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Chapter 1

ON THE MIX EFFICIENT POINTS

Anna Marchi*
Dept, of Statistics and Applied Mathematics
University of Pisa, Haly

Abstract In this paper the concepts of mix semi-efficient point and mix quasi-
convey set are introduced. By means of thess conceptz we will inves-
tigate the connectedness of the mix semi-efficient frontier for vector
maximization problems, defined by quasi-concave, strictly and strong
quasi-concave functions. We prove that the mix semi-efficient frontier
of a mix quasi concave problem is a closed and connected set.
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1. Introduction

Many authors have studied the connectedness and closure of the ef-
ficient and weakly efficient frontier for a vector maximization problem.
These topological properties are very important, from an algorithmic
point of view, in continuously generating the efficient frontier of a vector
problem. In Marchi (1992) the knowledge of the efficient frontier of a
vector problem allows us to solve suitable scalar problems. Warburton
(1983) proved that if the vector function F' of the problem is strongly
quasi-concave then the (Paretian) efficient frontier is closed and con-
nected, while if F' ig quasi-concave, then the weakly efficient frontier is
closed and connected. After this paper, several authors tried to relax
the concavity assumption. Hu et al. (1993} proved that if F' is a strietly
quasi-concave function and the efficient frontier is a closed set, then this
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frontier is connected. Sun (1996) proved that if F' is a strictly quasi-
concave function and at least one function is strongly quasi-concave,
then the efficient frontier is connected. Finally, Benoist (1998) proved
that if F' is a strictly quasi-concave function then the efficient frontier is
a connected set. However, if we relax the assumptions on the function
F, to obtain the connectedness of the efficient frontier, we lose the prop-
erty of closure of the set. In this paper, we consider a mix quasi-concave
function in which there are quasi-concave, strictly quasi-concave and
strongly quasi-concave functions because, in the applications, we can
have different types of functions. In section 2, we relax the assump-
tions on the Paretian cone, by introducing the definitions of mix and
mix semi-efficient point. In section 3, we study the properties of mix
quasi-concave sets because, obviously, the image of & problem defined
by & mix quasi-concave function is a mix quasi-concave set. Finally, we
prove the closure and connectedness of mix semi-efficient frontier.

In this paper, we consider a convex cone K in R7 such that intK # 0,
(—K) N K = {0}. The sets ciK, intK denote the closure, interior of K,
respectively. For any ¥,z € R™, I = {1,2,..,m} we have that:

y>z means y — 2 € R™, y;>%; forany i € I,

y >z means y -~z € R™\ {0}, y: >z forany i € I,y # 2,

y > z means y — z € intllR™, y; > 2, for any 1 € 1,

ySzmeans y—z € R™\ H, y; > 2 forany i # j € I, y; = 2; for the
only component §, where H = Up<s—1Fh, § > 3, F}, is the h-dimengional
face of IRY..

2. Mix-problem

Consider the vector maximization problem with respect to the order-
ing cone K:
Pi:K-maxF(z), € X

where F = (f1, f2,---fm) : X — IR™ is a vector continuous function,
X ¢ IR™ is a convex compact set and K is a convex cone such that
intK + @ and (—K N K) = {}.

Definition 2.1 2° € X is an efficient point for problem Py with

respect to the ordering generated by K <= there does not ezist ez € X
such that F(z) € F(z®) + K\ {0} .

We recall that when K = IRT or K = intIRT we have the usual
definition of the Paretian efficiency and weak efficiercy, respectively. Let
us consider the sets of all efficient and weakly efficient points of F(X)
with respect to the ordering generated by K dencted by E(F(X),K)
and W E{F(X), K) respectively, i.e.
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E(F(X),K) ={y € F(X) | =~y ¢ K\0,V z € F(X)}
WE(F(X),K) = {y € F(X) | 2 —y ¢ intK, ¥ z € F(X)}

where F(X) C IR™ is the outcome of F. Set F(z) = (Fo(z), Fs(x), Fr(z))

where Fo(2)=(f1(%), ., fo(2)), Fs(2)=(fgr1(2)--, fars(2)), Pr(z)=( Jatst1(E); -, farsre(x))
for any € X and m = g+ s-+1{. In this paper we congider a vector

mix quasi-concave function:

Definition 2.2 If Fo(z) is 6 quesi-concave, Fs(x) is a strictly quasi-
concave and Fir(x) is o strongly quasi-concave function then F(z) is s0id
to be @ mix quasi-concave function on X.

where Fy, Fg, Fir have the well-known definitions:

n I Fg{har + (1 — Nao= min[Fo(z1), Fo(w)] for any z1,22 € X,
X € (0,1) then Fg is said to be quasi-concave on X,

w Ifforany f;,i € I satisfies fi(Az1+(1—MN)w2) > minfi(z1), fi(x2)]
for any 1,22 € X, fi(#1) # fi(za), A € (0,1) then Fg is said to
be strictly quasi-concave on X,

w If Fr(Az; + (1~ N)z2) > min{Fr(z:), Fr(zz)] for any 21,22 € X,
A € (0,1) then Fr is said to be strongly quasi-concave on X.

