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Abstract

The aim of this paper is to suggest branch-and-bound schemes,
based on a relaxation of the objective function, to solve nonconvex
quadratic programs over a compact feasible region.

The various schemes are based on different d.c. decomposition
methods applied to the quadratic objective function. ‘

To improve the tightness of the relaxations, we also suggest to solve
the relaxed problems with an algorithm based on the so called “opti-
mal Jevel solutions” parametrical approach.

Keywords Quadra.tm programming, optimal level solutions, d ¢ op-

timization.
AMS - 2000 Math. Subj. Class. 90C20, 90C26, 90C31.
JEL - 1999 Class. Syst. (61, C83. ' :

1 Introductio_n

‘In this paper we propose various solution methods for quadratic indefinite
programs and the way they can be solved by means of branch and bound
algorithms based on the partition of the feasible region and the relaxation
of the objective function.

These problems have been approached in the literature in several ways
(see for example [2, 3, 4, 6, 11, 12, 15, 16]); in particular, the proposed
algorithms are based on convex relaxations obtained by means of a trans-
* formation of the objective function in a d.c. form [1, 7, 10, 13, 14].

In particular, we study different decompositions of the objective function -

flz) = 42T Az + cFz in d.c. forms, which result to be different from the
ones proposed in [1, 7, 13, 14] and which provide relaxations more tight than

*This paper has been partially supported by M.LU.R. and C.N.R.



the ones usually given in the literature. Note that the relaxations used in
this paper are not necessarily convex. ' _

In Section 2 we first study how to decompose matrix A in the form
A=Q- E?;1U+M) did¥, where Q € R"X" is positive definite and d; € R* .
Vi; in order to decrease numerical errors and computational complexity, such
a decomposition is obtained without the use of eigenvalues and eigenvectors.
By using the previous decomposition the following d.c. form of the objective
function follows: -

Py T 1" T \2 , T |
f(m)—-za: Az 5 ; (dizy +c'x
and a relaxation is obtained linearizing the quadratic form 377+ (4 (474)2,

This allows us to suggest a branch and bound scheme based on a bipartition

of the current feasible region. Finally, it is shown that the algorithm pro-

posed in [5] allow us to solve, in the branch and bound scheme, subproblems

‘having a more tight nonconvex relaxation. ' . S
In Section 3 the particular case of the box constrained problems is stud-

ied. A branch and bound scheme based on the decomposition of matrix A

in the form A = Q — dd” — diag(w), where @ is positive definite and diag(w)

is & positive semidefinite diagonal matrix with diagonal élements given by

the components of vector w, is given by means of the linearization of the

quadratic form &7 diag(w)z. Some decomposition procedures are proposed

“and compared with respect of the tightness of the corresponding relaxations..

2 A general approach
Let us consider the following quadratic program over a compact polyhedron. -
Definition 2.1 We define the following quadratic program:

P min f(z) = sal Az + Tz
| ze X={z € R": Bz > b}

where X is a compact polyhedron, B € R™*" b & R™ ¢'€ R" and A € ®Pxn
is any symmetric matrix. From now on we will denote also with (Vs v—, 1)
the inertia of A, with v1(A) + v.(A) + (A4} = n. In other words, vi(A)
is the number of positive eigenvalues of A, v_(A) is the number of negative
ones, ¥5(A) is the algebraic multiplicity of the zero eigenvalue.

If A is positive semidefinite then f is convex and hence problem P can be
solved by means of any of the known solving algorithms for convex quadratic
programs. ' ‘ ‘

The aim of this section is to propose a branch and bound scheme to solve
problem P when A is not positive definite. '



2.1 Preliminaries
It is well known that the decomposition method of Lagrange (see for all
[9]), based on the “Law of Inertia” (), given 2 symmetric matrix A pro-
vides a decomposition of the kind A = Q — 21_1 d;df where Q is positive
semidefinite with rank(Q) = V+[A) h = v.(A) and dy,...,d, are linearly
independent.
~ Such a procedure can be slightly modified as described in procedure '
ModLagrange(A,Q,k,ds, . . .,dx), in order to obtain a decomposition of the
kind ' o :
A=Q-Y ddf

. z—l :

where @ is positive definite, k = v_(A) + w(4) = n— v (A) and dy,...,dy
are linearly independent.

