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Abstract

We propose a pair of vector dual programs where the primal has a
feasible region defined by a set constraint, equality and inequality con-
straints, while the dual can be classified as a “mixed type” one. The
duality results are proved under suitable generalized concavity prop-
erties. Different dual problems can be obtained as the parameters in
the “mixed type” dual program take different values. In this frame-
work, different generalized concavity properties can be used in order
to get the duslity results. In particular, we deepen on the role of the
generalized g-concavity and, in the case the feasible region has no set
constraints, we state duality results assuming the generalized (F, p)-
concavity. '
Keywords Vector Optimization, Duality, Maximum Pr1nc1ple Con-
ditions, Generalized Convexity, Set Constraints.
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| 1 Introduction

Duality for vector optimization problems has been one of the main issue
throughout different fields such as operation research, economic theory, lo-
cation theory, management science, theory of computational algorithms.
Among the very large literature, different aspects of duality theory have
been investigated; we can find contributions on duality for both smooth and
non smooth functions, particular objective functions such as bicriteria func-
tions, vector fractional functions, generalized fractional functions have been
analyzed and various different approaches have been proposed.

*This paper has been partially suppofted by M.I.U.R. and C.N.R. :
This paper has been discussed jointly by the authors. In particular, Sections 2 and 3 have

" been developed. by Riccardo Cambini, while Sections 1, 4 and 5 by Laura Carosi.



At least at the best of our knowledge, despite of a very large number
of papers on duality, the most part of the recent literature deals with vec-
tor optimization problems with a feasible region defined by equality and
inequality constraint or by a compact set (for this latter case the reader can
see for example the leading article by Tanino and Sawaragy [29]).

In this paper we aim to deal with a vector optimization problem where
the feasible region is defined by equality constraints, inequality and a set
constraint; the set constraint is not required, a priori, to be open, closed or

. convex. Besides that, we assumie that the image space of the primal objective... - .

function is ordered by an arbitrary convex, closed and pointed cone C, which
is not necessarily the Paretian cone. Since our duality results are related
to the concepts of C-maximal and weakly C-maximal point we first recall
this definition and then some necessary optimality conditions which can be
classified as a maximum principle conditions. Starting from these results we
introduce a “general” dual problem that can be classified as a mixed type
one; specifying the value of the parameters in the dual problem, we analyze
different kinds of duality, such as Wolfe-type and Mond-Weir-type. Quite
recently, mixed type duality has been introduced by Xu [32] for a primal
problem where the feasible region is defined only by inequality constraint,
while Aghezzaf and Hachimi [3] and Mishra [24] suggest mixed type dual
problems for a primal feasible region defined by equality and inequality
constraints (1}. In our mixed type dual program both constraint functions
(equality and inequality) and set constraint are considered.

For a feasible region without set constraint, there are many duality
results dealing with several kind of generalized concavity properties such
as invexity, generalized invexity (see for all [2, 6, 7, 16, 19, 22, 28]}, p-
concavity ([14, 20, 30]), F-concavity (see for example [18]) and, more re-
cently, (F, p}—concavity.

We first state weak and strong duality under the generalized p-concavity;
scalar p-concavity and p-quasiconcavity have been introduced by Vial {30]
for nonsmooth functions while p-pseudoconcavity are due to Jeyakumar [20].
In this paper we refer to differentiable scalar generalized p-concavity (see
for example [15]). Furthermore, as far as we know, the existing vector
generalized p-concavity properties refer to the Paretian cone (some authors
simply deal with the componentwise p-concavity) and hence we propose
the definitions of vector p-quasiconcavity and p-pseudoconcavity which are
strictly related to the ordering cone . The suggested vector generalized
(C*,®)-concavity can be seen as a generalization of the so called vector
generalized C*-concavity studied by Cambini {8, 11].

In the case the primal feasible region is defined simply by equality and
inequality constraints, we state duality results even under the generalized

FThe concept of mixed type duality has been also extended to the class of multiobjective
variational problem in [26].



(F, p)—concavity properties. Starting from the leading article by Preda [27]
many studies has been developed on the relationship between duality and
generalized {F, p)—concavity (see for example {3, 4, 5, 24, 26, 27, 32]); as
in the p-concavity case, unlike the existing definitions, our vector general-
ized (F, p)—concavity properties are related to an arbitrary ordering cone C
which is not necessarily the Paretian cone.

