g(z1) e vV, |
0= afg(@1) < of glwa) + af Jy(z2)(@r — wa); 3)
finally, being h affine it is: |
h@1) = h(z2) + Jn(e2) (o1 = 22),
80 that, A(z1) = 0 implies a
= o h(a1) = af h(zs) + of Ju(z2) (21 — z2). (1.4)
~ Adding the 1eftmost and rightmost components of inequalities (1.2),
(1.3) and (1.4) we then have, for the definition of Sp, and since #; € X:
of f(z1) < of f(z2) + ol g(z2) + af h(z2) +
+ [af T5(@2) + o Jg(w2) + o Jn(@a)](w1 — 22)
< of f(22) + o g(w2) + o h(z2)

which contradicts condition (1.1).
' Case j = 4) Suppose by contradiction that f(z1) € f(z2) + Int(C);
for the (Int(C), Int(C))-pseudoconcavity of f it follows that Je(xg)(z1 —
x2) € Int(C); being oy € CT, oy 5 0, it then results:

OZfJ_f(:Bg)(.'El—mg) > 0. (1.5)

For the hypotheses we have g(z1) €V, a4 € v, o Tg(x2) < 0, so that

g(mg) <0< g(acl) if oy # O then the polar V—quasmoncawty of g
zmphes that

aTJg(mg)(m1 — 2) 2 0, ' (1.6)

while if a; = 0 then (1.6) holds trlwally For the hypotheses we have
h(z1) = 0 and of h(xg) = 0, so that afh(z1) = 0 = of h(za); if ap # 0
then the polar quasiaffinity of h 1mphes that

T Jn(z2)(m1 — 72) = 0, (L7)
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while if ap, = 0 then.(1.7) holds trivially. Adding the leftmost and -
rightmost components of inequalities (1.5), (1.6} and (1.7) we then have:
'[a}qu(mz)T + aTJg(:L'Q) + of Ju(z2)](z1 — x2) > 0

so that, since z1 € X, it is (22, 5, g, 0) € Sp, which is a contradic-
tion.

Case j = 2,3) The proofs are analogous to those of cases _1 1,4..
a

In-the same way, the following stronger version of the weak duality
theorem can be proved just changing the generalized convexlty assump-
tions of function f. : :

Theorem 3.2 Let us consider the primal problem P and the dual prob-
lems Dy, j € {1 2,3,4}. The following statements hold:

i) in the case of j € {1,2,3}, if (GCJ) property holds and f is ]'.nt(C’)-
concave then:

flz1) ¢ Lj(xz, Qf, Uy, ah) +C _
Vz1 € Sp and ¥(22, 05, 0y, o) € Sp; such that 1 # 22,
i) in the case of § = 4, if (G'Cy) property holds and f is (C,Int(C))-
pseudoconcave then:
| f(21) ¢ La(, af, g, 0n) +C
VYz1 € Sp and V($2,0!f,ag,ah) € Sp, such that x1 # x2,
#4) in the case of j = 4, if (GC4) property holds and f is (C°, Int(C))

pseudoconcave then
f(z1) ¢ L4(.’172, Oy, (g, ah) + c°
Vo1 € Sp and V(z3, 0, 0, o) € Sp, such that x4 # zs.

3.3 Stroﬁg Duality

We are now ready to prove the following results related to strong
duality. With this aim, from now on we will assume the set X to be
convex. and with nonempty interior.

Theorem 3.3 Let us consider the pmmal problem P and the dua.l pmb~
lems Dy, j € {1,2,3,4). Suppose that X is conver with nonempty inte-
rior and o constraint qualification holds for problem P. If (GC;) prop-
erty holds for § € {1,2,3,4} then Yz € C®_arg max(P) 3oy € C’+\{0},
30{9 e V*, Jop, ¢ RP such that:

(:c, af, ag, ap) € Int(C)-argmin(D;) and  f(z) = Li(z, af, oy, ap)
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Proof. . Let £ € C% argmax(P); by means of Theorem 2.1 Jas €
CT\ {0}, 3o, € V*, 3oy, € R? such that o] g(z) = 0 and

[o] 7 74(2)T + ol Jy(z) + of Ju(@)](y — z) < 0 Vy € CL{X).