Procedure ModLagrange(inputs: A; outputs: Q, k, d1, ..., di)
T:=A; Q:=0; k:=0; used:=[1,1,...,1,1] € R™;
while T# 0 do

if Tli, i =0Vie {1,...,n}

then select v € {1,...,n} such that row[T,r|# 0;

Qlr,r]:=Qir,r]+1; T[r,x]:=-1;

else select v € {1,...,n} such that T[r,7] # 0;

end if;

v:=row(T,r}; a:::T[r,r]; T =T-LvvT; Q: -Q+ vl used[r] i=0;

if a <0 then ki=k+1; di := \/;v end if;
end do;
for i from 1 ton do
if usedfi]=1 then Q[i,i]:=Qli,i]+1; k =k+1; dk =0; dgli]:=1; end 'zf ;
end do;
end proc. _ )

Remark 2.1 Note that, in procedure ModLagrange(A,Qk,d, ... dx), at
every iterative step it is A = Q+T—YF | d;dT, where Q is positive semidef-
inite and the vectors dy,...,d; are linearly independent. The procedure

1(The Law of Inertia for symmetric matrices [9]) Let A € R"*", 4 s 0, be a symmetric
matrix and let ua,...,u, € R\ {0} be 1 < » < n linearly independent; vectors such that

A= z TR

where o; € {—1,1} Vi =1,...,r. Then the number of positive and the number of negative
coefficients ¢4 are independent of the chosen set of linearly independent vectors w1,.. ., ur.



stops when T' becomes the null matrix (which happens, for the Law of Iner- -
tia, after n — vo(A) iterations of the while cycle) and the flags vector used
is scanned (making 1p(4) more vectors d;). As a consequence, the output
of the procedure is a decomposition of the kind A = Q — p did] , with
k = v_(A) + vo(A). Note finally that matrix Q is made using n linearly in- -
- dependent vectors, hence it is nonsingular. Since € is positive semidefinite
and nonsingular it results to be positive definite. - 0

Example 2.1 Applying procedure ModLagrange(A,Q,k,di, ... ydi) to

0 2]
+=13 5]
we have:

o Ti=A; Q:=0; k:=0; used:=[1,1];
o T[i,i]=0, i=1,2, hence: r:=1; Q[1,1:=1; T[L1)i=-1; v:=[-1,2]; qz=-1;

: -1 27,11 =2] too
Bl E M e St
10 1 2] [ 2 -2
@ = [oo]] % V][5 7]
® a <0 hence: used1]:=0; ki=1; d:=v2[-1,2)
* T[2,2]#0 hence: r:=2; v:=[0,4]; cz=4; used|[2]:=0;

r .~ [00]_ 1[0 0] oo
R 4{0 16| |0 o
_[2 -2],1J0o 0] [2 -2
Q.'“ [—2- 4]*1[0 16]“[-2 s]
o gince T=0 and used=0 we finally have:

.Az_Q_-dld;=[_32 EzJ“'[ 2 _4_]

g

The previous procedure can be appﬁed to matrix A of function f, so
that function f can then be rewritten as: :

1 n-14(4)

@) =320 -2 3 (@af+ s
i=1



Note finally that, by means of n—v,.(A) linear programs we can also compute
the following values: '

I : ""gg)l’(ld z, Ti: —%a}cd z, i=1...,n—vi(A) ” .(2-.1)

so that: ) .

' L<dle<u VeelX, Vi=1,...,n—1(A).

‘Remark 2.2 The problem of decomposing a symmetric matrix A € X"
as the difference of two positive semidefinite matrices have been generally
approached in the literature using the diagonal form of A (see for exam-
ple [7, 13, 1, 14]}, so that it is necessary to compute the n eigenvectors
of A (hence to resolve n homogeneous linear systems). All the decomposi-
tions proposed in this paper are computed directly by means of at most n
“pivoting-like” operations and without the need of computing eigenvalues
and eigenvectors. Clearly, this chosen approach results to be less “expen-
sive”, with respect to both time-computing and numerical errors, than the
one based on the diagonal form of A. ' _ 0

2.2 Relaxations

In the branch and bound algorithm we are going to propose, the feasible
region will be partitioned using the valued d?m, i=1,...,n—vy(A). In
particular, in the current step of the branch and bound algorithm the con-
sidered partition of the feasible region is of the kind X MY where:

{zeR™: L;Sd;:csm Vi:l,...,'n-—.v;(A)},
{zeR™: l,;SdTmﬁuin'=1,...,n'——V+(A)}§?.