In the last section of the paper we provide some simple generalized
concavity properties implying the required generalized p-concavity {or the
(F, p)—concavity). We focus our attention on the different kind of the dual
problems that can be obtained according with the different values of the
parameters in the “mixed” dual problem. In particular we prove that as far
we move from the Mond-Weir type dual problem towards the Wolfe type.
one, as weaker are the required generalized concavity assumptions.

2 Definitions and preliminary results

It is worth pointing out the concepts of efficiency which are used in the
paper. Let f: A - R, A CR", let C < RN° be a closed convex pointed
cones with nonempty interior and let S C A be a set. Let us use also the
notation C¥ = C'\ {0} and let C* C C be a cone such that C* = C or
Int(C) € C* C C°. Define the following multiobjective problem:

[ C"_max /C* _min f{x)
MP'{ &S

A point zp € 5 is said to be o C*-maximal [C*-minimal] point for Mp if
Ay €5, y # @, such that f(y) € f(xo) +C* [fy) € f(zo) — C"]
in this case we say that
xzg € C*_argmax(P) [zg € C”_ arg min(P)].

Note that in the case C* = CU the previous definition is nothing but the
known concept of efficiency, while when C* = Int(C) it is the concept of
weak efficiency.

In this paper duality results for the following multiobjective nonlinear
problem P will be studied.

Definition 2.1 (Primal Problem)

C_max flx)
P { C_ max f{x) _ g(z) eV ineguality constraints
' x € Sp - hiz) =0 equality constraints
zeX set comstraint



where
Sp={zcA: gla)eV, h(x)=0, ze X},

A C R is an open convex set, f: A -— R and g : A — R™ are Gateaux dif-

ferentiable functions, i : A — RP is a Fréchet differentiable function. More-

over O C 1 and V ¢ R™ are closed convex pointed cones with nonempty

interior (that is to say convex pointed solid cones), and X C A is a set which
is not requlreci to be open or convex or with nonempty 1nter10r

Throughout the' paper wa Wﬂl denote W1th C’+ and V+ the posxtzve polar
" cones of C and V, respectively. '

The following necessary optimality condition of the maximum principle
type holds for problem P (see [12] which generalizes the results in [21]).

Theorem 2.1 Consider problem P and assume X to be convexr. If the
feasible point xo € X is o local efficient point then:

Cx) Flas, ap,an) € (CT x VT xR, (af, aq,an) # 0, such that:
iy fty
agg(xg) =0 and [G?Jf(ﬁg) + agjg(a:g) + ol Jn(zo)) € ~T(X,z0)*
Moreover, the following further results hold:

i) if p =0 or Jp(zo)[T(X, z0)] = RP then condition (Cx) is verified with
(af: Gfg) 7{; O’

it} if the constraint qualification

Jon(@0)[T(X, 50)] = R where  J,p(z0) = [ ﬁzgig% }

holds, then condition (Cx) is verified with ay # 0,
iii) let p =0 or Jp(xo)[T(X, z0)] = RP, if the consﬁmént qualification
{de R Jy(xo)d € Int(V)} N Ker(Jy () NT(X, z0) # 0
holds, then condition (Cx) is verified with oy # 0.
Remark 2.1 In particular, note that condition (Cy) implies that:
o J(ayp,ag,an) € (CF x VT x V), (af, oy, an) # 0, such that:

alg(zo) =0 and [of J5(wo) + af Jy(wo) + af Jn(zo))(y — 20) <0 Wy € X

3 Duality

Starting from the necessary optimality condition of Theorem 2.1 we define
a “general” dual problem for P and we state the related duality results.
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3.1 Dual problem

Definition 3.1 Consider problem P, a 0 — 1 parameter § (i.e. § € {0,1}),
and ¢ € Int(C). Given the set ofindices P = {1,...,p}, let 7 = {J1, J2, J3, Ja}
be a partition of P, and accordingly with the partition 7, define h(x) =
(h1(z), ha(z), ha(x), ha(x)] and ap, = (ahl,ahz,aha,am) The following Dual
problem of P can be introduced :
5. { C_min £(z,a5,0,0) = £(a) + ;607 9(a) + of, hn(z)
(.’E, Qf, g, ah) € SD

H

where .
('.?:,th, d:g,ah) e (Ax CHxV*tx §Rp), ay #0, |
[a}‘Jf(m) +aTJ,(z) + a{Jh(x)] (y—z) <0Vy€X,
(1 - &alg(z) + aef ho(z) <0
ahshg(sc) 0, ah4h4(a:) <0
For the sake of convenience, the following scalar function is also defined:

Alz, ag,ap) = (1 — 5)a§g(w) + afh(ac) — aflhl (x)