Since h(z) = 0 and o g(z) = 0 it results f(z) = L;(z, oy, o, o) for
all 7 € {1,2,8,4}. Tt results also that (zx, af,ag,ah) € Sp, and hence
Az, oy, ag,orh) € Sp; for all j € {1,2,3,4} since Sp, € Sp, € Sp, and
Sp, € Sp, © Sp,. Let j € {1,2,8,4}, for the weak duality theorem
A, df, dy, dip) € Sp; such that

Li{(zx, oy, 04, a1) = f(z) € Li{#, iy, dy, dip) + Int(C)
In other words, A(%,dy, dig, ¢ip) € Sp, such that
L;j(2, ciy, cig, cin} € Ly(z, af, Qg p) — Int(C')
and hence (, otf, g, o) € Int(C)-arg min(Dy). ' ]
The following result follows d1rect1y from Theorem 3.3.

Corollary 3.1 Let us consider the primal problem P and the dual prob-

lems Dj, j € {1,2,3,4}. Suppose that X is convex with nonempty inte-

rior and a constraint qualification holds for problem P. If there exists an
indez j € {1,2,3,4} such that (GC;) property holds and Int{C)_arg mm(D,) =
d then C'U_arg max(P)

The following further duality result follows from the weak and the
strong duality theorems,

Corollary 8.2 Let us consider the primal pmblem P and the dual prob-
lems Dy, j € {1,2,3,4}. Suppose that X is conver with nonempty inte-
rior and a constraint qualification holds for problem P. If (GC;) property
holds for j € {1,2,3,4} then

Fl@1) = Lz, a5, 0, an) ¢ (Int(C) UTnt(~C))

le € C% arg max(P) and V(zy, af, ag,ap) € Int(C). arg min(Dj).
Proof. Let je {1,2,3,4}, z; € Co_é,rgniax(P) and (z9, 0f, 09, 0) €
Int(C). arg min(D;); for the weak duality theorem it is.

' f(z1) — Li(xe, a5, 0q, o) ¢ Int(C)

For the strong duality theorem day € C*\ {0}, 3ag € VT, o € R?
such that (x1, af, ag, o) € Int(C)-argmin(D;) and f(z1) = LJ (z1, oy, ag, an).
Hence, condition (z2, oy, oy, @) € Int(C)-arg min(D;) implies

Lj(z1, a5, 04, 05) € Lj(xg, af, ag, ay) — Int(C)
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30 that, for the equality f(x1) = Lj(z1,y, 0y, a3), we have

f(xl)'_ Lj(mi? af, C_‘fg?ah) ¢ Int(—_c) .
which prove the result. : : o

4. Final remarks

Comparing the introduced dual programs it can be easily seen that
problem D; (the Wolfe-type dual problem} has the most “complex” ob-
jective function while problem Dy (the Mond-Weir type) has the simplest
one. Furthermore as you move from the dual program Dj to Dj you ¢an
require weaker generalized concavity assumptions in order to prove du-
ality theorems. Finally, the feasible region of Dy is the smallest, Sp,
is the biggest and Sp, € Sp, € Sp, and Sp, € Sp, C Sp,. As the
reader has already noted, whenever you get duality results by de'ﬁning a
simpler objective function and by requiring weaker generalized concavity
properties (see Problem D,), the feasible region of the dual problem is
- bigger and viceversa a smaller feasible region (see Problem D) is “paid”
by a more complex objective function and stronger generalized concavity
assumptions. The described behavior is represented-in Figure 1.1.

BRI |
More complex |_Dl_| ID_4‘ Simpler objective

objective function . function
\ ID_"‘I / _

Larger feasible Smaller feasible

region ' ‘ +—> region .

Less constraints I l More constraints

Stronger generalized 'Weaker generalized

eoncavity _propertiesj .| [concavity properties
Figure 1.1.