Obv10usly, it is XNY = X. As a consequence function f can be relaxed over

the current partition just linearizing the concave form — 3 1"+(A) (dF =)
over Y, thus obtaining the function:

n—v4(4)

1 1
fr(z) = §$TQ""’ ) 3o @ sl +w) — bw] + e
i=1
1 -
= -2~xTQa: + &z +
with: '
1 n—v4(A) n—ry(A)
E=c—3 > dill + ug) and CQ-—§ 3o by
=1 Coi=l
In particular, it is: '
1 n—vy (A) n—-u.,.(A)
f@) - friw)=—g 3 @z-G+w)+5 3 (wu—i)?

i=1 =1



so that the maximum error done linearizing over - the current part1t10ns Y -

 the concave form — Y7+ (dl)? is:

LA a
Err(fe) = 3 (= 1;)? 0 (22

i==1

In other words, for all € X NY it results: -
0< f(z) — fr(z) < Err(fy)

Remark 2.3 It is worth comparing the proposed approach with the ones .
given in the literature [7, 13, 1, 14]. First of all, in the literature both
the objective function and the feas1ble region are usually transformed by
means of a change of variables based on the eigenvectors of A, while in-
our approach just the objective function is decomposed leaving both the
variables and the feasible region untouched. This implies that the original
structure of the feasible region is maintained and that all numerlca.l errors .
due to the computing of the eigenvectors are avoided. :

Note finally that our approach refers to a general compact feasible region
(not necessarily a box-constrained one) and that the relaxed problems are
strictly convex ones (generally more easy to be solved than convex ones).

2.3 Branch and bound

The results of the previous subsection allow us to relax Problem P over. the
current pa.mtlons Y with the following problem:

J minfy(a)
Py'{me)ﬁyﬂY

Note that Py is a strictly convex quadratic problem and can be solved w1th'
any of the algorithms known in the literature.

We are now able to suggest a branch and bound scheme based on the
proposed relaxation. The main procedure just initialize the algorithm, call
the recursive subprocedure “Explore; ()” and then provides the optmlal so-
lutlon :

Procedure Solve, (P)
determine a decompos1t10n A=Q~— En—wr(A) did?;

determine /; and w Vi=1,...,n— v (A);

UB := +o0;

Explorel (_17) ; :

z* is the optimal solutmn and UB is the minimum value;
end proc.



The core of the algonthm is in the recursive procedure “Explorel()” which
is described below. '

Procedure Explorei(Y)
Let T be the optimal solution of Py;
if (&) < UB then UB := f(%); z* := T end if;
if fr(T) <UB and Err(fy) > € then
let i € {1,...,n —vy(A)} be such that l; <dT:c<u,,
define Y1 ={x €Y : |; <dfz < df 7},
define Yo={z €Y : dT:n<dTa:<ul},
Explore; (Y1); :
Explore (Y2);
end if; :
end proc.

Procedure “Explore; (Y)” first look for the optimal solution Z of the corre-
sponding relaxed problem Py; if F allows to decrease the upper bound UB
it is choosen as the new incumbent optimal solution. Then the value of the
relaxed function fy (%) is analyzed; if it is not lower than U B, that is: '

f@)z min f(z) 2 min fy(z)=fr(@)2UB

then it is impossible to improve the incumbent optimal solution explormg
furthermore Y. In the case:

fr@) <UB< fz)

then there exists an index 4 € {1,...,n — v4+(4)} such that §; < d]F < u;
(if such an index does not exist it is fy(Z) = f(¥)), hence it is possible to
partition the set Y into two subsets Y7 and Y5 as defined before. The incum-
bent optimal solution can then be improved using the relaxed functions fy, -
and fy,, defined over the sets ¥; and Y2 respectively, since these functions
provide a better approximation of f than fy. In order to guarantee the
convergence of the algorithm, the partitioning of ¥ is stopped also when the
maximum error Err(fy) is not greater than a fixed value € > 0.

Remark 2.4 In the recursive procedure “Explore;()” we have to select an
“index i € {1,...,n — v4(A)} such that [; < d] T < u;. This can be done in
several ways; one of the possible choice is to choose the index j such that:
uj — Iy = max u; —
! ? ie{1:'"rn—'b+(A)}sli<d|TE<“i{ t z}
which allows us to decrease as much as possible the maximum error Err(fy)
done linearizing the concave form over the cutrent partition. 0



Example 2.2 Let us solve with the described approach the problem

. 2
min f{zy, 22) = o1, 2] [g 0

(.’11'1_,:1':2) g X = {(wl,:cg) eR2; -1 LT < 3,.‘ —2< 1< 3}

¢ The matrix in the quadratic form of the objective function is decom-.
posed as described in Example 2.1, so that

1 2 =2 x N
flz1,z0) = -2—[321,562] l: —2 8 ] { :B; ] — (=z1 + 2.‘1:’2)2
* we get o |
L= i - 2 = — (78 — 2
LT pagex(TTL T Em) = ST, W= max | (—2n o+ 20)) =

attained in (21, 22) = (3,~2) and (z1,z2) = (—1,3), respectively
® UB:=+00; Y = {— 7< —~ +2.’£2<7},