Sp =

Remark 3.1 Note that several different dual problems can be obtained
depending on the value of the parameter § and on the chaoice of the partition
J = {1, J2,J3, Js}. In particular:

e when §=0and J3 = {1,...,p} (hence J; = J = Jy = [}) we general-
ize the Mond-Weir dual to minimum principle problems,

e for 6=1and J; = {1,...,p} (hence Jo = J3 = J, = @) we provide a.
generalization of the Wolfe dual to minimum principle problems and
to vector valued objective functions

In the other cases we have a sort of mixed type dual problem (?). It can
be easily seen that when é = 1 and J1 = {1,...,p} the dual problem has the
most “complex” objective function while with § = 0 and J; = @, it has the
simplest one. Moreover, in the case § = 1 and J; == {1,...,p} the feasible
- reglon of the dual problem is the blggest one, while in the case § = 0 and

=1, J3={1,...,p}, the feasible region is the smellest one.

As the reader will see, whenever you get duality results by defining a
simpler objective function (see the case § =0and J; =0, J5 = {1,...,p}),
the feasible region of the dual problem is smaller and viceversa a bigger
feasible region (see § = 1 and J1 = {1,...,p}) is “paid” by a more complex
objective function. .

*In the case C and V are the Paretian cone and a primal feasible region is defined
by inequality constraint, mixed type dual problems have been firstly introduced by Xu in
[32]. In the case of a primal feasible region with both equality and inequality consiraint,
. similar kind of mixed type of dual problems have been proposed in [2, 3, 24].
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Since duality theorems are stated under suitable generalized concavity
properties of functions £(x, af, ag, on) and Az, ag, ap), we will use the con-
cepts of p-quasiconcavity and p-pseudoconcavity for differentiable functions.
With this aim let us recall that these generalized concavity properties have
been already studied in [15, 20, 30]. For the readers’ convenience we provide
the following definitions which will be used throughout the paper. |

‘Definition 3.2 Let f : A — R, with A C %" open and convex, be a
differentiable scalar function. Given a value p € R function f is said to be
p-quasiconcave in A if the following implication holds V1,22 € A, z1 # xo:

fo) = far) 5 Vi) (@ —w0) 2 plor =z

while it is said to be strictly p-pseudoconcave in A if the following implication
holds V.Tl,l'g € A, I # Ig:

fa) 2 fa) = Vi@ (@ -2 > plles — aall®

At the best of our knowledge, the existing p-generalized concavity prop-
erties for multiobjective functions are related to the Paretian cone. On the
other hand, in our primal and dual problems we refer to an arbitrary closed,
convex and pointed cone C; due to this we suggest the following new defi-
nitions of vector valued generalized (C*, ©)-concavity which directly takes
into account the order relation induced by the cone C.

Definition 3.3 Let f : A — R, with A C R” open and convex, be a
differentiable vector valued function, C C R° be a closed convex pointed
cones with nonempty interior. Given a vector © € ®” function f is said to
be (C*, ©)-quasiconcave in A if the following implication holds Yz, z3 € 4,
x # @9t

flz1) € flea) + C* . = Jp(z)(zy — 22) € Oz —~ 51:1||2 +C

while it is said to be (C*, ©)-pseudoconcave in A if the following implication
holds Vz;,xe € A, 11 # g:

fla) € fla) +C* = Tp(m2)(m1 — 22) €Ol —zff* + Int(C)

Remark 3.2 Scalar p-quasiconcave and strictly p-pseudcconcave functions
are nothing but a generalization of the very well known quasiconcave and
strictly pseudoconcave functions, respectively, which can be obtained just as
a particular case assuming p = 0 (see for all [1]). On the other hand, the vec-
tor valued (C*,©)-quasiconcave and (C*, ©)-pseudoconcave functions are



a generalization of weakly (C*,C)-quasiconcave (also known as differen-
tiable C*-quasiconcave) and (C*,Int(C))-psendoconcave functions (%), re-
spectively, which can be obtained as a particular case assuming © = 0 (see
[8, 11}). Note finglly that in Definition 3.3 the bigger is the cone C* the
stronger is the generalized concavity property of the function.

The following generalized concavity properties in the set A with respect
‘to the variable = are going to be used in the next sections regarding to
functions L{z,af, oy, ap) and Alx, ag, ap): '

(C1) V(ay,ag,ap) € (CF x VI x ®P), ay + 0, function L(z, oy, g, op) is
(C*,0)-quasiconcave and function A(x, ag, ap) is p-quasiconcave with
p+atO>0; | "

(C2) Y(ag,ag,ap) € (Ct x VT x RP), af # 0, function L(x,ay, ag, ap)
is (C*, ©)-pseudoconcave and function A(x, ag, ap) is p-quasiconcave
with p+07© > 0; -

(Cs) V(af,ag,ah) € (Ot x VT x ®P), ay # 0, function Lz, o, Ofg,ﬂih) is
(C*,©)-quasiconcave and function A(z, o, ) is strictly p-pseudoconcave
with p+0a3© > 0.