Set I = {1525"'sm}a Q= {11“19'}3 § = {Qfl-l,---,Q'"FS}, T =
{gts+1,.,m}, f@) = max{fi(x) | & € X}, §* = {F(z) | fila) =
fi(®)} for any ¢ € I, we have:

Lemma 2.1 If F is o miz quasi-concave function then, for any i € I,
S* is a connected set, in particular, for anyi € T, S* has a unique
element.

Proof. Directly, taking into account the continuity and definition of a
mix quasi-concave function. O

Set K = intR: x R3\H x Y, where H = Upco1Fh, 5§ 2 3, Fp is
the h-dimensional face of R, we introduce the following definitions:

Definition 2.3 2° € X is ¢ mix efficient point for problem Py <=
there does not exist ax € X such that F(z) € F(a®)+{intIR2 x R}\ {0} x R% }.

Definition 2.4 x° € X is ¢ mix semi-efficient point for problem
Py <= there does not exist a * € X such that F(z) € F(2°) +
{intRY x RENH x R%}.

We will study the properties of closure and connectedness of the mix
serni-efficient frontier of F'(X).
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3. Mix quasi-concave sets

Let Y < R™ be a non-empty closed set. The following definition is
introduced in Benoist (1998):

Definition 3.1 Y 45 said to be sequentially strictly quasi-concave
(SQV ) if, for any y',y? €Y there exists a sequence{yL} —yl,yt ey
such that, for any L € R, yF >min{y} 92} if y! # 47, vF2 9l =4 of
w =i

Set i = max{y; |y Y}, M ={yeY |y =R} i €1

Obviously (see Benoist (1998)} we have that if F is a quasi-concave
function, then its outcome F'(X) is a sequentially quasi-concave set.

We will extend the definition given by Benoist for the class of strictly
quasi-concave sets to the class of mix quasi-concave sets.

Let z = (zg, 25, 27) be an element of IR™, such that zg € RY, z5 &
R?, 21 € R, we define:

Definition 3.2 Y is said to be sequentially mix quasi-concave (MQV)
if, for any 9,9 € Y, there exists o sequence{yL } — g,y eV such
thot for any L € R,

vo = min{je.¥e} (1.1)
yF > min{f 4} for any i € {dlg: # %}, yF 2B =i, i€ S
yi > min{jr,gr}.

Obviously, we have that if F is a mix quasi-concave function, then its
outcome F(X) is a mix quasi-concave set.

Lemma 3.1 M® is a connected set for any i € I.
Proof. For lemma 2.1, #(X) has the property that M* is a connected
get for any ¢ € /1. 0

3.1 Mix semi-efficient elements

Let ¥ C IR™ be a non-empty closed set. Let us consider the sets of
all eflicient and weakly efficient elements of ¥ denoted by E(Y,IRT’) and
WE(Y,IRT) respectively, i.e.

E(V\RY)={yeY| Az>y,VzeY)
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WE(Y,RT)={yeY | Az>y, VzeY}
If we define:
Definition 3.3 Foranyy',y® € R™, y' = 3y meansy' —y? € {intR. x RE\H x R. },
that is yh > yd, y§5>v3 , Yr2ud -
Definition 3.4 For anyy',y? € R™, y* = y° means y* —y? € {intR] x R\ {0} x R% },
that is yb > Y3 , Y5 2 Y3 , Yr2yr -
we have that:

Definition 3.5 ¢° € Y is ¢ mix semi-efficient element for Y<=
there does not exist o y € Y such that y = 3°.

Definition 3.6 1° € Y is a mix efficient element for Y= there
does not exist a y € Y such that y>x°.

The sets of all mix efficient and mix semi-efficient elements of Y de-
noted by:

MSE(YYRT)={yeY | Azry,V2zeY}
ME(Y,RY) ={yeY | Azzy, VzeY}

respectively. It is easy to prove that among these sets the following
relationships hold:

E(Y,R7) C ME(Y,RP) C MSE(Y,R'") C WE(Y,R").