(By) fy(o1,20) = ml + 49:2 — 2z129 ~ 49; the optimal solutlon is (0, 0
UB = f(0,0) = 0; &* := (0,0); since £;+(0,0) = —49 < UB we get
={-7< —x1+2m2 <0} and ¥ = {0 < —z1 + 222 < 7}

(Py;) fY;_(iL‘h Tg) = -’131 -+ 43:;, — 2myme — 7:1:1 + 14zo; the optimal solution is
_"%)ﬁ UB:=f (%,—%) = _ig? =’ (%) _%); since fY1 (%7 '67')
*—-4—3(:)- <UBwe get _},1,1 = {"‘7 < —m +2:172 < —%4-} and Yl,g = {—ﬁé <

-1 + 222 < 0} :

(Priy) fyai(m1,20) = a3 +4m2—2m1$2—- :v1+70x2+ 93?, the optimal solution
is (3,-2); UB = = £(3,-2) = 125 gt = (3, 2, Frii(3,-2) = —12 >
UB :

(PY1 2) fl’1 2(931, 2g) = :Bl + 4:02 — 2x1:0 + —:c1 - Em;, the optimal solution is

(0,0) £(0,0) = 0; fi, 1 (0, 0)=0>UB

(Py;) fra (z1,29) = .'cl +- 4:1:2 — 2x132 + Tz ~— 1dmo; the optimal solution
iS( ,2),f( —) = —3; smce_fyz( 1,2) = —15 < UB we get
Y21 ={0S —21 +220 < 4} and You = {4 < —ay + 222 < T}

(Pra1) fras(z1,2) = 23 + 433 ~ 25129 + 471 — 829; the optimal solution is
(L) 5 (02) =3 fs (11 =B 505
(Pras) fran(z1,22) = 22 + 423 — 2z 29 + 112, — 2209 + 28; the opt. solution
is (—1, g—); f( 1, 2) ~5; ftaz ( ,2) —7>UB
e the opt. solution of the problem is z* := (3, —2) with (3, ~2) = —12.
O



2.4 - Further enhancements
In {5] a finite algorithm to solve problems of the kind

{ min g(z) = 327Qz — ()2 + Tz

z€X={zec® : Bz >0} (2:3)

has been proposed, using the so called “optimal level solutions” approach
[5, 8]. This algorithm can be used to improve the tightness of the relaxations
" used in the branch and bound schemes described in the previous subsections.

Let us first recall that in the previous subsections function f has been
decomposed as:

f(z) = '21"$TQ-T - %Z(dgﬂmf +cfz where k= n — v {A4)
' i=1 o :

with an error due to the initial relaxation given by:

1& -
Err(fy) =3 S @i - 1)?

i=1

In order to decrease as much as possible the error of the relaxations, let us
denote with j € {1,...,k} an index such that:

Uy — Ij = 1max {ﬁi.— i.;} ' (24)

=),k

where @; and [; are the bounds defined in (2.1). The partition of the feasible
region used in the current step of the branch and bound algorithm is now
“of the kind X NY; where: '

?j = {.’L‘G?Rn: I£Sdf$SﬁiVi=1,...,k,’i:-‘,éj}, |
Vi = {ze®: h<dla<uwVi=1,...,k i#j}CY;

Function f can then be relaxed over the current partition just linearizing
the concave form — ELM%J- (dTx)? over Y; with the function:

. 1 1 1 & :
gv,(z) = imTQm - §(d§1m)2 ~3 E [dF 2(l; + w) — Lyus} + 'z
i=l, i#j

L r | P RO S
3% Q:v—-ﬁ.(djw) ..+c T+

with:
& 1 &

Y dii+uw) and =3 ) Lw
| = ‘ 2.
E-—-l, 2?"-‘3 1'211 39‘-‘3

ol
b B

=



Note that function gy, is of the same kind of the objective function of prob-
lem (2.3). It then results:

1 & 2,1 & |
f@-gy@)=—2 3 @dfz-G+uw)?+s S (w—5)?
8§ & 8. ~ .
i=1, 544 =1, i#j ‘
s0 that the meximum error done linearizing over the current partition Y;
the concave form — &, . .(dTz)? is:

ool =

k
Erley) = 3 Y (u-k)Y=B(f) - s@ -7 @5)
i=1, i _

In other words, for all z € X NY; it is:

0< f(2) - gv;(z) < Brr(gy,) < Err(fy,)

hence gy, is more tight than Jy;
Problem P can then be relaxed over the current partition Y; with the
problem: '
, ] min gy, (z)
Gy, : { reXNY;

which can be solved by means of the algorithm proposed in [5]. Note that
- this relaxation is more tight than Fy, but, from a computational point of
view, Gy, (which is not a positive definite quadratic program) is more time-
expensive to be solved than Py, (which is a strictly convex program). Obvi-.
ously, if v (A} = n—1, that is to say that A has one nonpositive eigenvalue,
the problem can be solved directly by the algorithm proposed in [5], without
the need of any branch and bound step.