3.2 Weak Duality

Let us now prove the weak duality for the pair of dual problems introduced
so far. With this aim, the following preliminary results are proved.

Lemma 3.1 Let us consider the primal problem P and the dual problem D.
The following statements hold:

i) Ly, 0, 00,0) € Flm1)+C V(af,ay 04) € (CTx VT xR, ay #0,
Yo, € Sp,‘

zz) Alzg, 0g,ap) <0 < Az, ag,an) Y(z2,0f, 00, 00) € Sp and Yz e
Sp.. : ‘

3[8, 11] Let f: A — R°, with A C R"™ open and convex, be a differentiable function,
C' C R*® be a closed convex pointed cones with nonempty interior. Function f is said to be
(C*, Int{C})-pseudoconcave in A if the following implication holds ¥z, 20 € A, o) # 2o

fle1) € flme) + O = Ji(we){z1 — 22) € Int{C)

while it is said to be weakly (C*, C')-quasz'coﬁcmue in A if the following implication holds
le,.’JSQ S A., &7 5/—' &a:

flz) € flza) +C" = Js(wa)(ag — 22) € C.



P'roof i) Since r; € Sp it is g(ml) ev and h{z1) = 0, so that ag € V*
implies cg Tg(x1) = 0 and hence berg Tag(x1) + ah h(x1) > 0 By definition it
is

L{z1,ap,aq,an) = f(21) + — [50f 9($1)+ah1h1($1)]

f
with ¢ € Int(C), so that the result follows since ay € CT\ {0} 1mplles
T € Int(C) _
alc .
i3) Follows directly from the definitions. - =

The following theorem provides the weak duality result for the pair of
dual problems previously defined; it is worth noticing that we do not need
to assume the convexity of the set X. ‘

Theorem 3.1 (Weak duality) Let us consider the primal problem P and
the dual problem D, assuming that at least one of conditions (C1), (Ca) and
(C3) is verified. ThenVz1 € Sp and V(aa, oy, 04, 0) € Sp, it is

f(z1) ¢ Llxo, 08,09, ) + C™,

where tn the case O* = (' it i3 also assumed that 1 3 xa.

Proof Assume condition (C1) holds and suppose by contradiction that
Jxy € Sp and 3(zp, af,ay, ap) € Sp such that

f(ml) € £($2aafaagvah) + c*
For condition #) of Lemma 3.1 we have
E("L‘la af'.‘.agvah.) € f(wl) +C

so that, since C is a closed convex pointed cone with nonempty interior, it
results

L(z1, 05, 09, ap) € L{x3, a5, ag,ap) + C”
It can be essily seen that #1 # zo, infact if C* = C this is guaranteed by the
hypothesis, while if C* # C, that is C* C C?, this is implied by the previous
condition. Since L£(z, ay, ag,ah) is (C*, ©)-quasiconcave with respect to the
variable z it yields
Je(z2, af, o, ap) (1 — 22) € O[3 ~ 21 || + C

hence, since a5 € C* \ {0}, it results

a?Jc(mg,af,ag,ah)(:nl —x2) 2 a?@”mz - :Jr:1||2
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As a consequence we get
[0F J5(@2) + 605 Jy(w2) + o, I (22)] (@1 — 22) Z @] Olma = wil*  (3.2).

From property #} of Lemma 3.1 and the p-quasiconcavity of A(z, ag,as)
we have

(1 = 8Yo Jy(x) + of Tn(w2) ~ of, Jn, (x2)i (71 — 22) = pllza — z1]* (3.2)
so that, by adding (3.1) and (3.2), since p + a?@ > 0 we get:

[of T5(w2) + 07 Jo(22) + of Ju(2)] (1 = 22) 2 (p + 07 O)fjmz — | > 0

This implies that (xs,0y¢, 04, a)) ¢ Sp, which is a contradiction. ‘
The proofs for the assumptions (Ca) and (C3) are analogous and hence
they are omitted. O

Note that, in the previous theorem, the bigger is the cone C* (and hence
the stronger is the generalized concavity property of £(x1, ay, oy, o)), the
stronger is the proved necessary condition. :

