Universita degli Studi di Pisa
Dipartimento di Statistica e Matematica
Applicata al’Economia

Report n.235

Duality in Fractional Optimization
Problems with set_constraints

R.Cambini and L.Carosi and S.Schaible

Pisa, Novembre 2002

- Stampato in Proprio —

Via Cosimo Ridolfi, 10 - 56124 PISA - Tel. Segr. Amm. 050 945231 Segr. Stud. 050 945317 Fax 050 945375
Cod. Fisc. 80003670504 - P. IVA 00286820501 - Web http://statmat.ec.unipi.it/ - E-mail: dipstat@ec.unipi.it



DUALITY IN FRACTIONAL
OPTIMIZATION PROBLEMS
WITH SET CONSTRAINTS

Riccardo Cambini, Laura Carosi*
Dept. of Statistics and Applied Mathematics
University of Pisa, ITALY '

Siegfried Schaible
- A. Gary Anderson Graduate School of Management
. Undversity of California, U.S.A.

Abstract The dual program of a minimization problem with a set constraint is
defined. Under suitable generalized convexity assumptions, weak, strong
and strict converse duality theorems are stated. By means of a suitable
transformation the obtained results can be applied to a class of fractional
program where the objective function is the ratio between a convex
function and an affine one. In this case, it is proved that the objective
function of the dual problem is linear:.

Keywords: ‘Duality, Fractional Programming, Set Constrajﬁts.

Mathematics Sﬁbject Classification (2000} 90C286, 90C32, 90C46
Journal of Economic Literature Classification (1999} C81

*'This research has been partially supported by M.LLU.R. end C.N.R.

email: cambric@ec.unipi.it, lcarosi@ec. unipi.it, siegfried.schaible@uer.edu

This peper has been discussed jointly by the authors. In particular, Section 1 has been
developed by 8. Schaible, Section 2 by Riccardo Cambini and Section 3 by Laura Carosi.



2

1. Introduction

Tn the recent years there has been an extensive interest in duality,
many different pairs of dual problems have been introduced for both
scalar and vector optimization, and many sclution algorithms based on
duality properties have been proposed.

On the other hand, at the best of our knowledge, the most of the
existing results deal with problems whose feasible region is compact or
defined by equalities and inequalities. Duality results for problems with
set constraints and inequality constraints can be found in Giorgi and
Guerraggio (1994).

In this paper, we aim to study duality results for minimization prob-
lems with a set constraint defined by a convex set X which does not need
to be closed or open. A necessary optimality condition of the minimum-
principle type holds for this class of problems (see for all Mangasarian
(1969)) and this allows us to suggest a Wolfe-type dual problem and to
prove Weak, Strong and Strict converse duality results.

Furthermore we consider fractional problems, having a set constraint,
where the numerator is a convex function and the denominator is an
affine one. Even in this particular case, there are a variety of approaches
" to find a corresponding dual problem when the primal one has no set
constraints (see for example Barros et al (1996); Bector (1973); Bector
et al (1977); Craven (1981); Jagannathan (1973); Liang et al (2001); Liu
(1996); Mahajan and Vartak (1977); Schaible (1976a); Schaible (1976b);
Scott and Jefferson (1996)). '

By performing a proper transformation, we can apply our duality
results to the fractional problem. In this case, we prove that the objective
function of the dual problem is linear and hence our results can be seen as
& generalization of the known ones related to fractional problems where
the feasible region is not defined by any set constraints (see Mahajan
and Vartak (1977); Schaible (1974); Schaible (1976a); Schaible (1976b)).

2. Duality results

Definition 2.1 (Primal Problem) The following problem is assumed
to be the Primal Problem:

min f(x)
P min f(x) - g(x) € =V inequality constraints
’ z € Sp - hiz) =0 equality constraints

reX set constraint
where

= Sp={zcA: gr) €V, h{z)=0, z € X},
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m ACIR" is an open conves set,

f:A—-R, g:A—-R"and h: A — IRP are dzﬂ'erentzable .
functions,

V C IR™ is a closed convex pointed cone with nonempty interior
{that is to say a convex pointed solid cone),

w X C A is a convez set with nonempty interior which is not reqm'néd _
to be open or closed.