The branch and bound scheme based on the relaxation Gy, is analogous
to the one described in the previous section. The main procedure becomes:

Procedure Solvey(P)
determine a decomposition A = Q — 37" +4) did};
determine I; and %; Vi =1,...,n—v(A);
determine j as in (2.4); UB := +oo0;
Explores (¥ ;); :
x* is the optimal solution and I/ B is the minimum value;
end proc.

while the recursive procedure “Explores()” is:

Procedure Explore;(Y;)
Let T be the optimal solution of Gy;;
if f(ZT) <UB then UB := f(%); * := % end if;
if gv,(T) <UB and Err(gy,) > ¢ then

10



leti€ {1,...,n—vy(A), i # j} besuch that l; < d] F < us;
define Vil = {z €Y;: I <dfz <dlz}
define Y2 = {x € ¥j: d7% <dfz < ui}
Explores(Y;1);
Explores(Y;2);
end if;
end proc.

3 Box constrained case

Let us consider now the following particular case of problem P:

P min f(z) = 2chAa:+c:c
a- mEXBm{mem”l<:1:¢<u,,z-1 ,n}

that is the case where P is a box constrained problem.

Obviously, problem Pg can be solved as described in the previous section;
recall that these approaches require that n — v (A) linear programs must
be solved in the initialization of the branch and bound.

In this section we aim to show that different decompositions of matrix
A allow us to avoid the computing of the solutions of such linear programs.

3.1 Relaxatibns and branch and bound

Our approach is based on the decomposmon of ma,trlx A in the following
form (?):

A=Q~dd" - disg(w) (3.1)
where @ € R**" is symmetric and positive definite, d,w € R, w > 0 and’
diag(w) is the positive semidefinite diagonal matrix with diagonal elements
given by the components of vector w. Note that the vector d can be equal
to the zero vector. :

Such a decomposition allows us to rewrite function f as follows:

n
flz)= TQm - % (dT ) - %%:zlw,,mf +cz

The feasible region can now be partitioned using the variables z;, i = '
1,...,n, such that w; > 0. In particular, in the current step of the branch

and bound algorithm the considered partition of the feasible region is of the
kind Xp N'W where:

W = {E,;Sm,-<ﬁ,;Visuchtha.tw,;>0}QXB,

W = {I,;SmiguiVisuchthatwi>0}§W.

ZNote that in [10, 13] a decomposition of this kind (with d = 0 and diag(w) = kI,
-k > 0 large enough) was studied. Another decompaosition of this kind with d'= 0, based
on diagonal dominance, has been proposed in [13].

11



As a consequence, problem Pg ca.n be rela.xed over the current partition = l

just linearizing the concave form —5 23_1 wixg over W, thus obtamlng the'-

problem:
Pew : { min fy(z)

reEXgnNW
-where: _ _
| 1 13
Jwl(z) = :‘linQm—E( ) —§Zw,[m,,(l + i) — L] + Tz
: . =1
= 3z Qm—ﬁ(d :z:) +cTss+C_o
with:

Ty = 5 Zw-ilmi and €= (g;) where g; = ¢; — ‘Q“wz‘(lz' +u) Vi=1,...,n
i=1 _ - .

Note that;:

e in the case d = 0 problem Py is a strictly convex quadratic prob-
lem and problem Pg can be solved with a branch and bound scheme '
analogous to the one described in Subsection 2.3, ‘

e in the case d # 0 problem Pgyy is of the kind (2.3) and can be solved :
by means of the algorithm proposed in [5], so that problem Py can
be approached with a branch and bound scheme analogous to the one
described in Subsection 2.4.

Since:

f(m) fW’(-‘"c = =g Zwl(zml - (la. + uz))z z wi(ui - le)
z'=1

z-*-]

the maximum error done linearizing the concave form —3 Zz 1 wiT? over
the current partition W is: ‘

Erv;(fw) = %gwi(ui __.li')2 (3.2)
reached at pointé :E. € Xgn W such that:
& = %(li +u;) Vie {1,...,'n;} such that w; > 0;
in particular, for all z € X5 N W it results:

0 f#) - fw(a) < Brr(fw).