Corollary 3.1 Let us consider the primal problemn P and the dual problem
D, assuming that at least one of conditions (C1), (C2) and (C3) is verified.
If (z, 05, aq, ) € Sp with 60:39(33) =0 and x € Sp then

z € C*_argmax(P) and (z, a7, 04,ap) € C*_ argmin(D):

Proof As a preliminary result, note that 2 € Sp and fogg(x) = 0 imply
Lz, ap, aq,ap) = f(x).
Suppose by contradiction that # ¢ C* _argmax(P), that is there exists
y € Sp such that f(y) € f(z) + C*; hence fly) € L(x,af, ag,0n) + C* and
this contradicts the weak duality result,
Now suppase by contradiction that (z, ay, ag, o) € C*_ arg min(D), that is
there exists (Z, a7, &, 8n) € Spsuch that L(z,ay, oy, o) € L(Z, 85,8, Gn)+
C*; hence f(x) € L(Z, @5, Q,, @y)+C* and this contradicts the weak duality
result. 0

3.3 Strong Duality

We are now ready to prove the following results related to strong. duality.
With this aim, in this subsection we will assumme the set X to be convex.

Theorem 3.2 (Strong duality) Let us consider the primal problem P and
the dual problem D, assurning that at least one of conditions (C1), (Ca) and



(Cs) is verified. Assume also that X is convex and a constraint qualifico-
tion holds for problem P. Then Yz € CO_ argmax(P) Jay € C+\ {0},
3oy € V', 3o, € R such that: |

(z,af,0q,ap) € C*_argmin(D) and f(z) = L(z, 05, 0, 0p)

Proof Let z € C°_argmax(P); by means of Theorem 2.1 Ja; € COF\
{0}, Jay € V*, Jop, € RP such that alg(z) =0 and

10T (@)T + ol J, () + of Ju(@)y — ) <OVy € X.

Since h(z) = 0 and ol g(x) = 0 it results f(z) = L(z,af, ag,ap) and
(@, ap, 0q,ar) € Sp. For the weak duality theorem A(Z, Gy,8,,0,) € Sp
such that

Lz, a5, 0q,0) = f(z) € L(Z, 05,8, 0,) + C*
In other words, #(%,8y,8,,8,) € Sp such that
L(8, 67,84, 8n) € L{z, a7, aq,0n) - C*
and hence (z, 05, a9, ap) € C*_argmin(D). =
The following result follows directly from Theorem 3.2.

- Corollary 3.2 Let us consider the primal problem P and the dual problem
D, assuming that at least one of conditions (Cy), (Ce) and (Cs) is verified.
Assume also thet X is conver and a constraint qualification holds for problem
P. IfC*_argmin(D) = 0, then C°_ argmax(P) = 0.

The following further duality result follows from the weak and the strong
- duality theorems.

Carollary 3.3 Let us consider the primal problem P and the dual problem
D, assuming that at least one of conditions (C1), (Ca) and (C3) is verified.
Suppose that X 1s conver and-a constraint qualification holds for problem P;
then

flx) = L(za, oy, aq, ap) & (C* U =C™)
vy € CP_ argmax(P) and ¥(z2, ap, oy, o) € C*_ argmin(D).

Proof Let z; € C°_arg max{P) and (z2, @y, ay, o) € C*_ arg min(D);
for the weak duality theorem it is

flz1) ~ L2, 05,04, 05) & C*

10



For the strong duality theorem oy € C* \ {0}, 3oy € V', Joy € RP such

that (21, , 0g,04) € C* _argmin(D) and f(z1) = £(z1, a5, 0g,n). Asa |

consequence, condition (x2, of, ag, ap) € C*_ arg min(D) implies

L(zy,ap,ag,an) & L(22, a5, ag, op) ~ C*

and hence for the equality f(z) = L(z;, af, 04, ) we have
flay) = Llmy, ap, 09, 00) ¢ ~C

which proves the result: ' 0

4 The case X = A and (F, p)-quasiconcavity

In the recent literature, when C and V are the Paretian cone and X = A,
some duality results have been stated with the use of generalized (F),p)-
concave functions (see for example [3, 4, 5, 27, 24, 32}), which are nothing but
a generalization of the generalized p-concave functions previously handled.
It is worth noticing that an interesting study about relationship between
(F, p)-convexity and p—invexity appeared in [13]. Due to the widespread
interest for this kind of generalized concavity properties, we aim to deal with
this issue too; we consider the case X = A, but we still assume that ¢ and
V are arbitrarily closed convex pointed cones.