The following necessary optimality condition, known as minimum
principle condition (see for all Mangasarian (1969)), holds for problem
P. Recall that V* denotes the positive polar cone of V while R, denotes
the nonnegative numbers. '

Theorem 2.1 Consider problem P and suppose T € Sp.
IfZ € argminges, f(x) then oy, og, on) € (R4 XVTXIRP), (ayp, 0y, 0n) #
0, such that:

a;g(Z) =0 and [afVf(E)T + o] Jo(Z) + a{Jh(f)](m ~ ) 2 0 ¥z € Cl(X)

If in addiction, o constraint qua,lzﬁca,tzon holds then El(ag, ap) € (V* x
'IR?) such that:

oy 9(Z) =0 and (V@) + ol Jy(Z) + of Jn(®))(z — ':.:—") > 0 Vz € CI(X)
Remark 2.1 It can be easily proved that Co[W] = R™*?, where {*):
W = {(tg,th) € R™¥: (ty,tn) = [Jo(20), Jn(zo)}(= — 20), = € CUX)},

is a constraint qualification condition for Problem P (see Cambini and
Carosi (2002)) A complete study of constraint qualification conditions for
scalar problems with set constraints can be seen for example in Giorgi
and Guerraggio {1994).

The above optimality condition suggests us the introduction of the
following Wolfe-type dual problem.

Definition 2.2 (Dual Problem) The following p'roblem 18 gssumed to
be the Dual Problem of P:

D, mex L{z,aq,0p)  _ v max Lz, %;a'h) o
‘1 (wog0n)eSp = oLz, ag, on)(y — 3) = 0 Vy € CI(X)
Y z€A a,eVY, apeRP

where



n L{z, 04, 0n) = f(2) + ol 9(x) + of h(z),
m VoL(z,ag.01) = V@) + of J(z) + of Jn(z),
and.
Sp = {(z, g, 00) € (Ax VT xRP): V L{z, 04, )y — ) >0, y € CUX)}.

Remark 2.2 Note that if X is open the dual problem D coincides with
the one proposed in Mahajan and Vartak (1977). Moreover if X = R™
then D can be rewritten as

max 'L(a:,ag,a},)
Vel(z,04,03) =0
z€A ageVt o €eRP

that is the well known Wolfe dual problem (see for emdmple Mangasarian
(1969)). |

The pseudoconvexity of function L, with respect to the variable z, al-
lows us to prove the following duality results. As the reader can expect,
- the Weak Duality result is obtained just assuming the pseudoconvexity
of L at a given point z9. On the other hand, the Strong Duality theorem
requires a constraint qualification condition, and the pseudoconvexity of
L, with respect to z, on the whole set A. Finally, under the strict pseu-
doconvexity assumption on the dual objective function L we are going
to prove the Strict Converse Duality theorem. Note that, using the same
assumptions, Mahajan and Vartak (1977) prove the duality results for a
problem P whose feasible region is defined by only equality and inequal-
ity constraints. On the other hand, under pseudoinvexity properties,
Giorgi and Guerraggio (1994) state duality theorems for problems with
only a set constraint and inequality ones.

Theorem 2.2 (Weak Duality) Let us consider problems P and D
and let 1 € Sp, (®2,09,an) € Sp. If for each fized oy € V* and
op, € RP the function L is pseudoconver in the variable x, at the point
To, then

f(®1) 2 L{x2, ag, on)
Proof. Since (z2, ag, op) € Sp and Sp C CI(X),
VoL(z2, ag, an)(z1 — 72) 2 0
and from the pseudoconvexity of L it is

Fl@1) + o g(m) + af h(zm) > f(z2) + ol g(z2) + alh(za)  (L.1)
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Since dg eV, dgg(aﬁl) <0 and beiﬁg h(z1) =0 it follows

F(z1) = f(z1) + o g(z1) + of h(z3) = f(z2) + o g(xa) +a & h(z2)
Remark 2.3 Observe that in the case f is conver at x2, g z‘s.V-con.vex
at x5 (2) and h is affine, the dual objective function L is pseudoconver

at xa, for each fized ay € V* and ap € RP, and hence the assumptions
of the weak duality theorem are verified.