12



It is now clear that in order to decrease the maximum error Err(fi) in the
various branch and bound steps we have to use deqompositions of the kind
(3.1) with a vector w having many zero components and positive ones with
a small value. _

The branch and bound scheme which solves problem Pg is analogous to
the ones described in the previous sections, The main procedure is: '

Procedure Solvez(Pg)

determine a decomposition A = Q — ddT — diag(w);

UB = +oq;

Explores (W);

z* is the optimal solution and UB is the minimum value;
end proc. '

The core of the algorithm is in the following recursive procedure “Explores()”:

Procedure Explorez(W)
Let % be the optimal solution of Paw (3);
if (&) < UB then UB := f(T); * :=T end if;
if fw(T) <UB and Err(fw) > € then
let i € {1,...,n} be such that w; > 0 and §; <% < us;
define Wi = {z € W: l; < & < Ti};
define Wy = {z € W: % < z; < wi};
Explores(W1);
Explores(Wa); -
end if;
end proc.

Remark 3.1 In the recursive procedure “Explorez()” we have to select an
index i € {l,...,n} such that w; > 0 and I; < T; < u;. In order to
decrease as much as possible the maximum error Err(fi) done llneanzmg
the concave form we can choose the index j such that:

wilans — 12 = ' (1 — 1:)2
wi(uj ~ ) 16{1,.;.,n}fuliaga,zi<ﬁi<u,;{w“(u“ i)}

3.2 Decomposition procedures

Let us now provide some procedﬁres which decompose matrix A in the form:

A=Q—ddT ~ disg{w)

51f d = 0 the optimal solution ¥ of Ppw is determined by means of any of the known
algorithm for positive definite quadratic problems; in the case d # 0 it is determmed by
means of the algorithm proposed in [5]

13



as described in the previous subsection. Note that, in order to obtain relax-
ations as tight as possible, the proposed procedures are aimed to determine .
a vector w with as few positive components as possible.

The first procedure, that is Minor{A,Q,w), provides a decomposition of
the kind (3.1) with d = 0 and is based on the well known characterization of
positive definite matrices based on the positiveness of all their NW minors.
.'In this procedure the following notations are used:

® O is the k x &k NW submatrix of Q,

® Qi is the &k x .k; NW submatr_ik 6f () without its +-th row and column.

Procedure Minor(inputs: A; outputs: Q, w)
Qi=A; w=0; '
if Q[L,1]< 0 then w(1]:=1—-Q[1,1]; Q[1,1]:=1 end if;
for k from 2 ton do
if det(Qy) <0
then if Q[kk|< 0 then hi=k; den:=det(Q_);
else found:=false; '
forifrom1ltok-1do
if not(found) and w{i]> 0 and det(Qr\;) > 0
then hi=i; deni=det(Qy\;); found:=true;

end if; '
end do; :
if not(found) then h:=k; den:=det(Qx_1) end if;
end if; _
vali=1 - EJf%a%—'d; wih]:=wlh]+val; Q[h,h):=Q[h,h]+val;
end if: :
end do;
end proc. ' 0

Note that, in order to obtain a vector w with as few positive compo-
nents as possible, if the k-th NW minor of Q is nonpositive the procedure
Minor(A,Q,w) first try to make it positive by increasing an already positive
component of w, while a new positive component of w is created just if this
is not possible.

The limit of this approach is that the diagonal elements are analyzed
in a fixed order, that is from the first to the last one. Better results may
‘be obtained with algorithms which consider the diagonal elements not in
a fixed order, such as the procedure Decompi(A,Q,w) which provides a de-
composition of the kind (3.1) with d = 0 and which is based on pivoting
operations similar to the ones used in the Lagrange’s method. Note that in
this procedure we denote with row[T,r| the r-th row of matrix 7'
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Procedure Decompl(inputs: A; outputs: Q, w)
T:=A; Q:=0; w:=0; used:= [1,1,...,1,1] € R"; -
while T# 0 do
if T[i,i] <0Vie{l,...,n}
then select v € {1,.. ,n} such that row[T,r]# 0;
wir]:=1-Tfrx]; T[r r]i= :
else select r € {1,...,n} such that T|r, r] >0and T — Tiw
' as much posﬂnve diagonal elements as possible, where v=row[T,r];
end if;
v:=row[T, r] o:=T[r,r}; T:=T-1w7T; Q= Q+]—-Tvv. ; used[r]:=0;
~ end do; _
- wi=w+tused; Q: —Q+dlag(used)
end proc. : 0

vuT has

Note that in order to obtain a vector w with as few positive components
a8 possible, the procedure Decompi(A,Q,w) first uses the positive diagonal
elements of the temporary matrix T, then it analyzes the nonpositive ones.