Definition 4.1 Consider problem P where X = A; the dual problem re-
duces to the following form.

?

o[ C_min £0p,00,00) = ) + glfod@) +of, ha(o)
‘ . (.T,O:'f,ag,ah) € SD"'

where

(m,af,%g,ah) € (f;x C* x V; x 7), ay # 0,
Spr = o Jr(x} + g Jg(@) + o Jp{z) = 0,
(1-— 5)a§g(m) - a{zhg(w) <0
af ha(z) =0, aahd_,(:n) <0

. For the sake of completeness we recall the following definitions which are
going to be used in the duality theorems (see for example [3, 4, 27, 32]).

Definition 4.2 A functional F : X x X x R" — R is said to superlinear if
for every 1, xo € X it is

F(z1,x9,01 + az) > F(x1,x9,01) + F (31, T2,a3) Vay,ap € ™
F(z1,19,00) = aF (21,29,a) Va € R™, Va e R, a > 0.

11



Definition 4.3 Let f: A — R, with A C R™ open and convex, be a differ-
entiable scalar function. Given a value p € # and a superlinear functional F,
function f is said to be (F, p)-quasiconcave in A if the following implication
holds Yy, 2e € A, X1 % Lo .

fx1) = fza) = F(x1,9,Vf(22)) 2 pllwa — @1

while it is said to be strictly (F, p)-pseudoconcave in A if the following im-
plication holds V1,2, € A, 21 7 zar :

f() = f(z2) = F(z,22,VI(r2)) > pllze — 3

Similarly to the case of generalized p-concavity, the existing (F, p)-generalized
concavity properties for multiobjective functions are related to the Paretian
cone and often defined componentwisely. Therefore we suggest new def-
initions of both (C*, F,©)-quasiconcavity and (C*, F, ©)-pseudoconcavity
which directly take into account the order relation induced by the cone C.

Definition 4.4 Let f : A — ®°, with A C R open and convex, be a
differentiable vector valued function, C' C R° be a closed convex pointed
cones with nonempty interior. Let F be a superlinear functional and denote

F (1, 29,V fi(z2))
F(ﬁl,wg,J}-(mQ)) — F (21,22, V fa(za))

F (21,2, V fn(z2))
Assume that I satisfies the following condition :
F (ml,mg-,a?Jf(xg)) > a?F (a:l,a:z,.]f(mz)) Vay € ct (4.1)

Given a vector © € R™ function f is said to be (C*, F, ©)-quasiconcave in
© A if the following implication holds Yz, z9 € A, 1 5 x9:

Fm) € flaa) + C* = F(21,22,7(22)) € Ollzz — 1 |* + C

while it is said to be (C*, F, ©)-pseudoconcave in A if the following implica-
tion holds Va1, 2o € A, oy # xa: '

F(z)) € flag) +C* = F(my, 2, Jy(z2)) € Ollzs — 71 ||? + Int(C)

In the case C is the Paretian cone, Condition (4.1) is directly implied by
the superlineary of F. If in addiction it is C* = C? [C* = (], the (C*, F, ©)-
quasiconcavity coincide with the weak (F, ©)-quasiconcavity [(F, ©)-quasiconcavity]
used in {3, 27]. On the other hand if C is the Paretian cone and C* = C°
[C* = Int(C)], the (C*, F, 8)-pseudoconcavity is the weak strictly (F,0)-
pseudoconcavity [(F, ©)-pseudoconcavity] analyzed in [3, 27].
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Theorem 4.1 Let us consider the primal problem P with X = A and the
dual problem D*. Assume also that ot least one of the following generalized
convexity properties in the set A with respect to the variable x holds for

Junctions L{x, op, g, 0n) and Az, ag, ap):

(F1) Y(oy,0g,ap) € (Ct x VT x ®P), ay # 0, function L{x,a;,0q,0p) is
qTLGSZCOﬂCGUe and function xT, Gﬂ 3 a'h 18 ) quaSZCOTLCﬂ;’Ue
C*, F,© d Az, aq F,
wzth p+aj O >0 :

(F2) Y(ag,ag,0n) € (CF x VF x §9), ay # 0, function.ﬁ(a:, gy 0rg, ) i
(C*, F, ©)-pseudoconcave and function Az, ag, ap) is (F, p)-quasiconcave
with p -+ oF© 2 0;

(Fz) Y(ayf,ag,0p) € (CT x VT x RP), ay # 0, function L(z,ay,aq, ap)
is (C*, F, ©)-quasiconcave and function /_\(m ag, ap) is strictly (F, p)
pseudoconcave with p + a0 2 0. :

Then the following condition holds Y1 € Sp and V(22 af, g, o) € Sps:
f(z1) & L(za, 05, 09, ap) + C*
where in the case C* = C it i3 also assumed that z1 # zo.