Appendix - Generalized Concave Functions

The following classes of vector valued functions have been defined and
studied in Cambini (1996); Cambini (1998); Cambini (1998).
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Definition 4.1 Let f: A — IR™, where A C IR™ is an open conver set,
be a differentiable vector valued function end let C C R™ be a closed
convez cone with nonempty interior. Let also C® = C\ {0} and C* the
positive polar cone of C. Function f is said to be:

» C-concave if and only if Va,y € A, ¢ # y, it holds: |
1) = 1) = @)y - 2) € ~C,
m CP.concave if and only if Va,y € A, z v, it holds:
F@) - fla) = Je(z)(y — ) € —CY,
» Int(C)-concave if énd only ifVz,y € A, x# y, it holds:
1) = £() = Jy(@)(y — ) € ~Tnt(C),

» (Int(C), Int(C))-pseudoconcave if and only if \'/a:,y €A xH#y it
. holds: :

fy) € f(®) +Int(C) = Jiz){y—=)¢€ Int<0),

s (CY Int(C))-psendoconcave if and only if Vz,y E Az 7£ Y, it
holds:

W) ei@mre® = J4(z)(y — z) € Int(C),
n (C, Int(C))-pseu.docqncave if and only if Va,y.€ A, x # v, it holds:
FWef@+C = Jp=)y ~ z) € Int(C).

See Cambini (1998); Cambini and Komlési (1998); Cambini and Komlési
(2000) for the definition and the study of the following classes of func-
tions.

 Definition 4.2 Let f: A — IR™, where A C IR" is an open convez set,
be a differentiable vector valued funetion and let C C R™ be a closed
conves cone with nonempty interior. Let also C° = C'\ {0} and C* the
positive polar cone of C. Function f is said to be:

» polarly C-quasiconcave if and only if ¢(z) = o¥ f(z) is quasicon-
cave Vo € Ct, o # 0, that is to say if and only if Va € CT, a # 0,
Vz,y € A, x # y, it holds: '

o fly) 2o flz) = oI Jp(a)y-=) >0,
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" » polarly C.-pseudoconcwue if and only if ¢(z) = o f(x) is pseudo- ._
concave Yo € C*, a # 0, that is to say if and only ifVa € CF,
a#0,Vz,y€ A, x #y, it holds:

oTIW) > T @) = T y-2)>0,

m polarly C’“-pseudoconcave if and only if Vo € C+ a#0, Vm yEA,
oz # y, it holds: '

o f(y) > oF f(x) w"ithf()#f() = TJf(x)(y z) > 0,

m  polarly Int(C)-pseudoconcave if and only if qb(m) = aT Flz) is stmctly '
pseudoconcave Yoo € CF, a # 0, that is to say if and only if
Va e Ct, a#0, Vr, Y€ A z#y, it holds:

oTIH) 2 T f(s) = oTI(By-2)>0,

» polarly quasiaffine if and only if p(z) = a7 f(z) is both quasiconves
“and quasiconcave Yo € R™, o # 0, that is to say if and only if
Ya e R™, a #0, Vz,y € A, x # y, it holds:

oTfy)=aTf(z) = oTJia)y—m)=0.

Note that the characterization of polarly quasiaffine functions follows -
from the properties of scalar generalized concave functions and scalar
generalized affine functions studied in Cambini (1995). Let us finally
recall that (see Cambini and Komldsi (1998); Cambini and Komlési
(2000)) _

n If f is polarly C-pseudoconcave then it is also (Int(C),Int(C’ )
pseudoconcave

= If fis polarly C"}—pseudoconcave then it is also (C?, Int(C')) pseudoconca,ve :

m If fis pola.r]y Int(C)—pseudoconcave then it is also (C, Int(C))
pseudoconcave

Notes

1. For a different duality approach when the feasible region is a subset of an arbltrary
set, the reader can see for example Jahn (1994); Luc (1984); Zalmai (1997).

2. In the case f and g are Lipachitz and h are Fréchet differentiable, another necessary
optimality conditions for Problem P can be found in Jiménes and Novo (2002).
- 3. Among the wide literature on this subject many constraint qualification conditions v
have been stated with various approaches and for different kind of problems (see for example
Clark;a) (1983); Giorgi and Guerraggio (1994); Jahn (1994); Jiménez and Novo (2002), Lue
(1989)). .

4. We denote with Co(X) the convex hull of a set X.
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