In the next example the procedures Minor(A,Q,w) and Decomp1(A,Q,w)
are applied o a given matrix A, showing that Decomp1(A,Q,w) may provide
a decomposition with a matrix diag(w) having smaller rank.

Exarhple 3.1 Let us apply procedures Minor(A,Q,w) and Decompi(A,Q,w)
to the following matrix:

12 3
TA=(2 10
3 01
We obtain the following decompositions:
" [123] [i2 8] [oo o]
minor: 2 10|=(25 0|-~]104 O
3 0 1] | 3 0 46 | | 0 0 45
1231 [14 23] [13 0 0]
decompl: 21 0= 210]|-| 000
|3 0 1] “301_ | 0 0 0|
hence, in this cage, Decompi(A,Q,w) provides a vector w with a numbér of

_positive components smaller than Minor(A,Q,w).

A vector w with a smaller number of positive components can be ob-
tained with the procedure Decomp2(A,Q,d,w) which represent an improve-

" ment of the procedure Decompl(A,Q,w), note that this procedure provides

a vector d which may be different from zero.
Finally, it is worth studying how many positive components the vector
w in {3.1) may have. :
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Procedure Decomp2(inputs: A; outputs: Q, d, w)
Ti=A; Qi=0; w:=0; used:= [1,1,...,1,1) € ®*; d:=0; found:=false;
while T# 0 do .
of T, <0Vie{l,...,n}
then if found
- then select r € {1,...,n} such that row[T,r]= 0; -
w(r]:=1-T[r,1]; T[r,1]:=1;
else select r € {1,...,n} such that v=row[T,r]# 0 and
T- éfuvT has as much positive diagonal elements
as possible, where « is given by:
Tlr,r] i T[r,7] <0
—1 #T[rr]=0 "
if Tlryr} =0 then Q[r,1):=Q[r,f]+1; Tlr,x):=-1 end if;
end if; -
else select r € {1,...,n} such that Tlr,r] > 0 and T — ﬂiwva has
as much positive diagonal elements as possible, where v=row{T,r};
end if; :
vi=row([T,r]; as=T|r,r]; T:=T—éva_; Q:=Q+'|%|-VVT; used|r]:=0;

o =

if <0 then di= _?2v; found:=true; end if;
end do;
wi=w-used; Qi=Q+diag(used); _
end proc. : _ O

Theorem 3.1 Let A € R™" be a symmetric matriz and denote with n (A)
the number of positive diagonal elements of A and with Ay the submatriz
of A obtained deleting the rows and the columns of A corresponding to its
nonpositive diagonal elements. Consider also the following decompositions:

A = Q- diag(un)
A = Qp—ddT — diag(ws), d 0

where Q1 and Qy are positive definite, d € R", d # 0, and wy, w; € K",
wy, wy20. Then:

i) rank(diag(w1)) > n — 4 (44) 2 n— min{n.(4), 4 (4)},
%) rank(diag(wz)) 2 v—(A4) + v9(A4) — 1 = n — »,. (4) — 1.
Proof. i) Matrix A, by means of a permutations of its rows and columns,

can be rewritten as;
: AL A
HAHT o + 12
[ A Ag |
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Since Q = A + diag(w) is a positive definite matrix we have that

T _ | A+ + diag(wi) - Ap

en o Ay Ags + diag(wan)
is positive definite too. As a consequence A .. + diag(wi1) is positive definite
. 8o that, for the “Law of Inertia”, wi; has at least ny (A) ~ vy.(A4) positive
components; it results also that the diagonal elements of Agy +diag(wss) are
all positive and hence, being the diagonal elements of A9 all nonpositive, all
the n—n..(A) components of weg are positive. The obtained conditions imply
that vector w has at least n— v, (A ) positive components. The whole result
then follows noticing that both-n. (A) > v+ (A4) and v4.(A4) > vi(Ay).

~ 4) Follows directly from the “Law of Inertia”. . 0

The next property follows directly from procedures Decompl(A Q,w) and
" Decomp2(A,Q,d W) and from the “Law of Inertia”

Property 3.1 Let A€ R**" be a symmetric .matm‘m. which is not positive
definite (hence vy.(A) Sn—1) and let A= Q — dd” ~ diag(w) be a decom-
© position obtained with procedure ”decomp2” Then:

i) d#0, .
z'i) if v_(A) <1 then rank(diag(w)) =n—vi{4) -1

Let finally A = Q1 — diag{wq) be a decomposatzon obtained wzth procedure
"decompl”; then:

i) rank(diag(w)) < rank(diag(w:)) — 1.