Theorem 2.3 (Strong Duahty) Let us consider pmblems P and D.
If for each fized oy € VT and oy, € IRP the function L is pseudoconves
in the variable T, on the set A, and a constraint gualification holds then
VT € arg minges, f(z) 3a, € V"', Ja, € IRP such that (T, Ty, @) € Sp
and ' : oo

f(-f) = L(E’ ayaah) max L("l” aQ‘: Cﬂh)
(zyog.04)ESDH

so that (T, 0y, 0p) € argmaX(y o, on)esSp L(m‘, Qg, QR ).

* Proof. Since T € argmingesy f(z), for Theorem 2.1 3@, € V*+, Ja, €
1R? such that
(:r) =0 and [Vf@E)T + aTJg(a:) +aj, Jh(m Nz —7) > 0 Yz € CI(X)
and this implies that (%,@,, @) € Sp. Being T € Sp it -is A(F) = 0 s0
that for the weak duality theorem: '
L(%, a4, ) = f(Z) + TLg(7) + TLME) = o
= .f(E) 2 L(m%ag!ah) V(ﬂlg,ag,ah) & SD
and hence the result is proved. - O

Theorem 2.3 allows us to prove the following results.

‘Corollary 2.1 Let us consider problems P and D; assume that for each
fized g € V™ and o € IRP the function L is pseudoconvez in the
variable z, on the set A, cmd a constraint qualification holds IfSp=0
then argmingeg, f(z) =

Coro‘llary 2.2 Let us consider problems P and D. If for each fired ag €
V* and oy, € RP the function L is pseudoconvez in the variable x, on the
set A, and a constraint qualification holds then VT € argmmmegp fix)
and V(:;c Qg, 8y) € AIEMAX(y o,,0p)eSp L(T, Og, Otn) 1t ds:

f(@) = L(&, 8, )
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Proof.  Let (Z,8,,0p) € argmax, o, o), L(Z, ag, o) and etz €
arg minge sy, f(z); for the Strong Duality

Az, @y, 0n) € axrg. max  L(x, og, op)
("E,ag,ah)ESD

so that £(%) = L(T, &, @) = L(&, &;, &n). N =

Theorem 2.4 (Strict Converse Duality) Let us consider problems
P and D with (%,84,0n) € 8rgmax(z o, o )esy L(Z, g, o) and T e
arg minges, f(x). Assume that for each fized ay € V* and o € RP the
function L(x, 04, 0p) 8 pseudoconvez in the variable z, on the set A,
and strictly pseudoconves at T. If a constraint qualification holds then
T = ¥ and trivielly € argmingeg, f(z).

Proof Bemg TE Sp and (Z,d,, &) € Sp it is A(T) = 0, ¢g(T) € ~V,
&g € V*, so that & T9(Z) < 0 and for the prewous corollary

L(&, &y, @) = f(T) = f(Z) + 42 g(T) + &} h(Z) = L(Z, Gy, &)

Suppose now by contradiction that T s £; because of the strict pseudo-
convexity of L at £ with respect to the variable z, condition L(Z, &, &) >
L(Z, &g, &) implies

VoL(Z, 4, ath(za —3) = V@) + 8T J,(@) + &L I@E - 5) < 0
(1 2)

Since 7 € X, (1.2) implies that (Z, &,, &) ¢ Sp whichis a contradiction.
O .