Proof Assume (F}) holds and suppose by contradiction that 3z; € Sp
and 3(z2, ay, oy, an) € Sp+ such that

f(z1) f=t ﬁ(mg, oy, Qg, ap) + C*.
For condition i) of Lemma 3.1 we have
£($1:a_f?a97ah) € f(ml) + ¢

so that, since O is a closed convex pomted cone with nonempty interior, it
results

Lz, a5, 0, an) € L(T2, 01,09, 00) + C".

It can be easily seen that 21 # @2, in fact if C* = C this is guaranteed by the
hypothesis, while if C* # C, that is C* C €9, this is implied by the previous
condition. Since L(z,qy, o, o) is (C*, F, ©)-quasiconcave with respect to
the variable z it yields

F (21,22, Jr(%2, af, g, ) € Oy — m |2 + C. (4.2}
Since ay € CT\ {0}, from Conditions (4.1} and (4.2) it results

F(.‘13'1,582,Q?J[,(ﬂ:?_,af,a’g,ah)) > CE}—'F (.’D1,$2,J£($2,af,ag,ah))
> at 0|z —z|* (4.3)
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From property #) of Lemma 3.1 and the (F, p)-quasiconcavity of A(z, ay, ap)
we have .

F (xy, @2, VA(12, 0, ) 2 plla = 51|% (4.4)
Observe that since (z3, af, 0, ) € Sp» it is
VA(za, g, ap) + a'fJL- (z2, 05, 09,05) = 0.
By adding (4.3) and (4.4), since p + a3 © >0 it follows:

0= F(mla:‘B?:U) = (mlam% vA(mmaqaah) + Q?Jﬁ(mmaf:ag:ah)) Z
> F (21,22, VA(22,04, ap)) —|—F(ml,mz,ach(mz,af,ag,ah))
> (p+a}0) |l —m|I2 >0

which can not be true. :
The proofs for the assumptmns (Fg) and (F3) are analogous and hence
they are omitted. O

Obviously, the statement of Corollary 3.1 still holds if conditions (C}),
(Cy) and (Cj3) are replaced by (F1), (F2) and (F3) and again, the strong
duality results similarly follow as the ones already proved in Section 3.3.

5 rGeneralized concavity of f, g, h

In the previous sections duslity results are proved under very general con-
ditions, that is Conditions (C1), (C2),(Cs) and Conditions (F1), (F2),(F3).
As a conclusion of the paper we aim to investigate the role of generalized
concavity properties which are less general but, at the same time, easier to
be checked. With this regards, the following proposition holds.

Proposition 5.1 Let us consider the primal problem P and the dual prob-
lem D). The following statements hold:

i) if function L(x,af, g, 0p) is (C*,Int(C))-pseudoconcave in A with
respect to the variable = and function Az, 0y, ap) s quasiconcave in
A with respect to the variable x then conditions (C2) and (Fa) hold;

i) if function L(x,ay, o, o) 18 weakly (C*, C)-quasiconcave in A with
respect to the variable  and function Az, o, 0p) s strictly pseudo-
concave in. A with respect to the voriable x then conditions (C3) and
(Fs) hold.

14



Proof They follow directly from the definitions assuming p= 0,0 =0
and, if the case, F (z1, z2, VFf(22)) = V f(22)T (#1~22) or F (21, %2, J5(22)) =
Jy(2) (@1 — x2). _ : o

Since the quasiconcavity of function A(.ﬁ:,ag,cuh) plays a fundamental
. role in the previous result, we are interested in finding conditions which
imply this crucial property; with this aim we give the following proposition.

'Propqsition 5.2 Consider Problem P and the dual Problem D.
If g is polarly V -quasiconcave (*) in A and h is affine then A(z, ay,0n) is
quasiconcave in A with respect to the variable .