Example 3.2 Let us apply procedures “minor”, “decompl” and “decomp2”
to the following matrix: ‘

-2 =2 -2
A= -2 0 1
-2 1 0

We obtain the following decompositions:

minor: -2 =2 =2 1 =2 -_-2‘ 30 0
decompl: -2 0 1|l=|l=-2 8 1|-]035 0
-2 1 0] -2 1 14 0 0 14
-2 -2 -2 2 2 2 27 000
decomp2: l-—2 0 1:|=|:245]—[2][2,2,2]——[000]'
: -2 1 0 12 5 8 2 0 0 4

hence, the use of vector d 5 0 in the decompos1t10n allow us to decrease the
rank of diag{w) from 3 to 1. '
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3.3 S':olution schemes

In the previous subsection we have already pointed out that the maximum
error done using the relaxed function fiy over the current partition W is:

Err( fﬁ;)‘ =% 3 iﬂi_(ui - )
- i=1

As a consequence, in order to decrease the maximum error in the various
branch.and bound steps we have to use decompositions of the kind

A=Q—dd” — diag(w)

 with a vector w having many ze10 components and positive ones with a
- small value. In this light several schemes, corresponding to different ways
©of decomposing_matrix A, can be suggested to solve problem Pg: '

(1) A is decomposed with procedure Minor(A,Q,w) and d = 0.

(2) A is decomposed with procedure Decomp1(A,Q,w) and d = 0. It
has been shown in Example 3.1 that this decomposition may provide
. smaller errors than the ones given by (1). ‘

(3) A is decomposed with procedure Decompl(A,Q,w), a positive compo-
nent of w, say w;, is chosed, the vector d = Vi€ # 0 is defined *H
and the j-th component of w is then set to zero, that is w; :=0. For

- example, in order to decrease as much as possible the error we can
choose the index j € {1,...,n} such that: '

sl =~ )P = max {w(i ~ 1)) (3.3)

This is clearly an improvement over the scheme suggested in (2).

{(4) A is decomposed with procedure De_conip2(A,Q,d,w). It has been
shown in Example 3.2 that this decomposition may provide smaller
errors than the ones given by (1), (2) and (3).

(5) Given a predefined vector d s£ 0, A+ddT is decomposed with procedure
Decomp1(A+dd”,Q,w). This scheme could be useful when the vector d
is chosed a priori, for example in order to avoid initialization problems
in the solving algorithm. '

Remark 3.2 In [10, 13] decompositions of the kind Q = A — diag(w) (that
is of the kind (3.1) with d = 0) are suggested with diag(w) = kI, or with
- diag(w) computed using diagonal dominance properties; these decomposi-
 tions provide a vector w having many (or all) positive components with large -

‘We denote with e; the j-th column of the n X n identity matrix.
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values As a consequence, the obtained relaxatlons are affected by a large
error Err(fw).

The procedures Minor(A, Q w), Decomp1(A,Q,w) and Decompl(A Q,d,w)
described in the previous subsection try to reduce as much as possible the
maximum error Err(fw) by determining a vector w with many zero com-
ponents and positive ones with a small value. In this way, we may obtain
convex relaxations more tight than the ones given in [10, 13]. n

| Examﬁle 8.3 Let us solve the problem described in Example 2.2 with the
approach (1). With procedure Minor{A,Q,w) we get: '

(p_) fw(ml':m?) (% z? + %x% + 23;15::2)—;1:1——:1:2—- the opt1ma.1 solution
is (0,5 UB = f( s x* 1= (0, é) since fy(0, 2) = 137 <UB

=0
5%}de2_{2<m2<3}

(Pwy) o (z1,22) = (1 3 +-2— %+ 29313:2) — z1 + By — 4; the optlma.l s0-
lution is (3 —2—8 ; = f(3,— ) = .11_10_7, z* = (3,— )’ since
le (3 20 = % < UB we get W11 = { —2 < 9 S _g_.g ,

Wip={-2 <2<}
(Pwy1) ‘fwl,i(a:l,'pg) = (—ml + m2 + 2:r1m2) —zy+ & -’172 + 38 4 s the optimal so-
lution is (3, ~2); UB = f(3,~2) = —12; 2" := (3, =2); fwy1(3,~2) =
=122 UB o '

- (Puns) Fwna(@1,22) = (303 + 38 + 22122) —21+ o~ §; the opt. solution
is (3,— 1) F3.—T0) = ~ % fm (8- ) = -5 > UB;

(Pws) fw(m1,22) = (3o +§ad + 20122) = 1 = iz + §; the optimal so-
. 4 43 43, 43 24
lution is ( —0) ( 1, 20) ~1p) /W2 ( 1, 20) 1161? >UB

e the opt. solution of the problem is z* := (3, —2) with f(3,-2) = —
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