3. The fractional case

In this section we consider a fractional problem where the objective
function f is the ratio between a convex function and an affine one and
the feasible region is defined as in Problem P, that is

min f(xz) =
Pr: g(z) € =V ineguality constraints (1.3)
(z)=0 equality constraints
zeX set constraint

where

"= n:A— R and g: A— R™ are differentiable functions,
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s AC ]R"' is an open convex set,

» V CIR™ is a closed convex pointed cone with nonempty interior,
® d(@)=dTz+do withd € R", dp € R and Tz +do >0V € 4,

a A(z) = Bz + by with B € RP*™, by € IR?, | -

® 7 is convex in A and g is V-convex in .A

s X C A is a convex set W1th nonempty mterlor which is not required
to be open or closed

Smce we consider an arbitrary convex set X we can not apply the
Wolfe-like duality results that can be found in the wide Literature con-
cerning duality in fractional programming., On the other hand, even.
though the objective function f is pseudoconvex (see Mangasarian (1970)),
the dual objective function L is not necessarily psendoconvex. Hence we
are not able to direct apply the duality results stated in the previous sec-
tion. Along the lines proposed in Schaible (1976a) and Schaible (1976b)
we can transform problem Pp in the following equivalent one

A min 7Ay,t) =t-n(¥)
gty =t-g(})e-V
h('y,t)=t-h(%)=0
diy,t)=t-d(¥)-1=0
—t<0

\ (y,8) € lix

where ITx = {(y,t) € R* x R : ¥ € X, ¢ > 0} and the functions 7,4,
and & are defined over the set IIq = {(y,t) e R* xR : ¥ € 4, £ > 0}.

Thanks to the performed transformation, the new problem P verifies
the follomng convemty properties.

I

Lemma 3.1 Let us consider problem P. The following statements hold:
11lx and 114 are convex ;sets with nonemply interior;
27 isV-convez inIl4; |
3 7 is. convex in Ila;
4 h and d are affine in T4,

'Proof. 1. Consider (y1,t1) € lx and (y2,2) € ILx: we want to prove
that

(yi;tl) + (o, t2) — (1, t1)) € Hk Vi € [0,1],
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that is to say

Y1+ #ly2 ~ 1)
t1+ p(te — t1)

By means of simple calculations we have that £; + pu{tg —£;) > 0 and

€ X and t1+p(te ~t1) > 0, Vu e [0,1]

n+ulle—y) 0 (v n
=gl n
i+ u(ta—t) & a2 t

“where

_ 1

tap

] . 4 . Yy 4= 1 -
Since X is convex and 8 trivially belongs to [0,1], —éﬁ}é—_%l € X
and the result is proved. The convexity of II4 follows with the same
axg‘uments
Consider (yl,tl) € Ila and (ya,t2) € I14; we want to show that

(Y2, t2) — Gy, 41) — J5(y1,t1) { y2 - y1 ] ev.

Jg(yl,tl)[z::f:]=-fg( )(yz—y1)+g( )(tz—ti)-—Js( )yl(tﬂ“t;)
' =J, (——) (y2 -y — Etg +y1).+9 (;‘1*) {t2 — t1)
@) e oo

Since 3 > 0, %f, % € X and g is V-convex in 4, it holds

w0 (2) 00 (2) -0n (2) (2-B)ev  an

Therefore, from (1.4) we obtain

o (1) (B ) 228 ] a(2) 10 (2)

and so substituting (1.6) in (1.5) we get
2 oo (8 = pg i [ 2w (2 ol
) -on () -0 1 on(2)-en(3) e
that is

F(y2,t2) — 3 (y1,t1) — Ky, t1) [ 3:;11 ] eV
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and then we are done.
3. It is a particular case of 2.
4. It trivially holds that

H(y,t)zt-(dT(%)+do) —1=dTy+dot — 1.

The affinity of 7 is obtained with the same argument. [

From Remark 2.3 and Lemma, 3.1, the duality results proved in the

previous section can now be applied to P. With this aim let us introduce
the following notations: '

' Lp(z, ag, an, X) = n{z) + og g(z) + af h(z) + Ad(z)
Vo Lp(z, ag, ap, )T = Vn(z)T + ang(:n) + o}l B+ AdT

To simplify the notations we will use also the following shortcuts:
| Lr(z) = Lp(z,04,04,A) and V,Lp(z) = VoLr(z, ag, on, )
The dual probiem of P results:

. i max tZ(y,t) — 6 — A
tVyZ(y, ) (11 — y) + [Z(y, 1) — 6 +1ViZ(y, 8)] (01 — ) 2 0 V(y1, t1) € Iy
(wt) €lly, g€ VT, o e R?, A€R, 620
| (L7)
where Z(y,t) = Lp(¥,aq,ap, ). Since problems P and Pr are equiv-
alent, we can consider a problem equivalent to (1.7) as the dual of Pp.
‘We now present the following technical lemma.
Lemma 3.2 The following conditions are equivalent:
i) VoLp(2) (21— ) + [Lr(z) — 0] (1 ~ ﬁ') >0 Yz € X, Vi1 > 0,
i) 0 <[5 — Lp(z)] £ VoLp() (21 — 7) V21 € X.

Proof. i)=>ii) Since 4) holds V¥¢; > 0 it results:

0= ﬂ1~1-i*r-rl~loo ViLp(z) (21 - z) + [Lr(z) — d] (1 - %)
= VeLp(z) (21 - z) + [Lp(z) — ).

Suppose now by contradiction that [Lp(z) — 6} > 0, then ¢ > 0 implies

t1lj-l;{]1+ vaF(:l:) (3:‘1 — m) -+ [LF(.?:) - 5] (1 - %) = —00
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which contradicts i).
#)=>1) Since £ > 0 and #; > 0 it is (1 — %) <1, so that ) implies

16~ Lp(2)] (1 -~ -f;) < [6— Le(@)] < VaLe(z) (21— 2) Yoy € X

and the result is proved. O
We are now able to suggest the following dual problem of Pr.

Theorem 3.1 The dual of problem P is:

max ~A = —min A
Lp(z)=>0
Vaelp(z) (z1—2) >0V € X
z€A ogeVt apeRP, AeR

Dp: (1.8)

Proof. Since
1 y
V2, = $VaLe (¥, a0, a1, )
1 Yy
v.‘,Z(?;‘, t) = —'tEVzLF ('i_‘: Qg Xhy )\) v

and using the notations = ¥ and z; = 4}, the dual problem (1.7) can
be rewritten as: | ‘ '
max tLp(z)—1td— A
VeLp(z)(z1 — ) + [Lr(z) - 8] (1 - %) >0Vz € X, V>0
T€EA t>0, 00 €V*T apeR?, AcR, 620
(1.9)

From Lemma 3.2 problém (1.9) is equivalent to the following one:
max ~t[6 — Lp(z)] — A
- VeLp(z)(z1—7) 2 [5 - LF(.’L‘)] V1 € X

[6— Lr(z)] 20 -
zE€A ageVt apeBRP, t>0, AeR, §>0

(1.10)

Observe that for any optimal solution of problem (1.10) it is [§ — Lp(z)] = -
0. Suppose otherwise; then there exists an optimal solution (Z, &g, g, At 0)

such that [S—Lp(fi')] > 0. Since £ > 0, for any 0 < € < £ the vector
(i,&g,&h,g\,f ~ €,8) is feasible for problem (1.10} and is better than

(&, &g, &, A, L, 3), which is a contradiction. Therefore, the result follows
from (1.10) being [§ — Lp(z)] =0 and § > 0. O
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In the case X = IR™ (that is Pr has no set constraints), problem Dp
coincides with the one already studied in the literature (see Jagannathan
(1973); Schaible (19762); Schaible (1976b)). '

Corollary 3.1 In the cdse X =A=1R" it results:

max —A = -min A
Lp(z) >0
VeLp(z) =0 |
zeR", g, eVt apeR?, A eR

Dp:

Proof. Follows from Theorem 3.1 noticing that, being X = A =
R", condition VyLp(z)(z; ~«) > 0 holds Vz; € IR® if and only if

Notes

1. We denote with Co(X) the convex hull of a set X. _
2. Let A C IR™ be convex and V' C R™ 'a convex cone; a functmn grA-— lR'" s saad to
be V.convex at a3 € A if
g(z1) — glaz) — Jg(ze) (z1 —z2) € v Yz € A.

Function g is said to be V-convex in A if it is V-convex at zo for every za € A. . -
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