Proof Since h is affine, it is quasiconcave; recalling that the sum of two
quasiconcave functions is quasiconcave, the result follows directly from the
definition of polarly V-quasiconcavity. O

Observe that Proposition 5.1 and 5.2 hold regardless the specific form
of the dual problem D. Nevertheless according with the value of § and the
choice of J, we have different kind of generalized concavity properties of
functions f, g and h, that guarantee one of the conditions (Cy) ,(Cs) (or
equivalently (F3),(F3)). In this section we give sufficient conditions for the
pseudoconcavity of function £ and hence for Condition (Ca) (%); we prove
that as you move from the case § = 1 and J; = {1,...,p} to the one with
6 = 0and J; = @, you can require weaker generalized concavity assumptions
in order to guarantee the pseudoconcavity of £. We are going to deal with
the case § = 1 and § = 0 separately. '

Proposition 5.3 Consider Problem P and the dual Problem D where func-
tion h is affine. '

i) Assume that § = 1. L{z,ay, a4, ap) is (C*,Int(C))-pseudoconcave in
A with respect to the variable T if one of the following conditions is
verified: '

i.a) f is C-concave (*) in A, g is V-concave in A and C* = Int(C).
i.b) f is Int(C)-concave in A and g is V-concave in A.

A function f is said to be polerly C-quasiconcove if and only if ¢(z) = o7 f(z) is
quasiconcave Vo € C7, a # 0, that is to say if and only if Va € CT, a # 0, Vz,y € 4,
z # vy, it holds: : .

o flyy 2 " f(z) = aTJizHy~=2)>0

®Similar results can be easily stated and proved for Conditions (Cs) or (Fa).
et f: A R, with AC R* open and convex, be a differentiable function, C C ®*
be a closed convex pointed cones with nonempty interior. Funetion f is said to be
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i.c) f is C-concove in A and g is Int(V)-concave in A.

it) Assume that § = 0 and hy # 0. L{z,a5,0q,a3) is (C*,Int(C))-

pseudoconcave in A with respect to the variable x if one of the following
conditions is verified:

ii.a) f is C-concave in A and C* = Int(C).
#.b) f ts Int(C)-concave in A.

it1) Assume that § =0 and h.l ={.

If f is (C*, Int(C))-pseudoconcave in A then Lz, oy, g, ) is (C*, Int(C))-
pseudoconcave in A with respect to the variable x.

Proof i) When § = 1, the dual problem is specified as follows

H

L [ C_min £z,az,00,00) = 1(0) + F5laTo(z) + o ha(o)
I (.’I?, arf, Q’g,&!h) € 5p

where

(x,ap,a4,ap) € (Ax CT x VT x §P), oy # 0,
[0FJ(2) + aZJ,(x) + of Jn(x)| W —2) SO W € X,
0452}12(3‘,‘) S 0
of ha(x) =0, of ha(z) <0

Sp =

We are have to show that £ is (C*,Int(C))-pseudoconcave in A. Consider
x).&2 € A such that L{z1, a5, 0q,a,) € L(22, oy, 0y, ap) + Int(C), that is
Lry,af, ay,an) — L(Z9, a5, 0, 03) € Int(C). From the concavity assump-

tions of f and g and from the affinity of A we get : :

f(21) = f (@2) + Jp(za) (31 — m2) ~ 1
g(z1) = g (za) + Jy(z2) (z1 — 32) — 11
h{z1) = h(z2) + Jn(m2) (21 — z2)

where ¢1 € C and v € V. Therefore

L{z1, a7, 04, ) = L(22, Oy, g, ap) = .
f 1) = f (@2} + ;?;[059(931) + af hi{z1) — ol g(z2) — of by (x2)]

T(@2) (21 — 23) — 1 + - [Jg(w2) (21 — @2) — &l vy + Ju(22) (m1 — 22))

[Jf (z2) + ;;%;[Jg(wz) + Jn ($2)J (1 —>9) —c1 = ;fg; (afv) .

C*-concave if and only if Vo, y € A, z # g, it holds:

)~ f(z) = Ji(z)(y —x) € —Of.
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Since ofv 2> 0, it results ~%- (aIv) € C;
from L{zy, af, 0, ) — E(i'g,af,ag,ah) € Int(C), there exists ¢ € Int(C)
~ such that |Jp(z2) + E?‘:rc'.[.]g(wg) + Jp(z2) | (w1~ @2) = T+ 1 + ‘&%5 (afv)

and therefore
Je() (@ — o) = ':Jf(:cg) + E;—E[Jg(wz) + Jh.(xg)} (z1 — z2) € Int(C)
f : :

i.b)-i.c) The proof is analogous of case i.a).

il) The result follows along the lines of i).

il.b) In this case L{z, af, a4, an} = f(z) and hence the result is trivial.

iv) Obvious since L(z, ay, ag, on) = f(z). ‘ - |

Remark 5.1 It is worth noticing that since a C*-concave function is also
polarly quasiconcave (see (9, 10]), the conditions stated in Proposition 5.3-i)
guarantee the quasiconcavity of A(z, ay, o) with respect to the variable z.
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