We will prove that if FI(X) is & mix quasi-concave set then MSE(F(X), RT)
is a closed and connected set, while the connectedness of the mix efficient
frontier is yet an open problem.

Lemma 3.2 MSE(M*,RT) is connected for anyi € QUT.

Proof.  For eny i € T, M* has a unique element which is a mix semi-
efficient element. For any ¢ € @, M SE(M* RT) is a connected set
because MSE(M*,IRT') =M"* and M* is a connected set for Lemma 3.1.
[

Lemma 3.3 IfY isa MQV and§,§ € MSE(Y,RT), %; =9; j € QUS
implies the existence of ¢ natural number N and a sequence {yk} —
such that y* € MSE(Y,RT) y¥ = §; =§;, k € R.
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Proof.  Directly, from definitions of MQV set and mix semi-efficient
element. : O

Theorem. 3.1 IfY is a mix quasi-concave set then MSE(Y,RT) is
closed.

Proof. Let us suppose that § € Y, ¥ ¢ MSE(Y,R]) and there exists a
sequence {y*} — § such that ¥ € MSE(Y,RT) forany k = N, N +1...
If 3 is not mix semi-efficient element for Y there exists a § € ¥ such
that § = 7. Since Y is a MQV set then there exists a z € Y such that
conditions (1.1) hold. Hence, there exists a Iy C z — infIRT such that
I; " MSE(Y,IR} = (. This is absurd since there exisi a sequence of
mix semi-efficient elements converging to §. |

Theorem 3.2 IfY isa MQV set thenjj € MSE(Y,RT), ¢ M7 jeI
implies: i) the existence of a natural number N and a sequence{y"} —
ij such that y* € MSE(YRT) of > §; je T, y5f > §; Vi € QUS,
ke®, i) ifj € QUS then there exists y° € MSE(Y,RRY), 3 = ;
and a sequence{y"} — 4% such that * € MSE(Y,R7) y¥ > .

Proof. i) Since § ¢ M7 there exists a § € M7, § € MSE(Y,RT),
such that §; > g;. If Y is a MQV set then there exists a sequence
{yL} —s §f, y* € Y such that conditions (1.1) hold. For any L € R, set

YL =y n{y" + Ry}, Since ¥* is a compact set then E(Y'%,IRT) # 0
and there exists a y* € MSE(Y, RT) such that y*>y". Since {yL} — 4,

{yk} — § with y¥ > §; Vi € QU S, ¥% > i; V4 € T, ii) From i) of this
theorem, Leinma 3.3 and Theorem 3.1. |

Theorem 3.3 Let Y be a MQV set. IfQUT # @ then MSE(Y,RT?)
i3 a connected set.

Proof. Let us suppose that MSE(Y,IRT) is disconnected. Since,
for Theorem 3.1, MSE(Y,IRT) is a closed set, then there exist two
closed sets E1, E? of MSE(Y,R) such that MSE(Y,RT) = E'U E?,
EXME? = (. Let §#} = max{y;] y € E'} and §? = max{y;| y € E?} with
' #£§* €Y, i€ QUT. Since Vi € QUT MSE(M*,IRT) is a connected
set, then §} # 92. Suppose 9} > ¢, then, for Theorem 3.2, there exists
a sequence {4~} — 9% such that y* € MSE(Y,R7) with y* > 37 if
ieT, so yX e E'. This is absurd because E! is a closed set. If i € Q,
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then there exists ¢° € B2 with y = §7 and a sequence {y’“} — 3 such

that y* € MSE(Y,RT) y¥ > o, so y* € E'. This is absurd because
E! is a closed set. W]

The following example, by 7, shows E(F(X),IR}) may be discon-
nected when one component of F is merely quasi-concave, while MSE(F(X), RTY)
is a eonnected set.

Example 3.1 Let X = [0,2]. Define F(z) = (f1(z), f2(@), .. frm ()

with £i(x) =x for any 1 € {1,2,.,m—1}, fu(x)=2-x f 0 <

2 <1, 141 <2< 2 We can easily verify that E(F(X),RT}) =

[F(z) | z € [0,1) U {2}} is disconnected while MSE(F(X),RT) ={F(z) [z € [0,2]}
is o connected set. In this case, MSE(F(X),RT) = ME(F(X),RT)

because there are no strictly quasi-concave functions.

4. Conclusions

In this paper, we have given the definitions of mix efficient and mix
semi-efficient points for a vector maximization problem. By means of
these concepts, we have proved the properties of closure and connnect-
edness of the mix semi-efficient frontier for a mix quasi-concave problem.
The connnectedness of the mix efficient frontier remains an open prob-
lem.
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